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Abstract. The dissection of complex diseases is one of the greatest challenges of human genetics

with important clinical and scientific applications. Traditionally, associations were sought between

single genetic markers and disease. The availability of large scale SNP data makes it possible, for

the first time, to study the predictive power of genotypes and haplotypes with respect to phenotype

data. Here we present a novel method for predicting phenotype information from genotype data. The

method is based on a support vector machine that employs new kernel functions for the similarity

between genotypes or their underlying haplotypes. We demonstrate our approach on SNP data for

the apolipoprotein gene cluster in baboons, predicting plasma lipid levels with significant success

rates, and identifying associations that were not detected using extant approaches.

Keywords: Machine learning (Computing Methodologies–Artificial Intelligence–Learning), Pa-

rameter learning (Computing Methodologies–Artificial Intelligence–Learning), Classifier design and

evaluation (Computing Methodologies–Pattern Recognition–Design Methodology), Biology and ge-

netics (Computer Applications–Life and Medical Sciences).

1. Introduction. The study of single nucleotide polymorphisms (SNPs) promi-

ses to revolutionize the way medical conditions are diagnosed and treated. Key to

their successful application is the development of methods that can infer phenotype

information from genotype data. Historically, correlations between single genetic

markers and phenotype data were exploited to zoom in on regions in the genome that

are related to specific traits [16, 31]. Recently, several studies have demonstrated the

utility of genotype and haplotype information to mapping complex human traits. Liu

et al. [14] have developed a Bayesian framework for disease mapping which relies on

modeling the evolution of the population haplotypes from a set of founders through

mutation and recombination. Rannala & Reeve [25] used a coalescence-based model

and an MCMC method to integrate over the unknown gene genealogy and gene co-

alescence times. Greenspan & Geiger [10] devised a mapping strategy that is based

on identifying haplotype blocks and computing a posterior distribution for the asso-

ciation of the disease SNP with each of the blocks. Yosef et al. [34] used mining of
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bipartite graphs relating individuals to genotypes in order to detect genotype patterns

that discriminate between different phenotypic groups.

Several authors have studied the related diagnostic problem, in which one tries to

classify a genotype sample to one of several phenotype classes. The idea is to apply a

method that learns from training data a “signature” for each phenotype class, which

is subsequently used to determine if a new sample belongs to this class. In [4] the

drug-resistance nature of HIV-1 variants was predicted based on their genotypes using

decision trees. In [3,5], a number of regression and classification methods (including

decision trees, neural networks and support vector regression) were used to predict the

fold change in susceptibility of HIV-1 variants to drugs and co-receptor usage based

on their amino acid sequences. Rhee et al. [26] used a similar repertoire of methods

to relate HIV-1 protease and reverse transcriptase mutations to in vitro susceptibility

to antiretroviral drugs. Support vector machine (SVM) [6] analysis based on sets of

SNP loci was previously performed to predict susceptibility to breast cancer [13, 27]

and coronary heart disease [33], outperforming other classification methods such as

decision trees [13, 27].

Here we develop a kernel-based approach for predicting phenotype classes from

genotype data. We first introduce a novel kernel function for comparing two geno-

types. This kernel was designed to explicitly account for the lack of information

which inherently exists in the available genotype data, namely, the different possi-

ble pairings between compared heterozygous loci. We then present a novel kernel

for comparing haplotype data. Such data is not readily available, but can be de-

rived using computational methods (e.g., [29]) or using pedigree information. We

demonstrate our approach on SNP data from [32] on the apolipoprotein gene cluster

(APOA1/C3/A4/A5) in baboons. This 68 Kb region is orthologous to the human

apolipoprotein gene cluster, which is known to be associated with plasma lipid levels,

such as HDL-cholesterol and triglyceride concentrations [2, 11, 20]. Our analysis sug-

gests a set of novel associations of genotypes with plasma lipid outcomes which were

missed by previous approaches.

Our contribution is three-fold. First, we devise novel kernels for genotype data. In

particular, we provide the first kernel that accounts for the underlying haplotype data;

this kernel is shown to outperform previous approaches to the problem of predicting

phenotypes from genotypes. Second, we apply our method to predict plasma lipid

levels in baboons, identifying a set of novel associations. Importantly, the global

nature of our approach, which is able to analyze the entire SNP set rather than

small subsets at a time, allows us to identify new associations that were missed by a

previous analysis of [32]. Third, we demonstrate that a classification framework can

be successfully used to analyze quantitative (rather than binary) phenotypes.

Supporting information, including data for download, is available at

http://www.cs.tau.ac.il/∼roded/GP/
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2. Results. We analyzed a superset of the genotype data reported in [32]. The

original data set contains the genotypes of 621 baboons, over 17 SNPs. The SNPs

are located in a gene cluster that is orthologous to the apolipoprotein gene cluster

(APOA1/C2/A4/A5) in human (http://pga.lbl.gov/SNP/Baboon/

APOA1C3A4A5.html). Notably these SNPs were chosen as representatives for the

gene cluster and provide a non-redundant representation of that region [32].

The genotyped baboons underwent three different diets [23]—CHOW (basal, low

in fat and cholesterol), LCHF (low cholesterol, high fat) and HCHF (high cholesterol,

high fat)—and their metabolite levels were measured. In total, we had quantitative

information on 10 phenotypes in diet 1, and 9 phenotypes in diets 2 and 3 (Methods).

In addition, for each baboon we had covariate information on its sex, age and weight.

Due to inconclusive readings, the genotype vectors contained a total of 843 miss-

ing entries. We used the available pedigree data to complete those entries, under the

Mendelian assumption (also used in [32]) that no recombinations or mutations have

occurred in this region within each pedigree. In total, 154 missing entries were com-

pleted in this way, and 219 additional entries were partially resolved, i.e., the state of

one of the alleles of the corresponding SNP was derived.

Our goal was to develop methods for classifying the baboons to phenotype classes

based on their genotype data. To this end, we partitioned the baboons into three

classes with respect to each of the phenotypes: positives, corresponding to those ba-

boons attaining the top 15% values for the given phenotype; negatives, corresponding

to those baboons attaining the bottom 15% values for the given phenotype; and the

rest of the baboons, which were considered to be undecided. We experimented with

another discretization method for the phenotype data and got similar results in the

subsequent analysis (Methods and Table S1).

To limit the influence of relatedness among individuals on our analysis, the clas-

sification was based on independent pedigrees. Specifically, we chose a subset of 591

individuals (out of 621) that can be decomposed into 3 independent pedigrees such

that no two individuals from different pedigrees have a common ancestor (Supporting

information). We trained the classification procedure with baboons from all-except-

one pedigrees and tested the procedure’s success in predicting phenotypes of baboons

from the held-out pedigree.

2.1. Classification by genotypes. Our first set of experiments was aimed at

evaluating the predictive power of the genotypes (after the completion of missing

entries described above) with respect to the phenotypes. We also examined the in-

fluence of the covariate information on the classification process. The classification

was performed using the SVM paradigm [6]. The main challenge in applying the

SVM algorithm to the data was the development of similarity functions, or kernels,

to compare the attribute vectors (containing genotype and/or covariate data) of pairs
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Fig. 1. Genotype-based classification results using the identity kernel. Shown are the success
rates of phenotypes with an empirical p-value lower than 0.05. The error bars indicate the outcome
of the permutation tests, denoting the mean and standard deviation values obtained over 200 runs.
See Table 1 for phenotype abbreviations.

of baboons.

First, we applied our classification scheme to the genotype data only. We com-

pared two types of kernels designed for such data. The first kernel, which we call

the identity kernel, is similar to the one used by [27] for prediction of susceptibility

to breast cancer. This kernel computes the maximum number of alleles shared by

the two compared individuals. The second kernel, termed the expectation kernel, is a

novel kernel that accounts for the multiple options for pairing two haplotypes. This

kernel computes the expected similarity between the haplotypes corresponding to the

two compared genotypes, where the expectation is taken over the space of all possible

phasings of the genotype data (Methods).

We embedded these two kernels in a Gaussian function and applied a grid search,

varying the width of the Gaussian (reflecting the assumed level of independence be-

tween the different SNPs, where a large width resembles a linear kernel which treats

each SNP independently) and the regularization coefficient (reflecting the trade off

between the empirical error and the width of the classification margin).

We evaluated the different kernels by computing their success rate, defined as

the average between the percent of positives that were classified correctly and the

percent of negatives that were classified correctly. The statistical significance of the

success rates was evaluated by an empirical p-value which is based on permutation

tests (Methods). Figures 1 and 2 depict the statistically significant cases for the two

kernels (empirical p-value < 0.05). The same set of results is also given in Table 1,

presenting phenotypes in which at least one of the methods performed well.
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Table 1

Success rates in predicting plasma lipid levels. The first three columns show the success rate
(left) and empirical p-values (right) of our three prediction schemes: identity kernel (genotype data),
expectation kernel (genotype data), and all-match kernel (haplotype data). The forth column shows
the success rates of a näıve Bayes classifier. The last column presents the sizes of the haplotype
blocks for which a significant association was found using the QTDT method of Wang et al. [32];
NA denotes phenotypes which were not studied in [32]. The best performance for each phenotype is
marked in bold. Cases in which no significant association was found or where the success rate (where
applicable) was lower than 55% are marked with ”–”. Abbreviations: LDL-C (LDL-cholesterol),
HDL-C (HDL-cholesterol), ApoB (Apolipoprotein B), ApoE (Apolipoprotein E), LDL PPD (LDL
peak particle diameter), Diam BetaLP (median diameter of beta lipoproteins), Diam HDL (diameter
of HDL), % apoE in BetaLP (percentage of apoE in beta lipoproteins), TG (triglyceride), TSC (total
serum cholesterol).
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Fig. 2. Genotype-based classification results using the expectation kernel. Displayed results are
as in Figure 1.

An interesting view into the works of the SVM can be gained from the effect

of the Gaussian width on the accuracy of the prediction. In a narrow Gaussian the

SVM will typically construct a highly non-linear decision boundary and therefore

rely not only on genotypes at individual SNPs, but also on interactions of alleles at

different loci. Conversely, in a wide Gaussian the SVM is more likely to resemble a
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Fig. 3. The effect of Gaussian width on predicting phenotypes for the different pedigrees. The
dark gray bars indicates the percentage of cases each Gaussian width value has been selected during
our grid search procedure. The light gray bars indicate the number of cases in which fixing the
corresponding width value yielded the best prediction accuracy.

linear discriminator and rely more heavily on the individual SNPs. Figure 3 shows the

distribution of width values selected during our grid search with the expectation kernel

(dark gray bars). Evidently, there is an obvious preference for less complex decision

boundaries, selecting medium or wide Gaussian values. To validate this we repeated

the prediction steps, this time fixing the width value and optimizing only over the

regularization parameter. For each experiment (namely, for a given phenotype and

a left out pedigree) we record the width value that had the best success rate (also

requiring it to be over 55%). The resulting frequencies are displayed in Figure 3 (light

gray bars).

Next, we constructed an SVM predictor based on the covariate data (sex, age

and weight) alone and on the combined genotype and covariate data (using the ex-

pectation kernel). The results are summarized in Figure 4. Evidently, the covariate

data are highly predictive for most phenotypes. This predictive ability however is

of less interest to us, as the goal of this study is to track down genotype-phenotype

relations. In addition, given a combined covariate-genotype data, it is likely that the

SVM predictor will tend to concentrate on the more predictive, covariate features,

and ignore the genotype data. For these reasons, we limit the discussion in this paper

only to genotype data.

For each of the phenotypes that exhibited significant correlation to the SNP data

when using the expectation kernel (empirical p-value < 0.05), we also searched for the

most predictive subset of SNPs using an SVM-based feature selection method [12].

These results are summarized in the Supporting information.

2.2. Classification by haplotypes. The second set of tests was aimed at eval-

uating whether the predictions could be improved by using haplotype data in the
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Fig. 4. Comparison of expectation kernel classification results using genotypes, covariates or
both. Shown are the success rates of phenotypes for which at least one of the classifiers scored higher
than 55%.

classification process. Since haplotype data for the genotyped baboons was not avail-

able, we inferred the underlying haplotypes, separately for each pedigree, using the

popular PHASE method [29].

Given two complete haplotype vectors, each representing two parental haplotypes,

the only degree of freedom is which of the two possible pairings to use. Given such a

pairing, we can use a simple extension to the genotype kernels (e.g., by concatenating

the two parental haplotypes in each vector) as our haplotype kernel. Since the pairing

is not available, an ideal approach would be to consider the pairing which yields the

best match. However, the resulting similarity function is not known to be a kernel.

Hence, we devised an alternative all-match kernel. This kernel function is based on the

number of matches between the haplotype pairs under the two pairings of haplotypes

in one genotype to haplotypes in the other genotype (Methods).

We applied a similar assay to that of the genotype data – the all-match kernel

was embedded in a Gaussian function and the best parameter set (width of Gaussian,

regularization constant and an additional parameter, specific for the all-match kernel

function) were determined using a grid search. The statistical significance of the

results was then measured using permutation tests. Figure 5 depicts the statistically

significant cases (empirical p-value < 0.05).

Table 1 provides a comparison of the success rates attained by the haplotype-
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Fig. 5. Haplotype-based classification results using the all-match kernel. The error bars indicate
the outcome of the permutation tests, denoting the mean and standard deviation values obtained over
150 runs. Abbreviations are as in Table 1.

based kernel, the genotype-based kernels, a boosted näıve Bayes classifier [9], and the

QTDT method of Wang et al. [32]. Overall, the SVM based methods outperform the

latter two methods, finding a larger number of significant associations.

Comparing the SVM based methods we see an overall better performance of the

haplotype-based kernel. Specifically, we see that the number of phenotypes (possibly

with a different diet) predictable by the genotype-based kernels is equal to the num-

ber of phenotypes predictable by the haplotype-based kernel. However, while each of

the genotype kernels performed best on 4 or less phenotypes, the haplotype kernel

performed best on 6 phenotypes, achieving higher and more significant success rates.

In addition, the haplotype-based kernel was the only one to identify LDL-cholesterol

particle sizes as a predictable phenotype in all three diets. This association is indeed

supported by prior biological knowledge (see below). Notably, we get consistent re-

sults, showing the superiority of the haplotype kernel over the genotype based kernels

when using the alternative phenotype discretization, presented in SI table 1.

3. Discussion. We presented a methodology for predicting phenotype informa-

tion from genotype or haplotype data, and for pinpointing genetic markers that are

highly predictive of the phenotype data. An application of the approach to SNP data

for the apolipoprotein gene cluster in baboons revealed a rich set of associations be-

tween the genetic and phenotypic data. The associations that were found in at least

two of the three diets in either the genotype-based or the haplotype-based analyses

include: Percentage of apoE in beta lipoproteins, LDL-cholesterol concentration, LDL

particle size and beta lipoprotein particle size. We note that related phenotypes, such
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as apoE in beta lipoprotein/beta lipoprotein particle size and LDL-cholesterol/LDL

particle size, came out in our analysis, although each phenotype was treated indepen-

dently, indicating that our prediction method is robust.

Two of these associations are supported by previous studies in human, serving as

a validation of our approach. The apolipoprotein gene cluster was shown to be associ-

ated with LDL-cholesterol concentration in [8] and with LDL particle sizes in [15]. The

association with beta lipoprotein particle size requires further biological validation.

Wang et al. [32] have previously used QTDT (Quantitative Transmission Dise-

quilibrium Tests [1]) to analyze a subset of the reported data. QTDT is a popular

family-based statistical method for association tests. It evaluates the association be-

tween genotypes and quantitative traits based on a linear model of association and

information on nuclear families. Wang et al. tested the association between the mea-

sured phenotypes and single markers, as well as two-, three- or four-locus haplotypes.

In contrast, our SVM-based method focuses on predicting phenotype classes. We note

the trade off involved in using a classification method with such discretization of the

data: on one hand, we might lose information, while on the other hand a discretiza-

tion of phenotype values into two classes largely contributes to the robustness against

measurement problems. In addition, our tests are based on the entire genotype or hap-

lotype data, and can pinpoint complex associations exhibited by multiple loci, while

QTDT requires a prior selection of loci to be tested for association. Our method also

has the advantage of not imposing a statistical model on the data as QTDT does.

These differences allow us to discover many associations that were missed by QTDT

(Table 1). One such example, is the association of LDL cholesterol (LDL-C) levels

with the apolipoprotein cluster – a finding supported by previous studies in human [8].

We also compared our method to a Näıve Bayes classifier with boosting [9], which

assumes that the SNP values of an individual are independent given the phenotype.

As Table 1 shows, the SVM methods clearly outperform the Näıve Bayes approach.

A reasonable explanation would be the ability of the SVM to construct non-linear

decision boundaries, drawing its predictive power also from interactions of alleles at

different loci rather than from individual SNPs alone.

The A1/A5 cluster was shown to be associated with triglyceride level and with

HDL-cholesterol concentration by Wang et al.. While the association to triglyceride

level was not significant in our analysis, we did detect a significant association to the

LDL size phenotype, which has been shown to be strongly correlated with triglyceride

level, as many groups have reported [17,22,28,30]. The association to HDL-cholesterol

was only marginally significant in our analysis (p ∼ 0.058).

It should be noted that errors in genotype data can play an influencing factor

in the results of the ensuing analyzes [21]. However, the loci analyzed in this paper

were subjected to further evaluation, ensuring high data quality. 24 baboons were

randomly selected from the study population and measured at all SNP locations
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using two independent experimental techniques [32]. All SNPs showed at least 95%

consistency between the two methods.

Conducting genetic studies of complex phenotypes in baboons rather than humans

carries many advantages. Here, the researcher has the option for stringent control over

crucial factors such as mating patterns and environmental conditions. Controlling

these factors can promise to reduce the impact of environmental side effects and ensure

a more accurate detection of influencing genes. One assumption which is generally

made in such studies is that polymorphisms in orthologous genes in the two organisms

have similar effects on phenotypes. Our results, combined with those of Wang et al.,

provide further support for this hypothesis, mapping novel associations between the

apolipoprotein gene cluster in baboons with plasma lipid levels; findings which match

those previously reported in human.

4. Methods.

4.1. Classification method. We consider the set of values of each phenotype as

originating from three classes: low phenotype levels (negatives), high phenotype levels

(positives) and medium levels. A natural partition into these classes can be obtained

by setting a threshold 1 ≤ t ≤ 50 and defining the positives (resp., negatives) to be

the top (resp., bottom) t percent of the phenotype values. The results we report here

were obtained with t = 15. We also experimented with an alternative discretization

scheme obtained by fitting to a normal distribution, which yielded similar results in

the subsequent analysis (Table S1).

The partition we have defined determines the training examples. Our goal is

to use the training data in order to predict the phenotype class of a test sample.

We approach the classification problem using a soft margin support vector machine

(SVM) [7, 18]. SVM performs the classification task by identifying hyperplanes that

“best” separate between data vectors from two classes. We perform the SVM analysis

using the Gist software package [19].

The application of an SVM requires the specification of a similarity function

with certain properties, called kernel function, for comparing data vectors. A kernel

function can be interpreted as mapping vectors to a high-dimensional feature space,

where similarity is computed using scalar dot-product. To this end, we developed

novel kernels for comparing genotypes and for comparing haplotypes. The challenge

was to design a feature space that provides good classification results, while not over-

fitting the data.

4.2. Kernel functions for genotype data. A given set of m SNPs can be

viewed as a vector of length m with entries from {0, 1, 2} in the following way: If

a position is homozygous, the corresponding entry is set to 0 or 1, depending on

the state of the SNP. If a position is heterozygous, the corresponding entry is set

to 2. We call the resulting length m vector a genotype. In the following we present
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two kernel functions. Both functions are based on viewing the genotype vectors as

representations for ordered pairs of binary haplotypes.

Given a pair of genotypes of length m, there may exists an exponential number

of phasings (representations as binary haplotypes) for each of them and consequently,

an exponential number of possible locus-wise pairings. The expectation kernel is com-

puted as half the expected number of identical alleles over the space of all possible

phasings of the two genotypes, assuming that each phasing is equally likely and that

the state of a given allele is independent of all other SNP alleles. Thus, for two geno-

type vectors x and y we define κ(x, y) =
∑m

i=1 S(xi, yi), where S(xi, yi) denotes the

similarity between the genotype entries xi and yi. By definition S(0, 0) = S(1, 1) = 1.

Similarly, S(2, 2) = 0.5, since with probability 0.5 two alleles are identical and with

probability 0.5 none is. To extend this similarity notion to incomplete vectors, in

which some allele states are missing, we treat the missing alleles as drawn at random

from the distribution of alleles in the population. Hence, for example, S(0, ?) = p,

where ’?’ denotes a missing genotype entry and p is the frequency of allele ’0’ for

the corresponding SNP. To show that this definition is indeed a kernel function we

provide in Table S4 an explicit mapping of the genotype data to a feature space in

which the dot product is equivalent to the expectation kernel.

For the second kernel, we use a formulation closely related to the one used in [27].

This kernel computes the maximum number of identical alleles shared by the two

compared individuals. We call this kernel the identity kernel. Formally, we represent

each state using 4 bits, where [1,0,1,0] corresponds to state 0, [0,1,0,1] to state 1 and

[1,1,0,0] to state 2. Missing entries are represented by [0,0,0,0]. The identity kernel

can be computed as the dot product of the vectors obtained by concatenating these

bit strings.

Each of the two kernels was embedded into a Gaussian function, which is defined

as exp(2k(x,y)−k(x,x)−k(y,y)
2σ2 ), where σ is the width parameter, and k(·, ·) is the original

kernel.

To use the covariate data in the SVM analysis, we normalized it as follows: con-

tinuous data was normalized to have mean zero and variance one; the binary sex

character was encoded as 1 or −1. We used the identity mapping of these normalized

data to feature space, concatenating these features to the mapped genotype vectors.

4.3. Kernel functions for haplotype data. We also developed kernels for

haplotype data. Such data can be derived using phasing approaches (e.g., PHASE

[29]) or from pedigree information. Given two complete haplotype vectors (the miss-

ing alleles are completed by the PHASE program), each representing two parental

haplotypes, the only degree of freedom is which of the two possible pairings to use.

Given a pairing, which matches one haplotype in one vector with some haplotype in

the other vector, the similarity in each position (for each pair) is defined as 0.5 if the
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two corresponding nucleotides match, and 0 otherwise. In practice, a pairing is not

available. Ideally, we would want to compute the similarity under the pairing that

maximizes it. Since the maximum operator is in general not a kernel function, we

present a variant on this ideal formulation.

For two haplotype pairs x = (x1, x2) and y = (y1, y2), denote by nij the num-

ber of positions in which xi and yj agree, for i, j = 1, 2. For a parameter k, define

Kk(x, y) =
∑2

i=1

∑2
j=1

(

nij

k

)

. We now show that Kk(x, y) is a kernel by proving

that it can be computed as a scalar product in some feature space. Associate with

each genotype x a vector of length
(

n
k

)

22k

in which each entry is 1 or -1. This

vector will be the concatenation of 22k

subvectors, each corresponding to a dif-

ferent function from {0, 1}k into {1,−1} (there are a total of 22k

such functions).

The subvector corresponding to function h will have
(

n

k

)

elements, corresponding to

the k-element subsets of {1, 2, . . . , n}. The component corresponding to set S will

have the entry h(x1(S)) + h(x2(S)), where xi(S) is the k-tuple of bits in the posi-

tions of xi corresponding to S. The scalar product of the genotype vectors associ-

ated with x and y is d =
∑2

i=1

∑2
j=1

∑

S

∑

h h(xi(S)) · h(yj(S)). For a set S and

i, j ∈ {1, 2}, if xi(S) 6= yj(S) then
∑

h h(xi(S)) · h(yj(S)) = 0. If xi(S) = yj(S)

then
∑

h h(xi(S)) · h(yj(S)) = 22k

. Since the number of k-element sets S such that

xi(S) = yj(S) is
(

nij

k

)

, we have that d = 22k ∑2
i=1

∑2
j=1

(

nij

k

)

. Dividing by 22k

, the

claim is proven.

4.4. Cross validation procedure. To test our approach we generated training

data for each phenotype by cross validation. We iterated over the three pedigrees

into which the baboons were partitioned. In each iteration baboons from one of the

pedigrees were held out, and a classifier was trained based on the remaining two

pedigrees and evaluated on the held-out part.

The hyper-parameters of the SVM classifier and the k parameter of the all-match

kernel (when classifying by haplotypes) were optimized separately for each left out

pedigree by applying a grid search based on an inner cross-validation. The values

considered for the hyper-parameters of the SVM span a few orders of magnitude,

defined by the following series: {10−2, 10−1.5, . . . , 102}. For the k parameter of the

all-match kernel we considered the values {2, 3, 4}. On each iteration we trained with

one of the remaining two pedigrees and tested the success rates with the different

parameters on the other one.

The success rate was measured by tp

2(tp+fn) + tn
2(tn+fp) , where tp, tn, fp and fn

are the numbers of true positives, true negatives, false positives and false negatives,

respectively.

To compute the significance of the results we performed a series of permutation

tests in which we randomly permuted the values of a certain phenotype among the

individuals and applied the prediction procedure to the permuted data.
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To preserve the properties of the original data as much as possible, we permuted

the phenotype values within each pedigree separately. The p-value that was given to

an observation was computed as the fraction of random runs on permuted data that

achieved a higher success rate.

4.5. The analyzed phenotypes. The genotyped baboons underwent three dif-

ferent diets—CHOW (basal, low in fat and cholesterol), LCHF (low cholesterol, high

fat) and HCHF (high cholesterol, high fat) [23].

Lipid and apolipoprotein phenotypes measured in all three diets include con-

centrations of HDL and LDL (i.e., non-HDL) cholesterol and the ApoB and ApoE

apolipoproteins [23, 24], percentage of apoE in beta lipoprotein, and total serum

cholesterol. Lipoprotein size distribution phenotypes measured in all three diets in-

clude LDL peak particle diameter, median diameter of beta lipoproteins, and diameter

of HDL. Finally, Triglyceride levels were measured only for the basal diet.
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Details on SNPs in the APOA1/C3/A4/A5 gene cluster region.
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