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Autism spectrum disorder (ASD) is a highly heritable complex disease that affects
1% of the population, yet its underlying molecular mechanisms are largely
unknown. Here we study the problem of predicting causal genes for ASD by
combining genome-scale data with a network propagation approach. We
construct a predictor that integrates multiple omic data sets that assess
genomic, transcriptomic, proteomic, and phosphoproteomic associations with
ASD. In cross validation our predictor yields mean area under the ROC curve of
0.87 and area under the precision-recall curve of 0.89. We further show that it
outperforms previous gene-level predictors of autism association. Finally, we
show that we can use the model to predict genes associated with Schizophrenia
which is known to share genetic components with ASD.
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Introduction

Autism spectrum disorder (ASD) is a complex neurological and developmental disorder
that affects a person’s behavior, communication, and learning abilities. About 1 in
44 children is identified with the disorder according to estimates from Centers for
Disease Control and Prevention (CDC) Autism and Developmental Disabilities
Monitoring (ADDM) Network (Maenner, 2021). It is thought to be caused by a
combination of genetic and environmental factors that impacts the structure and
function of the brain and nervous system (Flickr, 2023). Identifying the genetic base of
ASD is critical to understanding its underlying biological mechanisms. Such knowledge will
impact the development of new interventions and treatments for individuals affected by
this disorder.

Extensive molecular studies have charted the landscape of ASD with respect to different
information layers including genome wide association (GWAS), differential gene
expression (Parikshak et al., 2016; Gandal et al., 2018), differential transcript expression
(Gandal et al., 2018), alternative splicing changes (Parikshak et al., 2016; Gandal et al.,
2018), differential methylation (Wong et al., 2019), copy number variation (Sanders et al.,
2015) and more (Satterstrom et al., 2020). Each of these studies have come up with
candidate lists of ASD-associated genes, calling for computational methods to consolidate
these gene lists.

Machine learning based methods offer a new perspective to the problem by learning
from known ASD-related genes and building models that provide ways to prioritize the risk
associated with previously unknown genes based on their predicted scores (Liu et al., 2014;
Krishnan et al., 2016; Duda et al., 2018; Brueggeman et al., 2020; Lin et al., 2020). These
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methods differ in their training features and prioritization method.
(Duda et al., 2018) and (Krishnan et al., 2016) leveraged brain-
specific functional interaction networks to produce genome-wide
rankings of ASD associated genes. (Liu et al., 2014) clustered
evidence for ASD association within a co-expression network in
specific brain regions. (Lin et al., 2020) used features extracted from
spatiotemporal gene expression patterns in the human brain. Last,
the state-of–the-art forecASD (Brueggeman et al., 2020) integrates
network-based information from large gene interaction networks
with scores of genetic association and brain gene expression
information. In detail, novel features are generated from
BrainSpan expression and STRING interaction data. These are
combined with literature-derived features from DAWN,
DAMAGES, and Krishnan (Liu et al., 2014); (Krishnan et al.,
2016; Zhang and Shen, 2017) and used to train a random forest
classifier for ASD association.

The methods described above have predominantly relied on a
single data source, potentially missing relevant information.
Conversely, some approaches such as forecASD utilize multiple
data sources that are devoid of network context. To address these
limitations, our proposed method leverages a network propagation
technique to integrate diverse data sources while accounting for
their network context. Our model employs network-propagation on
ASD associated genes from different data sets to derive predictive
gene scores. Features are then combined using a random forest
classifier. We evaluate the performance of our model and compare it
to previous methods. Finally, we use our model to predict
Schizophrenia-associated genes.

Materials and methods

Classification pipeline

The computational pipeline has two stages. First, network-based
gene features are generated using a network propagation technique.
Second, a random forest model is applied to these features to yield

the prediction score. The classifier is summarized in Figure 1. Its
stages are described in the following sections.

Feature generation

Our starting point is gene lists obtained from the literature as
detailed in Table 1. Overall, we use ten gene sets that were suggested
to be associated with ASD based on various layers of information.

Each of these ASD related gene lists is used as a seed for a
network propagation process that pinpoints other genes with high
proximity to the seed set in a protein-protein interaction (PPI)
network. The initial value of each seed protein from a list of size s is
set to 1/s. We use a human PPI network from (Signorini et al., 2021)
which has 20,933 proteins and 251,078 interactions in its main
connected component. We run network propagation with default
damping parameter ɑ = 0.8. We normalize the results using the
eigenvector centrality method (Erten et al., 2011) in order to avoid
biases which are caused by the degrees of the proteins. The resulting
ten propagation scores for each gene comprise its feature set.

Random forest model

The features of a gene are integrated using a random forest
model. To train the model, we use SFARI’s Gene Scoring Module
(Abrahams et al., 2013) which offers critical evaluation of the
strength of the evidence for each gene’s association with ASD.
The genes are assigned to four categories: “Syndromic” (S),
“Category 1” (High Confidence), “Category 2” (Strong
Candidate) and “Category 3” (Suggestive Evidence). We label
“Category 1” genes as positives (206 in total) and randomly pick
206 negative genes that do not appear in the SFARI database.

The random forest model is trained with the “sklearn” Python
package using its default parameters which are a maximum of
100 trees, no maximum tree depth and minimum number of
samples required to split an internal node of 2.

FIGURE 1
ASD Classifier Flowchat. Putative ASD-associated genes serve as seeds to a network propagation process. After propagation, the resulting scores
yield classification features for a random forest classifier that is used to compute association scores.
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Results and discussion

Model performance

We tested our classifier using 5-fold cross-validation. Figure 2
depicts ROC and precision-recall graphs showing the final result as
the mean between all the five fold scores. The AUROC is 0.87 and
the AUPRC is 0.89 indicating the high accuracy of our method.

To facilitate the model’s application by potential users, we
calculated an optimal classification cutoff of 0.86, which
maximizes the product of specificity and sensitivity (Liu, 2012).
The full model scores can be found in Supplementary Table S2.

To further support our results, we tested our classifier’s
predictions on SFARI genes of scores 2 and 3 (which were not
used during training), compared to randomly chosen negative genes
(Figure 3). The classifier’s score distributions of the groups were
compared using theWilcoxon signed-rank test. Reassuringly, SFARI
genes with scores 2 and 3 got significantly higher scores than the
random negative genes (p-value < 3.62e-34).

After establishing the accuracy of our proposed method, we
conducted a comparative analysis with the state-of-the-art forecASD
classifier, which was shown to outperform earlier predictors. For this
purpose, we employed the same random forest classifier on both our
dataset and the features suggested by forecASD, namely BrainSpan

TABLE 1 Lists of ASD associated genes according to different sources.

References Data type Data source Number of
genes

1 Gandal et al., (2018) Differential gene expression (DGE) Frontal and temporal cortex brain samples 1,611

2 Gandal et al., (2018) Differential transcript expression (DTE) Frontal and temporal cortex brain samples 767

3 Gandal et al., (2018) Summary-data–based Mendelian randomization (SMR) Frontal and temporal cortex brain samples 36

4 Gandal et al., (2018) Transcriptome-wide association study (TWAS) Frontal and temporal cortex brain samples 12

5 Parikshak et al.,
(2016)

Differential gene expression (DGE) Cortex Samples of frontal and temporal cortex and
cerebellum

1,142

6 Parikshak et al.,
(2016)

Differential alternative splicing analysis Cortex Samples of frontal and temporal cortex and
cerebellum

833

7 Satterstrom et al.,
(2020)

Transmitted and de novo association (TADA) model Whole-exome sequence (WES) data from 35,584 samples 102

8 Wong et al., (2019) Cross-cortex iASD-associated genes that reported both
signficant differential DNA mtheyltaion and transcriptional
changes

223 post-mortem tissues samples isolated from three brain
regions [prefrontal cortex, temporal cortex and
cerebellum (CB)]

18

9 Wong et al., (2019) Cross-cortex dup15q-associated genes that reported both
significant differential DNA methylation and transcriptional
changes

223 post-mortem tissues samples isolated from three brain
regions [prefrontal cortex, temporal cortex and
cerebellum (CB)]

74

10 Sanders et al., (2015) Analysis of de novo CNVs (dnCNVs) from the full Simons
Simplex Collection

65

FIGURE 2
Performance evaluation. Performance of our classifier in 5-fold cross validation. The result of each fold and its mean are shown. Left: ROC curves.
Right: Precision-recall curves.
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and STRING. We additionally assessed the propagation procedure
on a random degree-preserving network to act as a negative control.
The results are provided in Figure 4 showing the superiority of our
method compared to forecASD and the negative control (AUROC
of 0.91 vs. 0.87 and 0.82). Notably, the relatively high AUROC of the
negative control testifies to the quality of the gene sets that serve as
seeds for the network propagation.

Functional annotation analysis

Next, we wished to analyze the functional roles of the top
predicted genes. To this end, we set a prediction threshold of
0.947, which maximizes the sum of precision and recall, and
focused on the 84 genes passing this threshold. We conducted
functional enrichment analysis using g:Profiler (version e109_
eg56_p17_1d3191d) with Bonferroni corrected p-values and a

significance threshold of 0.001 (Raudvere et al., 2019). The
analysis is based on several data sources (GO:MF, GO:BP,
Human Phenotype Ontology) (Figure 5).

From Human Phenotype Ontology—Autistic Behavior was the
highest enriched phenotype. Using GO:BP (Biological Process) and
GO:MF(Molecular Function) data sources, yield several highly
enriched pathways known to play important roles in autism
etiology including chromatin organization and binding (Haddad
Derafshi et al., 2022), histone modification (Sun et al., 2016), neuron
cell-cell adhesion (Eve et al., 2022) and zinc ion binding (Walsh
et al., 2001;Walsh, 2002;Wang and Zhou, 2010; Yasuda et al., 2011).
The full list of the functional annotation analysis results can be
found in Supplementary Table S1.

Exploiting schizophrenia genes

Given the known phenotypic similarity between ASD and
schizophrenia (SCZ) (Hommer and Swedo, 2015) we wished to
test whether our classification model could be further improved by
adding information on SCZ associated genes. Thus, we collected lists
of genes that were associated with SCZ (Table 2) and reapplied our
computational pipeline.

Next, we checked if our ASD classifier can also predict
schizophrenia associated genes. We ran it on genes which are
associated with SCZ from a database for Schizophrenia genetic
research, SZDB (Wu et al., 2017). Specifically, we focused on
1622 SCZ-associated genes from SZDB with scores higher than 3,
and compared their scores to those of the same number of random
genes (Figure 6). Wilcoxon signed-rank test showed that the
classifier gave the SCZ-associated genes significantly higher scores
than the random genes (p-value of 2.275e-11).

Conclusion

We have presented a classification model for disease association.
The classifier uses network propagation which enables us to

FIGURE 3
Classifier validation. Histograms (left) and box-plots (right) for SFARI (scores 2 and 3, orange) vs. random genes (blue).

FIGURE 4
Performance comparison against forecASD and a negative
control. Shown here are the mean ROCAUC results of each classifier.
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combine and to amplify signals from individual genes, and uses
machine learning to allow us to learn from known genes in order to
classify new ones. In application to ASD, our classifier attained high
accuracy, outperforming the state of the art. We have further shown
its applicability to SCZ, which benefits from the similarity between
these diseases but also shows the generality of our approach.

Functional enrichment analysis of our proposed candidate ASD
genes has pointed to several pathways and processes that have been
previously linked to ASD. For instance, neuron cell-cell adhesion, which
may contribute to neuroinflammation in ASD (Eve et al., 2022) and
participates in neurodevelopmental pathways associated with the
disorder (Gandawijaya et al., 2020). Moreover (Bonsi et al., 2022),

FIGURE 5
Functional annotation results for genes predicted by our classifier. (A) Manhattan plot created with g:Profiler illustrates the enrichment analysis
results. The x-axis represents functional terms that are grouped and color-coded by data sources. The y-axis shows the adjusted enrichment p-values in
negative log10 scale. Highlighted points in the plot are the terms which got the highest scores, and highlighted driver terms in GO created by g:Profiler
algorithm. The algorithm is used for filtering GO enrichment results, providing a more efficient and reliable approach compared to traditional
clustering methods. (B) Detailed information about highlighted circles from the Manhattan graph. Detailed information include data source, id and name
of the term together with corresponding p-value.

TABLE 2 Lists of SCZ associated genes.

References Method Data source Number of
genes

1 Gandal et al.,
(2018)

Differential gene expression (DGE) Frontal and temporal cortex brain samples 4,821

2 Gandal et al.,
(2018)

Differential transcript expression (DTE) Frontal and temporal cortex brain samples 3,803

3 Gandal et al.,
(2018)

Transcriptome-wide association study (TWAS) Frontal and temporal cortex brain samples 193

4 Huang et al.,
(2020)

equality of variances to normalized expression data
(evQTLs) Differential gene expression

dorsolateral prefrontal cortex of individuals affected with SCZ
212 SCZ and 214 unaffected control (CTL) samples

88

5 Huang et al.,
(2020)

expression variability QTL (evQTL) mapping analysis dorsolateral prefrontal cortex of individuals affected with SCZ
212 SCZ and 214 unaffected control (CTL) samples

1,453

Indeed, the model based on both ASD, and SCZ, genes obtained improved results with AUC, and AUPRC, of 0.88 and 0.89 respectively.
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demonstrated that genes associated with ASD are frequently involved in
the structural organization and functional activity of synapses, as
evident in our results indicating enriched pathways such as synapse
assembly and presynaptic and postsynapticmembrane assembly. This is
interesting, as ASD is sometimes regarded as a disorder of connectivity
(Mohammad-Rezazadeh et al., 2016), since its genes have both direct
and indirect effect on a range of presynaptic and postsynaptic proteins
(Bonsi et al., 2022; Yeo et al., 2022).

The fact that our classifier succeeded in predicting
Schizophrenia-associated genes may suggest that previously
implied association between ASD and SCZ may evolve from
connectivity-related issues (Hommer and Swedo, 2015).
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FIGURE 6
Classifier Predictions on SCZGenes. The distribution of SCZ gene scores (Orange) versus that of random genes (Blue). The distribution is shown both
in histograms (A) and in box plots (B).
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