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ABSTRACT
We study a design and optimization problem that occurs,
for example, when single nucleotide polymorphisms (SNPs)
are to be genotyped using a universal DNA tag array. The
problem of optimizing the universal array to avoid disrup-
tive cross-hybridization between universal components of
the system was addressed in a previous work. However,
cross-hybridization can also occur assay-specifically, due to
unwanted complementarity involving assay-specific compo-
nents. Here we examine the problem of identifying the most
economic experimental configuration of the assay-specific
components that avoids cross-hybridization. Our formal-
ization translates this problem into the problem of covering
the vertices of one side of a bipartite graph by a minimum
number of balanced subgraphs of maximum degree 1. We
show that the general problem is NP-complete. However, in
the real biological setting the vertices that need to be cov-
ered have degrees bounded by d. We exploit this restriction
and develop an O(d)-approximation algorithm for the prob-
lem. We also give an O(d)-approximation for a variant of
the problem in which the covering subgraphs are required
to be vertex-disjoint. In addition, we propose a stochastic
model for the input data and use it to prove a lower bound
on the cover size. We complement our theoretical analysis
by implementing two heuristic approaches and testing their
performance on simulated and real SNP data.

∗Agilent Laboratories (amir ben-dor@agilent.com).
†Dept. of Computer Science and Applied Mathematics,
Weizmann Institute (tzvi@cs.weizmann.ac.il).
‡Institute for Systems Biology, 1441 N. 34th St., Seattle,
WA 98103 (benno@systemsbiology.org).
§Corresponding author: International Computer Science In-
stitute, 1947 Center St., Suite 600, Berkeley CA 94704-1198
(roded@icsi.berkeley.edu).
¶Agilent Laboratories and Computer Science Dept., Tech-
nion (zohar yakhini@agilent.com).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RECOMB’03, April 10–13, 2003, Berlin, Germany.
Copyright 2003 ACM 1-58113-635-8/03/0004 ...$5.00.

Categories and Subject Descriptors
G.2.2 – graph algorithms, J.3 computer applications – biol-
ogy and genetics.

General Terms
Algorithms, theory, experimentation.

Keywords
SNP genotyping, universal array, cross-hybridization, mini-
mum primer cover, stochastic model.

1. INTRODUCTION
SNPs (single nucleotide polymorphisms) are differences,

across the population, in a single base, within an otherwise
conserved genomic sequence [21]. The sequence variation
represented by SNPs is often directly related to phenotypic
traits. Such is the case when the variation occurs in cod-
ing or other functional (e.g., regulatory) regions (see [5]).
Somatic or native SNPs in oncogenes or in related regions
can determine cancer susceptibility and are often related
to pathogenesis (see, e.g., [19, 20, 12, 22]). Genotyping is
a process that determines the variants present in a given
sample, over a set of SNPs. SNPs also serve as genetic
markers that can be used in linkage and association stud-
ies (see [15]). In the latter case a population of samples is
jointly measured and the frequencies of the different variants
are inferred. Efficient SNP detection, genotyping and mea-
surement techniques have, therefore, great clinical, scientific
and commercial value.

Methods for high throughput SNP genotyping are under
fast development and evolution. This task enlists various
molecular biology techniques, separation technologies and
detection methods. Methods based on mass spectrometry or
length separation are described, e.g, in [10, 16]. Other meth-
ods are based on hybridization array technology (cf. [18, 11,
7]). In an array-based hybridization assay a target-specific
set of oligonucleotides is synthesized or deposited on a solid
support surface (e.g., silicon or glass). A fluorescently la-
beled target sample, a mixture of DNA or RNA fragments,
is then brought in contact with the treated surface, and al-
lowed to hybridize with the surface oligonucleotides. Scan-
ning the resulting fluorescence pattern reveals information
about the content of the sample mixture. Theoretically, the
assay conditions are such that hybridization only occurs in
sites on the surface that are Watson-Crick complements to
some substring in the target. In practice, cross-hybridization



is a main source of signal contamination in any array-based
hybridization assay.

Recently, S. Brenner and others [3, 13, 9] suggested an
alternative approach based on universal arrays containing
oligonucleotides called antitags. The Watson-Crick comple-
ment of each antitag is called a tag. The tag–antitag pairs
are designed so that each tag hybridizes strongly to its com-
plementary antitag, but not to any other antitag. We shall
call the entire system a DNA Tag/AntiTag system and in
short a DNA TAT system. To exemplify the approach we
describe in detail the application of universal arrays to SNP
genotyping. The method is illustrated in Figure 1 and con-
sists of the following steps:

1. A set of reporter molecules (one for each SNP) is syn-
thesized. Each molecule consists of two parts that are
ligated together. The primer part is the Watson–Crick
complement of the upstream sequence that immedi-
ately precedes the polymorphic site of the SNP. The
other part is a unique tag – an element of the universal
set of tags.

2. When an individual is to be genotyped, a sample is
prepared that contains the sequences flanking each of
the SNP sites. Typically these are PCR amplicons.
The sample is mixed with the reporter molecules and
solution-phase hybridization takes place. Assuming
that specificity is perfect, the flanking sequences of
the SNPs only hybridize with the appropriate reporter
molecule.

3. Single dideoxynucleotides, ddA,ddC,ddT,ddG, fluores-
cently labeled with four distinct chemical dyes, are
added to the mixture. In a polymerase-driven reac-
tion each hybridized reporter molecule is extended by
exactly one labeled dideoxynucleotide.

4. The extended reporter molecules are separated from
the sample fragments, and brought into contact with
the universal array. Assuming that specificity is per-
fect, the tag part of each reporter molecule will only
hybridize to its complementary antitag on the array.

5. For each site of the array, the fluorescent dyes present
at that site are detected. The colors indicate which
bases participated in the extension reaction, at the
corresponding SNP site and, thus, reveal the SNP vari-
ations possessed by the tested individual.

This method, with the appropriate modifications is also
applicable in a pooled genotyping strategy, where PCR is
applied to pooled DNA from several individuals and the pur-
pose is to determine allele frequencies. In addition, the gen-
eral idea of a universal array is also applicable for other mea-
surement purposes. For example, if the reporter molecules
are designed to be specific, each for some target mRNA,
then the same protocol can be used for expression profiling.

Designing DNA TAT systems presents a tradeoff. Clearly,
it is desirable to have as many tags as possible, in order to
maximize the number of SNPs that can be genotyped in par-
allel. On the other hand, if too many tags are used, similar
tags will necessarily entail cross-hybridization events (where
tags hybridize to foreign antitags), reducing accuracy. The
design of DNA TAT systems is independent of any partic-
ular application scenario and is, thus, optimized to avoid

cross-hybridization between tags and foreign antitags. This
issue was addressed in [2].

When performing an actual genotyping assay there are
also assay-specific sources of potential cross-hybridization.
One major source involves the primer parts of the reporter
molecules hybridizing to array bound antitags, producing a
confusing signal unless the corresponding site on the array is
designated to the primed SNP site. As this problem is spe-
cific to the actual set of SNPs to be studied, it is impossible
to address it in the TAT system design stage.

In this work we assume that the set of primers for the
reaction was designed to achieve the desired level of speci-
ficity in the target genome, i.e., reporter molecules will not
extend on unintended genomic sequences. Remaining assay-
specific sources of potential confusing signal are: Primer
to antitag cross-hybridization as described above. Sandwich
cross-hybridization: A duplex of two reporter molecules hy-
bridizes to a single site in the array. The duplex is formed
due to high complementarity of the sequences and hybridizes
to the array site through one of the tags. Sandwich cross-
hybridization involves a complicated configuration and is
rare. Primer to primer mis-extension: The primer parts of
reporter molecules can hybridize to other primers in the ex-
tension step in a configuration that allows for polymerase
extension. Primer to tag mis-extension: Similar, but with
primer parts of reporter molecules hybridizing to tags in the
extension step. The latter two are similar to primer-dimer
formations in PCR. Note that the cross-hybridization needs
to be perfect at the 3’ end of the reporter for this problem
to occur.

Primer to antitag cross-hybridization is, therefore, by far
the most probable source of confusing signal. This is the
only problem we explicitly address in this work. The meth-
ods we develop can be extended to handle primer to tag mis-
extension. In addition, any multiplexing scheme for a uni-
versal array based assay can be screened for any undesired
properties prior to performing the measurement. Avoiding
less common configurations should be deferred to such a
screening stage rather than taken into account in the design
stage.

Maximizing the multiplexing rate for a given set of SNPs
(alternatively, minimizing the number of arrays to be used
for a single genotyping measurement of this set), under given
primer to antitag cross-hybridization constraints, is the main
subject of this work. Every time we say cross-hybridization
we mean primer to antitag cross-hybridization. To control
the multiplexing rate we use our freedom to choose how
to partition the set of SNPs into assignable subsets (sub-
sets that can be measured using one array without cross-
hybridization) and to assign tags to SNP sites. The as-
signment of a primer to a tag means that they will form a
reporter molecule. A proper assignment (p1, t1), . . . , (pk, tk)
of primers to tags should avoid cross-hybridization between
every primer pi and antitag tj , unless i = j.

To approach the multiplexing problem we model the in-
put data using a bipartite graph in which the primers are
on one side and the tags are on the other side. Each edge
in the graph indicates potential cross-hybridization between
a primer and the corresponding antitag. The multiplex-
ing problem then translates to the problem of covering the
primer vertices of the graph using a minimum number of bal-
anced induced subgraphs of maximum degree one. We prove
that the general problem is NP-complete. However, in ac-



Fragments spanning the
polymorphism sites for all
the SNPs in the set are
extracted. The different
shapes denote different
variants.

Oligonucleotides complementary to the sequences
immediately preceding the polymorphism sites are
tagged by DNA tags, designed to specifically
hybridize to their complements on the array.

Extension reactions take place in solution phase,
in the presence of a mixture of all four dideoxy-
nucleotides (differentially fluorescently labeled)
and an appropriate enzyme. For each SNP the
extending base is the one complementary to the
one corresponding to the base present in the
sample sequence. After separation (the whole
process can be performed at high temperature) a
mixture of reporter molecules is formed. This
mixture is brought in contact with the array.
Tags hybridize to their complements and a
fluorescence pattern is obtained from which the
identity of all variants in the original mixture can
be deduced.

Figure 1: A scheme for SNP genotyping using a DNA TAT system.



tual applications the primer vertices have degrees bounded
by some constant d. We exploit this restriction and develop
an O(d)-approximation algorithm for the problem. Specifi-
cally, we give an algorithm that produces a cover of cardi-
nality � m

�n/(d+1)�� for m primers and n tags. We also give an

O(d)-approximation for a variant of the problem in which
the covering subgraphs are required to be vertex-disjoint. In
addition, we propose a stochastic model for the input cross-
hybridization data and use it to prove a lower bound on
the cover size. We complement our theoretical analysis by
implementing two heuristic approaches for the problem and
testing their performance on simulated and real SNP data.

The paper is organized as follows: In Section 2 we math-
ematically model and formalize the optimization problem.
Section 3 presents our hardness and approximation results
on the covering problem and its variants. We develop a lower
bound under a stochastic data model in Section 4. In Sec-
tion 5 we present two practical heuristic algorithms. The
experimental results of both algorithms on simulated and
real data are presented in Section 6. For lack of space some
proofs are sketched or omitted.

2. FORMAL PROBLEM DEFINITION
Denote the set of DNA tag sequences associated with the

universal array by T , and the corresponding set of antitags
by T . By P we denote the set of primers (the sequences
complementary to the upstream regions of the SNPs). Let
m = |P | and n = |T |. For a graph G and a subset of its
vertices R, we denote by GR the subgraph of G induced by
R. We denote by V (G) and E(G) the sets of vertices and
edges of G, respectively.

Solutions to our multiplexing problem correspond to par-
titions of P into subsets, where each subset corresponds
to one array experiment. Potential cross-hybridization be-
tween primers and antitags can be determined experimen-
tally or predicted computationally, e.g., on the basis of the
sequence [2]. The methods presented here are not specific to
any such determination mechanism. We only assume that
potential cross-hybridizations are given in the form of a bi-
nary m× n matrix A, such that:

Ap,t =

�
1 if p ∈ P potentially hybridizes with t̄ ∈ T ,
0 otherwise.

Definition 1. A set of reporter molecules {(p1, t1), . . . ,
(pk, tk)} (with distinct pi ∈ P and distinct tj ∈ T ) is said
to be non-cross-hybridizing if Api,tj = 0 for all i �= j.

Note that in the above definition the primer part of a re-
porter molecule may potentially cross-hybridize with the tag
part (but with no other tag). A set of SNPs can be measured
in a single array operation, without cross-hybridization, if all
corresponding members can be assigned to tags such that
cross-hybridization is avoided. Formally:

Definition 2. A set of k distinct primers {p1, . . . , pk} ⊆
P is called assignable if there exists a non-cross-hybridizing
set of reporter molecules {(p1, t1), . . . , (pk, tk)} for k distinct
tags t1, . . . , tk ∈ T .

The following definition allows us to cast these conditions
directly in terms of A.

Definition 3. A subpermutation matrix is a square 0–
1-matrix whose rows and columns can be permuted such that
all entries outside the main diagonal are 0.

Observation 1. A set of primers P ′ ⊆ P is assignable if
and only if P ′ corresponds to the row set of a subpermutation
submatrix of A.

An alternative point of view models the input matrix
A as a bipartite graph. Let G = (P, T, A) be a bipar-
tite graph, whose vertices are primers (P ) and tags (T ),
and whose edges represent potential cross-hybridizations be-
tween primers and the corresponding antitags. A subgraph
H = (P ′, T ′, E′) of G is called balanced if |P ′| = |T ′|. H
is called an assignable subgraph if H is a balanced induced
subgraph of maximum degree 1.

Observation 2. A matrix A with a set of rows P and a
set of columns T is a subpermutation matrix if and only if
the bipartite graph G = (P, T, A) is an assignable graph.

The following proposition formalizes a necessary and suf-
ficient condition for a set of primers to be assignable:

Proposition 1. Let G = (P, T, A) be a bipartite graph,
with T = {t1, . . . , tn} and P = {p1, . . . , pm}. For j =
1, . . . , n, let Y (j) = 1 if tj has degree zero, and 0 otherwise.
For i = 1, . . . , m, let X(i) = 1 if G contains a tag of degree
1, which is adjacent to pj, and 0 otherwise. Then P is
assignable if and only if

n�
j=1

Y (j) +
m�

i=1

X(i) ≥ m.

Definition 4. A partition E of the primer set P is called
a primer cover if each P ′ ∈ E is assignable.

Observations 1 and 2 lead to a short statement of our
main optimization problem:

Problem 1. Minimum Primer Cover (MPC). Given a
bipartite graph G = (P, T, A), find a minimum primer cover
of P .

Throughout the paper we use graph and matrix language
interchangeably.

3. COMPUTATIONAL COMPLEXITY
In this section we address the computational complexity

of MPC and variants thereof.

3.1 Minimum Primer Cover
Here we show that MPC is NP-complete and give an ap-

proximation algorithm for the problem when the primer de-
grees are bounded.

Theorem 1. MPC is NP-complete.

Proof. Membership in NP is trivial. We reduce from
SET COVER, where all input subsets are required to have
cardinality at least 2 [8, Problem SP5]. Given an instance
(P,S , l) of SET COVER, where S is a collection of subsets
of a finite set P , and l is an integer, we construct an instance
(G = (P, T, A), l) of MPC as follows: For every subset Si =
{si,1, . . . , si,k} ∈ S , we add vertices Ti = {ti,1, . . . , ti,k} to
T , such that every ti,j (1 ≤ j ≤ k) is adjacent to all the
vertices in P \ Si (and to no other vertex).

A set-cover Si1 , . . . , Sil induces a primer cover E = (Si1 ,
. . . , Sil) with the same cardinality, since each Sij is assignable.



Conversely, suppose there exists a primer cover E of size l.
A set S ∈ E is called homogeneous if all its primers belong
to the same subset Si. S is called crossing if S = {p, p′} and
no S′ ∈ S contains both p and p′.

Observe that every assignable primer set is either homo-
geneous or crossing. If all the primer sets in the cover are
homogeneous, taking the corresponding subsets yields a set
cover of size l. Otherwise, we can apply a series of modifica-
tions to the cover that eliminate the crossing sets in it and
preserve its cardinality. In each step we consider a crossing
primer set S = {si, sj} ∈ E , where si ∈ Si, sj ∈ Sj and
i �= j. If some s′i ∈ Si is covered by a homogeneous set S′,
we can move si from S to S′, eliminating one crossing set.
Otherwise, there exists a crossing set S′′ = {s′i, sk}, which
contains some s′i ∈ Si. By moving s′i to S and sj to S′′,
we eliminate a crossing set. Applying these modifications to
the cover we necessarily end with a homogeneous cover of
size l.

Note that the proof of Theorem 1 implies that MPC is
NP-complete even if the number of tags is required to be
greater or equal to the number of primers.

In the context of DNA TAT systems, as constructed in [2],
the choice of tags implies that the degree of every p ∈ P is
bounded by some constant d. This is true since, by con-
struction, strings that are long enough to potentiate cross
hybridization are not common to any two tags. Each primer
(of bounded length) can have at most d such substrings and
can, therefore, form edges with at most d tags. Practi-
cal values of d range between 5–15. We call an instance
G = (P, T, A) of MPC a d-bounded instance if the degree of
every p ∈ P is bounded by d. We shall exploit this restric-
tion and develop an O(d) approximation algorithm for MPC
on d-bounded instances.

By Proposition 1, instances that can be covered by one
subgraph are easily determined. Henceforth we assume that
the input MPC instance has an optimum solution of cardi-
nality at least 2. The case d = 1 is polynomial for m ≤ n:

Lemma 1. Let G = (P, T, A) be a 1-bounded instance of
MPC, with m ≤ n. Then a minimum primer cover for G
can be found in polynomial time.

Proof. W.l.o.g. m = n (if n > m, remove arbitrarily
n − m vertices from T ). Let G1 be the subgraph induced
by the vertices of a maximal matching M in G. Let G2 be
the subgraph induced by all other vertices. Clearly, G1 and
G2 are balanced and together they span the entire set of
primers. Since the degree of every primer is at most 1, G1

has maximum degree 1. By maximality of M , G2 contains
no edges. The claim follows.

Our main result in this section is a polynomial algorithm
which guarantees finding a solution of cardinality at most
� m
�n/(d+1)� � for a d-bounded input instance.

Theorem 2. Let G = (P, T, A) be a d-bounded input in-
stance of MPC. Then we can find, in polynomial time, a
solution to MPC on G of cardinality at most � m

�n/(d+1)��.
Proof. Observe that any primer subset with size at most

x = 	 n
d+1

 is assignable, since there are at least n− dx ≥ x

tags that are not adjacent to these primers. Our algorithm
for MPC is straightforward. We form a primer cover by
partitioning the set of primers into disjoint subsets of size
at most x. The size of the cover is bounded by �m

x
�.

Note that our algorithm actually gives a solution in which
every subgraph is an independent set or, equivalently, the
submatrices covering A are all 0. Proposition 1 implies that
the algorithm achieves an approximation ratio of � m

�n/(d+1)��/2
for m ≤ n. When m > n at least �m

n
� subgraphs are needed

in order to cover the primer set, so the approximation ratio
obtained is d + 2.

3.2 Maximum Assignable Primer Sets
In this section we study a greedy approach to MPC that

mimics approximation algorithms for SET COVER (cf. [6]).
The scheme is recursive: The largest assignable subset in P
is identified and removed, and the algorithm proceeds re-
cursively on the remaining graph. If possible, this approach
could guarantee an O(log m) approximation, and would typ-
ically perform better. However, each of the stages is NP-
hard:

Problem 2. Maximum Assignable Primer set (MAP).
Given a bipartite graph G, find a maximum assignable sub-
graph of G.

Theorem 3. MAP is NP-hard.

Proof. By reduction from the complete balanced bipar-
tite subgraph problem, where the input is a bipartite graph
and an integer k, and the objective is to find a complete bal-
anced subgraph with k vertices on each side. This problem
is known to be NP-complete [8, Problem GT24], and can be
trivially reduced to the empty balanced bipartite subgraph
problem, where the objective is to find a balanced subgraph
with no induced edges. We reduce the latter problem to
MAP.

Given an instance (G = (U,V, E), k) of the empty bal-
anced bipartite subgraph problem, where |U |, |V | < l, we
build an instance (G′ = (U ′, V ′, E′), lk) of MAP. Each ver-
tex v in G is duplicated l times v1, . . . , vl in G′. For ev-
ery edge (u, v) ∈ E we add the edges (ui, vj) to E′ for all
1 ≤ i, j ≤ l.

Clearly, an empty balanced induced subgraph of size k
induces a solution to MAP of size at least lk. Conversely,
suppose that H = (X, Y, F ) is an assignable subgraph of G′,
and |X| ≥ lk. We first claim that |F | < l. If |F | ≥ l, then F
contains, w.l.o.g., two edges (u1, a), (u2, b) for some u ∈ U .
But then either a = b, implying that a has degree at least
2 in H , or both u1 and u2 have degree at least 2 in H , a
contradiction.

Removing all vertices incident to edges in F we obtain a
solution to MAP with size (strictly) greater than (k − 1)l,
since F is a matching. This implies an empty balanced
induced subgraph of size k in G.

Note that the related problem of finding a maximum in-
duced matching in a bipartite graph is also NP-hard [4].
In the case that each primer has at most one adjacent tag,
MAP can be solved in polynomial time. We omit the details.

3.3 Minimum Partition into Disjoint Assignable
Subgraphs

Until now we did not require the covering subsets in a
solution of MPC to be tag disjoint. From the assay point
of view there is no need for such requirement. In this sec-
tion we study a mathematically related question of optimally
partitioning a bipartite graph into a set of vertex-disjoint



assignable subgraphs that cover the set of primers. Note
that it is meaningful only when the number of primers is at
most the number of tags. We henceforth assume this is the
case. We give an algorithm which produces a cover of size at
most 2d for a graph with d-degree bounded primer vertices.
The problem is formally stated as follows:

Problem 3. (Minimum Partition into Disjoint Assignable
Subgraphs (MPDAS)). Given a bipartite graph G = (P, T, A),
find a minimum set of vertex-disjoint assignable subgraphs
that cover P .

MPDAS is NP-complete by essentially the same reduction
as in the proof of Theorem 1. Our covering algorithm is
based on graph coloring and is given below.

Theorem 4. Let G = (P, T, A) be an input bipartite graph
in which the degree of each p ∈ P is bounded by d, and
m ≤ n. Then we can find, in polynomial time, a solution to
MPDAS on G of cardinality at most 2d.

Proof. Assume n = m (if n > m, remove arbitrarily
n−m vertices from T ). We shall find at most 2d assignable
subgraphs that span the vertices of P . Let M be a maximal
matching in G. Let H be the subgraph induced by the set
of vertices that are not incident to edges of M . Clearly, H
contains no induced edges and is assignable.

We now construct a directed graph G′ = (V ′, E′) as fol-
lows: Every vertex v ∈ V ′ corresponds to a pair of vertices
p ∈ P, t ∈ T that were matched by M . An edge e ∈ E′ is di-
rected from v1 = (p1, t1) to v2 = (p2, t2) iff (p1, t2) ∈ A. By
construction every vertex in G′ has out-degree at most d−1.
Hence, G′ can be colored using at most 2d − 1 colors using
SLO (smallest-last ordering) coloring [14]. Each coloring
class corresponds to the vertices of an assignable subgraph,
and together with H these subgraphs cover P .

In fact, we can produce smaller covers if the number of
tags is strictly greater than the number of primers as the
following theorem shows.

Theorem 5. Let G = (P, T, A) be an input bipartite graph
with the degree of every vertex in P bounded by d. Suppose
that n ≥ (k+1)m, for some k ≥ 1, then we can find, in poly-
nomial time, a solution to MPDAS on G with cardinality at
most 2	 d

k

.

Proof. We first remove from G all n − m ≥ mk tags
with highest degrees. Clearly, the degree of each remaining
tag is bounded by 	 d

k

. By changing the roles of tags and

primers in the proof of Theorem 4, we obtain a solution of
cardinality 2	 d

k

.

Observing that Proposition 1 holds for the MPDAS prob-
lem as well, we conclude that the algorithms of Theorem 4
and Theorem 5 have approximation ratios of d and 	 d

k

, re-

spectively.
We end this section by commenting on the applicabil-

ity of MPDAS: There is a protocol solution to avoiding
primer to antitag cross-hybridization. The idea is to intro-
duce blocking oligonucleotides, perfect Watson-Crick com-
plements of the primers used in the assay, right after the
extension reaction and prior to the array hybridization step.
As these occupy the primer parts of the reporter molecule
they block any potential hybridization of these primers. The

main source of confusing signal now becomes primer to tag
mis-extensions. By solving MPDAS for multiplexing the
solution-phase experiments, it is possible to perform the
genotyping using a single array, at the cost of performing
slightly more solution-phase experiments (since, typically,
a solution for MPC would have smaller cardinality than a
solution for MPDAS on the same instance). This protocol
has not been experimentally tested, to our knowledge. The
principal motivation for MPDAS, therefore, remains purely
mathematical.

4. A STOCHASTIC MODEL
In this section we formulate a stochastic model for the

cross-hybridization matrix A. The purpose is twofold: To
generate a platform on which to test the performance of
algorithmic approaches, and to study the distribution of af-
fordable multiplexing rates, for random sets of SNPs.

Let A be a binary matrix. Let n(A) denote the minimum
t such that A can be partitioned by rows into t assignable
row sets. Ideally we would like to specify a probability dis-
tribution over A that corresponds to the actual distribution
of matrices that arise from genotyping problems using uni-
versal arrays, and then study the distribution of n(A) for
matrices drawn from this distribution. However, this dis-
tribution will depend on the particular system of tags cho-
sen, the primers occurring in the genotyping problem, and
the criterion for cross-hybridization between a primer and
an antitag. Because of these complications we shall instead
consider a simple parameterized family of distributions of 0–
1-matrices. The model is governed by m and n, the dimen-
sions of A, and by p, that represents the expected fraction
of the antitags that potentially hybridize to a given primer
used in the assay. p depends on the primer length and on
the cross-hybridization thermodynamical model.

Let D(m, n, p) be a probability distribution of m×n matri-
ces, where each matrix entry independently is equal to 1 with
probability p and 0 with probability 1− p. We shall derive
a lower bound on n(A) for matrices drawn from D(m, n, p)
and use it in testing our algorithmic approaches.

Theorem 6. Let matrix A be drawn from the probability
distribution D(m, n, p). Then, for every positive integer t,

Prob[n(A) ≤ t] ≤ tm

t!

�
xe

h−x
h

h

�ht

where x = n(1− p)h−1(1− p + hp) and h = �m
t
�.

Proof. Let X ∼ Binom(n, s). We require the following
Chernoff bound (cf. [1]):

Prob[X ≥ (1 + ε)ns] ≤
�

eε

(1 + ε)1+ε

�ns

.

Consider a matrix C drawn from D(h, n, p). We shall derive
an upper bound on the probability that C is assignable. Call
a column of C useful if it contains at most one 1. Clearly,
C is assignable only if it contains at least h useful columns.
Each column independently is useful with probability (1 −
p)h+hp(1−p)h−1. Hence the probability that C is assignable
is at most Prob[X ≥ h], where X ∼ Binom(n, (1 − p)h +
hp(1−p)h−1). For fixed n and p, denote the Chernoff bound
on this probability by f(h). It can be shown that log(f(h))
is a concave function.



Now let A be drawn from D(m, n, p) and consider a row-
partition of A, into sets of sizes h1, h2, · · · , ht. Then the
probability that all of these subsets are assignable is at most�t

i=1 f(hi). Using the concavity of log(f(h)) we conclude
that this probability is maximized when the hi-s are all equal
and is, therefore, bounded from above by f(�m

t
�)t.

If n(A) ≤ t then A can be row-partitioned into t assignable

row subsets. The number of such partitions is at most tm

t!
.

For any given partition, the probability that all its subsets
are assignable is at most f(�m

t
�)t. Therefore, the probability

that n(A) ≤ t is bounded by tm

t!
f(�m

t
�)t.

We illustrate this result with a numerical example: Let
m = 105, n = 104 and p = 10−3. Evaluating the lower
bound for t = 16, we find that Prob[n(A) ≤ 16] ≤ e−4,878.
In general, we determine the lower bound of a given instance

as the minimal t such that tm

t!

�
xe

h−x
h

h

�ht

≥ 0.001.

5. ALGORITHMIC APPROACHES
In this section we describe two heuristic approaches to

MPC. Algorithm A is based on the theoretical analysis of
Section 3.1. Algorithm B is a heuristic approach based
on the set cover approximation method alluded to in Sec-
tion 3.2.

By Proposition 1 we can check whether a set of primers P
is assignable. Symmetrically, we can check the assignability
of a set of tags. Building on this simple test of assignability,
Algorithm A builds a cover with size at most � m

�n/(d+1)��, for

any set of primers with degree bounded by d. It is described
in Figure 2.

1. E ← ∅.
2. Unmark all vertices of T .

3. Sort the tags in T in non-decreasing order based on
their degrees in GP∪T .

4. T ′ ← ∅.
5. While there are unmarked tags do:

(a) Find an unmarked tag t ∈ T \ T ′ with lowest
degree.

(b) Mark t.

(c) If T ′ ∪ {t} is assignable then T ′ ← T ′ ∪ {t}.
6. Find a set P ′ of |T ′| primers that form a non-cross-

hybridizing set with T ′.

7. E ← E ∪ {P ′} (add P ′ to the cover).

8. Update P ← P \ P ′.

9. If P = ∅ then halt else go to 2.

Figure 2: Algorithm A.

The general scheme of Algorithm B is described in Fig-
ure 3. To complete its description we need to specify the
heuristic rule used in step 3 to select which primer to re-
move from the set P . The purpose of removing primers is
to progress towards assignability by creating useful tags, i.e.,

tags of degree zero and tags of degree one that are adjacent
to distinct primers. We have experimented with a family
of potential-based rules in which each tag is assigned a po-
tential for becoming useful, based on its degree: The higher
the degree, the lower the potential, since a tag cannot pos-
sibly become useful until primer deletions have reduced its
degree to 0 or 1. We then define the potential of a primer as
the sum of the potentials of its adjacent tags. Our heuristic
rule is to choose for removal a primer of maximum potential,
where the potential of a tag of degree w is defined as 2−w.
Whenever a primer is adjacent to at least one tag of degree
1, we adjust its potential by subtracting 1

2
, since this tag is

useful even if the primer is not deleted.

1. E ← ∅.
2. P ′ ← P .

3. While P ′ is not assignable
remove a primer of maximum potential from P ′.

4. E ← E ∪ {P ′} (add P ′ to the cover).

5. Update P ← P \ P ′.

6. If P = ∅ then halt else go to 2.

Figure 3: Algorithm B.

6. EXPERIMENTAL RESULTS

6.1 Performance on Simulated Data
In this section we report on the performance of algorithms

A and B on synthetic data of two types. The first type
of synthetic data was generated according to the stochastic
model presented in Section 4. The number of tags ranged
from 500 to 2000, the number of primers ranged from 1000
to 5000, and p was determined so that an average of 10 tags
potentially cross-hybridize with each primer. The results of
applying both algorithms to the data are summarized in Ta-
ble 1. We list both the average size of the cover achieved by
the algorithms in 10 runs and the lower bound of Theorem 6.
Notably, Algorithm B outperforms Algorithm A in all sim-
ulations and produces covers that have cardinality within
a factor of 5

3
of the lower bound (which is not necessarily

tight).

Tags (p)
SNPs 500 (0.02) 1,000 (0.01) 2,000 (0.005)

A B L A B L A B L
1,000 9 7 5 5 4 3 3 2 2
2,000 15.3 12.5 8 9 7 5 5 4 3
5,000 33.7 28 17 18.9 15 9 10 8 5

Table 1: Comparison between Algorithms A and B
on data simulated using the stochastic model for dif-
ferent parameter combinations. For each set of pa-
rameters recorded are the average cover size of al-
gorithms A (column A) and B (column B), and the
stochastic lower bound of Theorem 6 (column L).



The second type of synthetic data was generated as fol-
lows: We assume potential cross-hybridization to depend on
common substrings of length λ. This is the simpler model
described in [2]. We applied a de-Bruijn sequence construc-
tion (also described therein) to generate sets of tags of length
20. Here we used λ = 6, 7, 8 resulting in 273, 1170 and 5041
tags, respectively. We then randomly generated primers of
length 13. The average results over 10 runs are given in
Table 2. Again Algorithm B produces smaller covers than
Algorithm A.

λ
SNPs 6 7 8

A B A B A B
1,000 10 9 3 3 1 1
2,000 17.7 15.3 5 4 2 2
5,000 38 34 10 9 3 3

Table 2: Comparison between Algorithms A and B
on data simulated using the combinatorial model for
different parameter combinations.

6.2 Performance on Real Data
We complemented our analyses on simulated data by ap-

plying Algorithm B to matrices derived from real genomic
sequence data. Specifically, we retrieved 3304 SNP entries
of the public Human SNP database [21] that were anno-
tated with the 20 nucleotides immediately upstream of the
respective SNP site. 3304 primers were obtained as reverse
complements of these sequences.

We then employed the combinatorial construction scheme
in [2] to generate two tag sets T1 and T2. The construc-
tion of [2] takes into account two parameters c and h, where
c < h. c represents the maximal allowable hybridization po-
tential for a tag and a foreign antitag. h represents the min-
imal allowable hybridization potential for a tag and its cor-
responding (perfect match) antitag. The thermodynamical
model used in this representation employs the 2–4-rule [17],
which estimates the melting temperature of a DNA sequence
and its complement as twice the number of As and Ts, plus
four times the number of Cs and Gs, in degrees Celsius. T1

was generated using the parameters c = 10 and h = 24 and
contains 2047 tags. T2 contains 314 tags and was generated
from the parameters c = 8 and h = 20. The parameters
for the sets T1 and T2 were chosen as representatives of em-
ploying large and medium sized universal arrays to SNP
genotyping.

To derive the entries Ap,t in the cross-hybridization matri-
ces A1 and A2, we employed the 2–4-rule as in [2]. Whenever
the result of this rule, applied to any perfectly complemen-
tary substring between p and t̄, exceeded the threshold of 20
(for A1) or 16 (for A2), we considered p and t̄ as potentially
cross-hybridizing, i.e., we set Ap,t = 1. In all other cases,
we set Ap,t = 0.

Densities of A1 and A2 were 0.0043 and 0.0299, respec-
tively. For A1, Algorithm B found a cover of size 5 (where
the last array contains only 13 tags), while the stochastic
lower bound is 4 (using an estimated p = 0.0043). For A2,
Algorithm B used 24 arrays, while the lower bound lies at
16 (using an estimated p = 0.0299).
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