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Abstract 

 

Background: The growth-rate of an organism is an important phenotypic trait, 

directly affecting its ability to survive in a given environment. Here we present the 

first large scale computational study of the association between ecological strategies 

and growth rate across 113 bacterial species, occupying a variety of metabolic 

habitats. Genomic data is used to reconstruct the species’ metabolic-networks and 

habitable metabolic environments. These reconstructions are then used to investigate 

the typical ecological strategies taken by organisms in terms of two basic species-

specific measures: metabolic variability - the ability of a species to survive in a 

variety of different environments, and co-habitation score vector – the distribution of 

other species which co-inhabit each environment.  

 

Results: We find that growth rate is significantly correlated with metabolic variability 

and the level of co-habitation (i.e., competition) encountered by an organism. Most 

bacterial organisms adopt one of two main ecological strategies: (a) a specialized 

niche with little co-habitation, associated with a typical slow rate of growth versus (b) 

ecological diversity with intense co-habitation, associated with a typical fast rate of 

growth.   

 

Conclusions: The pattern observed suggests a universal principle where metabolic 

flexibility is associated with a need to grow fast, possibly in the face of competition. 

This new ability to produce a quantitative description of the growth rate – metabolism 

– community relationship lays a computational foundation for the study of a variety of 

aspects of the communal metabolic life.   



 

Background 

    

Variations in growth rate are observed both within and between species, 

reflecting, respectively, regulatory-level and genomic-level adaptations [1-4]. Since 

the rate of bacterial growth is determined by metabolic factors such as the rate and 

yield of ATP production [5], variations in growth rate are bound to be associated with 

metabolic capabilities and constraints. Several examples have demonstrated, at the 

single species level, that growth rate is affected by the availability of environmental 

resources and the level of competition in a given environment [5-8]. Comparative-

growth studies have pointed to several metabolic and regulatory genes that are under 

selective pressure for accelerated growth, e.g., genes involved in the transport of 

essential substrates in highly-competitive Escherichia coli populations [9]. However, 

such comparative growth studies are typically restricted to species that occupy similar 

ecological niches, potentially missing the impact of genomic adaptations that may 

vary across different niches and lifestyles. To this day, the genome-design principles 

underlying the association between growth rate and metabolic adaptations have not 

yet been established at a global, cross-species scale. 

A comprehensive cross-species analysis, beyond a comparative study of 

organisms sharing a similar ecological niche, of genomic traits that are associated 

with the potential growth rates of bacterial organisms was made possible due to a 

recent list of minimal generation times of a wide spectrum of bacterial species [10, 

11]. Previously, these doubling-times data have led to the important finding that 

variations between genes involved in translation and transcription influence growth 

rate [10, 11]. Here we focus on the influence of genomic-derived metabolic 



properties. We use genomic information to generate second-order (network-based) 

metabolic knowledge through the reconstruction of metabolic-networks, and third-

order environmental knowledge through the reconstruction of habitable metabolic 

environments for the species studied [12]. Then, species-specific environmental 

information is further exploited to estimate the level of competition encountered by 

each organism according to the potential ability of other species to thrive in similar 

habitats [13]. Through converting genomic data to environmental and communal 

information, this study examines factors that potentially underlie growth rates across 

all these levels, through the analysis of the metabolic networks and environments of 

528 contemporary sequenced bacterial species, where growth rate data were available 

for 113 of these species (See Table S1 in Additional data file 1).  

 

Results and Discussion 

 

Growth rate is associated with basic genomic and environmental attributes 

  We first studied the association between growth rate and (i) the size of the 

genome, and (ii) the size of the corresponding metabolic network (Methods). Both 

attributes displayed a significant inverse correlation with doubling time (genome size: 

-0.31, metabolic network size: -0.38; Table 1), i.e., fast growth rate is typical of 

species with large genomes and large metabolic networks. Notably, obligatory 

symbionts (parasites and mutualists) are known to have both slow growth rate and 

small genome size [11, 14]; excluding this group from the computation, we observe 

no significant difference in the genome size (or network size) between slow growing 

and fast growing bacteria (Table 1), indicating that there is no universal link (beyond 

the unique properties of this group of species) between metabolic network size and 



bacterial growth rate. The lack of association between growth rate and genome size 

was already reported in previous studies [15] where the profound effects of the 

translation process on growth rate were suggested to mask any influences of genome 

size on replication speed.    

 Moving to the environmental dimension, we examine the association between 

growth rate and two established measures of the variability of species’ habitats 

(fraction of regulatory genes and environmental complexity estimate, Methods). Both 

measures yield similar results: a significant negative correlation with doubling time (-

0.42 and -0.34 respectively, Table 1), i.e., fast growth rate is typical of species which 

exhibit ecological diversity. Though these correlations are insignificant following 

excluding obligatory symbionts, we still observe significant differences between fast 

and slow growers with respect to their fraction of regulatory genes (Table 1). While 

these data-driven indices track general characteristics of the environment, our goal is 

to focus on studying the specific relation between metabolic factors and growth.  

Grouping bacterial species according to their oxygen requirements (aerobic, 

anaerobic, and facultative), the slowest growth rate (i.e., longest mean generation 

time) is observed for obligatory aerobic bacteria, followed by obligatory anaerobic 

bacteria (Table 2). Notably, the fastest growth rate is observed for facultative bacteria 

(Table 2; significance over the anaerobic group:  P=0.03, significance over the 

aerobic group:  P=1.9e-6, Wilcoxon rank sum test); these bacteria can alternate 

between aerobic and anaerobic metabolism in accordance with their environment [5, 

8], utilizing alternative metabolic pathways to maximize rate or yield and gain an 

advantage over competitors [7]. The growth advantage of these facultative organisms 

gives rise to the hypothesis that, in general, higher growth rate may be associated with 

increased metabolic environmental variability and flexibility.  



 

Modeling metabolic-environmental attributes 

To test this hypothesis in the absence of an appropriate large-scale data-driven 

index of metabolic variability, we turned to develop a computational-based one. 

Employing a previously developed `reverse ecology’ algorithm that computes the set 

of metabolites that an organism extracts from its environment, we reconstructed the 

likely natural metabolic environments of each organism (Methods, and [12] for a 

comprehensive description). This provides an ensemble of environments computed 

for all 528 sequenced organisms, providing the broadest ecological view provided by 

the current data. Subsequently, the viability of each species is tested in all these 

environments. This is done by examining if in a given metabolic environment (i.e., a 

combination of metabolites) an organism can successfully expand its metabolic-

network so that it produces a set of target metabolites that are essential for growth 

(Methods). Repeating this procedure for all species provides an environmental 

viability matrix whose rows denote the species, its columns denote the environments, 

and its binary entries denote whether a given species can survive in a given 

environment. We then computed the mean population level (no. of species per 

environment) across the environments populated by organisms of a given lifestyle. 

Reassuringly, these results are compatible with ecological knowledge (Figure 1): soil 

bacteria and species populating the human gut inhabit the most densely-populated 

environments; sparsely-populated environments  are inhabitated by specialized 

organisms and (though to a lesser extent)  by obligatory symbionts [16-19]. Notably, 

our data set includes a large group of obligatory symbionts (54 species in comparison 

to 7 terrestrial organism and 17 gut bacteria; See Tables S1 and S2 in Additional data 

files 1 and 2, respectively), hence indicating that the level of population of a given 



environment does not reflect the prevalence of the life-style category of the species it 

inhabit, i.e., despite the ubiquity of obligatory symbionts in the data they tend to 

inhabit specialized metabolic environments. We additionally examined alternative 

approaches for generating other biologically-plausible sets of random metabolic 

environments. One such alternative approach for generating random environments is 

to construct 528 shuffled seed environments, i.e., maintaining an approximation of the 

original metabolites representation overall seeds (Methods).  Sparse populations of 

environments populated by specialized and obligatory symbionts versus dense 

populations of environments inhabited by soil and gut bacteria is also observed when 

using this alternative collection of random environments (See Additional data file 3). 

 

Growth rate is associated with the level of metabolic variability 

 The environmental scope index of a species (ESI) is defined as the fraction of 

environments in which it is viable. The ESI measure of metabolic variability is 

positively correlated with both genome size (0.4, P = 3e-6, Spearman) and metabolic 

network size (0.6, P = 1e-10, Spearman). It is also positively correlated with the data-

driven general environmental-diversity measures examined above (fraction of 

regulatory genes:  0.32, P = 0.008; estimate of environmental complexity: 0.23, P = 

0.01, Spearman), hence providing support to the ecological plausibility of the model.  

There is a significant negative correlation between the ESI and doubling time in the 

complete dataset (-0.25), and notably,  the differences between the ESI scores of slow 

and fast growing bacteria remain significant also after excluding obligatory symbionts 

(Table 1). Thus, there is a general association between broader metabolic capacities 

and faster maximal growth rates, extending the initial observations concerning the fast 

growth rate of facultative bacteria and implying that metabolic versatility of species is 



better associated with their growth rate then other, more general, environmental 

characteristics. This result, as all other reported correlations, remains valid when 

using the alternative collection of random environments described above (Table 1; 

Methods). The negative correlation between ESI and duplication time is also 

maintained in species which are evenly distributed among different habitat types and 

taxonomic groups (See additional data file 3).  Pseudomonas aeruginosa, an organism 

with a high ESI score (See Table S1 in Additional data file 1) provides an example for 

fast growth rate in a generalist, possessing broad metabolic capabilities that allow it to 

successfully grow in diverse environments [20]. However, the association between 

fast growth and metabolic flexibility is not at all obvious, as one may assume that 

living in a specific niche habitat would enable an organism to specialize and adapt 

towards a high-growth solution. Indeed, Desulfotalea psychrophila, an organism with 

a low ESI score (See Table S1 in Additional data file 1), provides such an example. It 

is a sulfate-reducing extremophilic bacterium, thriving in extreme  conditions (cold 

arctic sediments), and exhibiting metabolic and environmental specialization [21].  

 

Growth rate is associated with the level of co-habitation      

    If metabolic specialization does not preclude fast growth, how then can we explain 

the slow growth of most specialists? An arising hypothesis is that such organisms face 

weak competition. Conversely, organisms that occupy a large variety of metabolic 

environments face a larger number of co-inhabiting species, which in turn may exert 

selection pressure for maintaining higher growth rates. To test this hypothesis we used 

the co-habitation score (CHS) vector (deduced from the environmental viability 

matrix), denoting the number of species that co-populate each viable environment of a 

given species. This vector can serve as an indication of the level of competition 



encountered by a species in its habitats. We focus on each species’ most populated 

niche (maximal-CHS) and most sparsely populated one (minimal-CHS). The minimal-

CHS score is not significantly correlated with either ESI or doubling time. In contrast, 

the maximal-CHS exhibits a significant inverse relationship with duplication time 

(Table 1), i.e., faster growth rates are observed in richly populated, competitive 

environments. The maximal-CHS also displays a highly marked positive correlation 

with metabolic variability (P-value < 1e-3, computed by comparing to random; 

Supporting Information). That is, a species' metabolic flexibility tends to erode when 

it populates only sparsely populated, non-competitive environments. This result 

remains valid when using an alternative collection of random environments (Table 1; 

Methods). The negative correlation between Maximal-CHS and duplication time is 

also maintained in species which are evenly distributed among different habitat types 

and taxonomic groups (See Additional data file 3).  The relevance of maximal- and 

minimal-CHS scores to growth rate can be put in a biological context by considering 

the lifestyle of the pathogen Staphylococcus aureus:  inside a host-cell (where no 

competition with other bacterial species is encountered) it exhibits a far slower growth 

rate than in the more competitive environment of the human skin [22, 23].  

 

Delineating major ecological strategies 

To delineate potential major ecological strategies we grouped the bacterial 

species according to their location on the ESI-CHS plane (Figure 2). As can be 

expected from the tight association between the environmental scope and co-

habitation scores, the large majority of all species fall within the low ESI - low 

maximal-CHS and high ESI - high maximal-CHS diagonal groups, exhibiting two 

different but equally popular ecological strategies: (a) a specialized niche with little 



competition versus (b) ecological diversity with intense competition, with the latter 

group displaying faster growth rates (P=0.02, Wilcoxon rank sum test). Escherichia 

coli, a generalist capable of fast growth is an example of the first group, while 

Mycobacterium leprae, an obligatory intracellular pathogen with highly specialized 

nutritional demands and an exceptionally slow growth [24, 25] is an example of the 

second group (Figure 2). However, some organisms exhibit different ecological 

approaches (Figure 2). In some bacterial species tight adaptation to a specific niche 

(low scope) does not involve escaping competition (high maximal-CHS score). The 

oral bacterium Fusobacterium nucleatum is an example of a species whose 

metabolism is adapted to a specific, though non-exclusive, niche [26]. In contrast, the 

last and smallest group includes species with a relatively high environmental scope 

but exclusive habitats. Members of this group exhibit a faster growth rate than the low 

scope/low max-CHS group (P=0.05, Wilcoxon rank sum test). As an example, the 

intracellular pathogen Legionella pneumophila has a duplication time close to 

hundred times faster than Mycobacterium leprae.  Whereas M. leprae possesses 

highly  specific metabolic requirements that limit its ability to exploit the resources in 

the host cell [25], L. pneumophila exhibits a more generic metabolism, scavenging the 

host cell for both sugars and amino-acids, exhausting the latter’s resources [27]. 

Accordingly, L. pneumophila is the causative agent of an acute disease where M. 

leprae causes a long-lasting chronic disease, requiring tight adaptation to co-existence 

within the host cell. 

Beyond these specific examples, the characterization of growth strategies 

based on the intricate interplay between the ESI-maximal-CHS values suggests that 

when taken together these values can be used for predicting growth strategies. Using 

ESI and maximal-CHS values retrieved from the 113 species which participate in the 



original analysis, we trained an SVM classifier which assigns bacterial species into 

one of two extreme growth classes (either fast or slow, Methods). We tested the 

generalization ability of the classifier in a cross validation setting obtaining an 

average ROC score of 0.75 (Methods). We then obtained growth rate data for 

Parachlamydia UWE25 [11], an endosymbiont of amoeba from the chlamydiae 

group, and for Bacillus thuringiensis, a widely distributed bacteria [28]; for both 

species growth rate data were not included in our analysis so far. Parachlamydia 

UWE25 is an obligate intracellular bacterium that exhibits reduced central metabolic 

and biosynthetic pathways, and is auxotrophic for most amino acids and nucleotides 

[29]. In accordance with the lifestyle of this organism, we compute for this species a 

low environmental diversity and low competition scores (ESI: 0.002, maximal-CHS: 

0, See Table S1 in Additional data file 1). For the ubiquitous Bacillus thuringiensis 

we compute high environmental diversity and high competition scores (ESI: 0.09, 

maximal-CHS: 59, See Table S1 in Additional data file 1). We applied the SVM 

classifier to characterize the growth rates of these species, in accordance with 

experimental data Bacillus thuringiensis falls into the fast-growing category and 

Parachlamydia UWE25 falls into the slow-growing category (corresponding to the 

experimentally observed doubling times of 40 minutes [30] and 48 hours respectively 

[11],). 

 

Conclusions 

       In summary, this paper presents the first large-scale rigorous computational 

exploration of the ecological strategies taken by a species in association with its 

growth rate, lifestyle and metabolic-capabilities.  Several limitations of this analysis 

should be mentioned: first, the estimation of the growth environments and their 



viability is based on a topological network-based computation, which is obviously a 

first-approximation model of the underlying biology. Second, co-habitation involves 

additional facets of interspecies interactions beyond competition, notably, cooperation 

and symbiosis. Bearing those in mind, the metabolic environmental model correctly 

captures several patterns already observed in data-driven biological habitats, testifying 

to its ecological plausibility.   

 We find that growth rate is significantly positively correlated with both the 

span of the environments and the level of competition that bacterial species encounter 

in their metabolic habitats. The model points at two main ecological strategies 

suggesting a universal principle where metabolic flexibility is associated with a need 

to grow fast, possibly in face of competition. The new ability to produce a quantitative 

description of the growth rate – metabolism – community relationship lays a 

computational foundation for the study of a variety of aspects of the communal 

metabolic life.  With the growing recognition that bacteria should be better studied in 

the context of their ecological niche and communities, future computational 

approaches should take into account the complex interrelationships between 

organisms. Such approaches are likely to become increasingly helpful for studying 

various aspects of microbial life within naturally-occurring ecological habitats. 

 

Materials and Methods  

Dataset  

Metabolic data were collected from KEGG [31] (release 46) for 528 bacterial 

organisms. Out of these species, information describing the maximal doubling time 

was available for 113 species (downloaded from [11]). We constructed the metabolic 



networks of bacterial organisms following the approach outlined in [32]. To download 

networks see Additional data file 3. 

Construction of metabolic environments  

Metabolic growth environments were inferred using the seed algorithm developed by 

[12]. This algorithm predicts the set of exogenously acquired compounds, given the 

metabolic network. We additionally examined alternative approaches for generating 

other biologically-plausible sets of random metabolic environments. One such 

alternative approach for generating random environments is to construct 528 shuffled 

seed environments, i.e., maintaining an approximation of the original metabolites 

representation overall seeds. Each metabolite in the original seed environments is 

randomly assigned to the shuffled environments where its representation over all 

environments is 1.05 times in comparison to its original representation. That is, if a 

certain metabolite has, for example, 20 appearances over all seeds, then it is randomly 

assigned to 21 out of 528 environments. This process is repeated for each seed 

metabolite. The 1.05 ratio of appearances between original and shuffled environments 

was chosen as it allows a similar level of inhabitation of the environmental viability 

matrix, described below (See Additional data file 3).  

 

Characterizing bacterial environments 

Fraction of regulatory genes values were taken from [33],  describing the fraction 

of transcription factors out of the total number of genes in the organism, an indicator 

of environmental variability [19]. Environmental complexity estimated values were 

obtained from [19], where the natural environments of 117 bacterial species were 

categorized based on the NCBI classification for bacterial lifestyle [34] and ranked 

according to the complexity of each category (1- obligatory symbyonts; 2- 



specialized; 3- aquatic; 4- facultative host-associated; 5- multiple; 6- terrestrial 

species [19]). Annotations for environmental complexity were available only for 68 

species from the 113 species for which doubling time was available. To validate the 

reliability of these annotations we manually searched the literature. In two cases we 

changed the original annotation (from multiple to terrestrial, See Table S3 in 

Additional data file 4). In addition, we searched the literature for annotations for the 

remaining 45 species (See Table S3 in Additional data file 4). Together with 

retrieving the annotations as described above, classification of species into habitats 

was also done by looking for the presence of species from the dataset in 

environmental samples.  Occurrence of species from our dataset in environmental 

samples was inferred according to the results of a BLAST search [35] of 16s RNA 

sequences from the 528 species in the analysis against env_nt – a comprehensive 

collection of sequences from environmental samples (downloaded on February 2009). 

We find that in the large majority of cases (30/33) experimental findings support the 

literature-based annotations (See Additional data file 3).  

All parameters retrieved/computed for the species in the analysis are provided in 

See Table S1 in Additional data file 1. 

 

Computing the environmental viability matrix, Environmental Scope Index (ESI) and 

Co-habitation Score (CHS) 

As a measure for species viability we constructed a list of 65 compounds termed 

"target metabolites" (See Table S4 in Additional data file 5), which are most likely to 

be essential for growth in most species [36-38]. A species-specific target metabolite 

list is formed by the intersection between the target metabolites and the metabolites 

that each species produces.  We then tested the viability of each species over the set of 



528 metabolic growth environments. Given a specific organism and an environment, 

an organism is considered viable in this environment if all its essential target 

metabolites are produced – this is examined by using a network expansion algorithm 

[39] that outputs an activated metabolic sub-network, and verifying that the expanded 

subnetwork produces all target metabolites.  This process yields the environmental 

viability matrix whose rows denote the species and columns denote the metabolic 

environments, and binary entries denote the corresponding viability. From this matrix, 

the scope (ESI) and co-habitation (CHS) scores for each species are deduced:  The ESI 

of a species is defined as its fraction of viable environments. The CHS vector of a 

species records how many viable organisms populate each of its viable environments.  

All software used for the analysis will be provided upon request from the authors. 

 

Constructing an SVM classifier 

We partitioned the organisms according to their doubling time: fast and slow 

growers are these whose duplication time is shorter and longer in at least one standard 

deviation from the mean (0.48 and 9 hours respectively, See Figure S6 in Additional 

data file 3). Species with intermediate values were excluded from the analysis. For the 

remaining species, ESI and maximal-CHS values were used for training a Support 

Vector Machine (SVM) classifier with a linear kernel [40]. We estimate the accuracy 

of the classifier using a ten-fold cross validation. In this procedure, the organisms are 

randomly partitioned into 10 distinct set; then the class labels (slow or fast) in each set 

are predicted by a classifier trained on the rest of the sets. We repeated this procedure 

50 times, and report the mean and standard deviation of the receiver operating 

characteristic (ROC) curve [41]. Our quality metric is the area under this curve (the 

ROC score). 



 

Abbreviations 

CHS: co-habitation score; ESI: environmental scope index of a species. 
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The following additional data are available with the online version of this paper. 

Additional data file 1 is a table listing genomic and ecological attributes for the 113 

species in the analysis (Table S1). Additional data file 2 is a table listing the NCBI 

annotations and description of environmental sample for species that can be identified 

in an environmental sample (Table S2). Additional data file 3 includes supplementary 

Notes, Figures, detailed description of all tables in Additional data files and a Table 

(Table S5). Additional data file 4 is a table listing the original and manually curated 

values of environmental complexity (Table S3). Additional data file 5 is a table listing 

the biomass target metabolites (Table S4). Additional data file 6 is a table listing 

genomic and ecological attributes for the 528 species in the metabolic analysis (Table 

S6). 
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Tables 

 

 

Table 1. Correlation (P value) V. Duplication time 

Significance of difference between 

slow grower, fast grower± 

 Total 

(N=113) 

§ Non 

obligatory 

symbiont 

only 

(N=77) 

Total 

(N=113) 

§ Non 

obligatory 

symbionts spc.  

(N=77) 

Genome size 

(bp) 

-0.30  

(0.001) 

-0.04 

(0.7) 

0.001 

(S: 2695676 

F:  3402099) 

0.4 

(S: 3614838 

F: 3479053) 

Network size -0.38 

(3.1e-05) 

-0.13 

(0.2) 

0.002 

(S: 326 

F: 410) 

0.3 

(S: 408 

F: 431) 

Fraction of 

regulatory 

genes [33] 

-0.42 

(0.0004) 

-0.21 

(0.13) 

4e-4 

(S: 0.03 

F: 0.05) 

0.2 

(S: 0.04 

F: 0.05) 

Estimate of 

environmental 

complexity 

[19] 

-0.34 

(2-04) 

-0.07 

(0.5) 

1e-4 

(S: 3 

F: 4) 

€- 

ESI -0.25 

(0.008) 

-0.23 

(0.04) 

0.03 

 (S: 0.006 

F: 0.02)  

0.06 

 (S: 0.008 

F: 0.02)  

ESI – random 

environments

ψ 

-0.47 

 (1,6e-

07) 

-0.35 

(0.002) 

8e-6 

(S: 0.007 

F: 0.03) 

0.002  

(S: 0.01 

F  0.00 4) 

Max CHS -0.27 

(0.03) 

-0.28 

(0.01) 

0.03 

(S: 14 

F: 27) 

0.02 

 (S: 20 

F: 31)  

Max CHS– 

random 

environments

ψ 

-0.34 

(1e-4) 

-0.23 

0.05 

6e-4 

(S: 39 

F: 72) 

0.01  

(S: 50 

F: 85) 

 

±The two sets of data (all species, non obligatory symbionts) were divided into two 

bins according to species' growth rate (fast and slow). The significance between the 

genomic attributes studied (e.g., genome size, network size etc) was calculated with 

one-sided Wilcoxon rank sum test.  In brackets: the mean value of the relevant 

attribute in the slow growing and fast growing groups. 

§ According to definitions from [19] and manual curation (Methods).  



€Values not computed since low-ranked estimates of environmental complexity 

represent the obligatory symbionts which were excluded from the analysis. 

ψRandom environments are described at the Methods section.  

 

 

Table 2.  Typical duplication time of bacterial organisms according to their mode 

of respiration± 

 Number 

of 

species§ 

Mean 

duplication 

time 

Median 

duplication 

time 

Mean 

network 

size 

Aerobic 

bacteria 

40 13 3 412 

Anaerobic 

bacteria 

18 

 

5.3 

 

1.6 318 

Facultative 

bacteria 

41 

 

1.7 0.8 380 

 

±Oxygen-dependence annotations were taken from [34].  

§Species in this analysis are those for which duplication times are available, the 

metabolic network was reconstructed (Methods), and their oxygen-dependence group 

is one of the groups in the table (bacteria species whose oxygen-dependence 

annotation is “unknown” or “microaerophylic” are not shown here). 



Figure legends 

 

Figure 1. Mean co-habitation (population) levels of environments occupied by 

bacteria of a given life style. Annotations of lifestyle are according to [19] 

(Specialized, obligatory symbionts, aquatic, multiple, faculatative symbionts, and 

terrestrial) and according to identification of species in environmental samples 

(human gut, Methods). Number of environments in each lifestyle (ordered as in the 

figure) are 11, 81, 5, 144, 157, 38, 117 (environments can populate species of more 

than a single lifestyle). Bars show the standard error.   

 

Figure 2. Environmental scope index versus maximal co-habitation score. Size of 

dots corresponds to duplication time – larger size corresponds to longer duplication 

time and slower growth rate. Color of dots corresponds to their ecological habitat (See 

Table S1 in Additional data file 1): red – obligatory host-associated; green – 

specialized; blue – aquatic; black – host-associated (non-obligatory); orange – 

multiple; brown – terrestrial.  Legends: DT – duplication time; BL – bottom left (47 

species); BR – bottom right (10 species); TL – top left (16 species); TR – top right (40 

species). The plot is divided according to median values of the axes. Abbreviations: 

Low ESI – low maximal-CHS (BL); high ESI – low maximal-CHS (BR); high ESI – 

high maximal-CHS (TR); and low ESI – high maximal-CHS (TL). 
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