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Abstract

The analysis of the mutational landscape of cancer, including mutual exclusivity and co-

occurrence of mutations, has been instrumental in studying the disease. We hypothesized

that exploring the interplay between co-occurrence, mutual exclusivity, and functional inter-

actions between genes will further improve our understanding of the disease and help to

uncover new relations between cancer driving genes and pathways. To this end, we

designed a general framework, BeWith, for identifying modules with different combinations

of mutation and interaction patterns. We focused on three different settings of the BeWith

schema: (i) BeME-WithFun, in which the relations between modules are enriched with

mutual exclusivity, while genes within each module are functionally related; (ii) BeME-

WithCo, which combines mutual exclusivity between modules with co-occurrence within

modules; and (iii) BeCo-WithMEFun, which ensures co-occurrence between modules, while

the within module relations combine mutual exclusivity and functional interactions. We for-

mulated the BeWith framework using Integer Linear Programming (ILP), enabling us to find

optimally scoring sets of modules. Our results demonstrate the utility of BeWith in providing

novel information about mutational patterns, driver genes, and pathways. In particular,

BeME-WithFun helped identify functionally coherent modules that might be relevant for can-

cer progression. In addition to finding previously well-known drivers, the identified modules

pointed to other novel findings such as the interaction between NCOR2 and NCOA3 in

breast cancer. Additionally, an application of the BeME-WithCo setting revealed that gene

groups differ with respect to their vulnerability to different mutagenic processes, and helped

us to uncover pairs of genes with potentially synergistic effects, including a potential synergy

between mutations in TP53 and the metastasis related DCC gene. Overall, BeWith not only

helped us uncover relations between potential driver genes and pathways, but also provided

additional insights on patterns of the mutational landscape, going beyond cancer driving
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mutations. Implementation is available at https://www.ncbi.nlm.nih.gov/CBBresearch/

Przytycka/software/bewith.html

Author summary

The genomic landscape of cancer obtained from large scale studies revealed mutational

patterns such as mutual exclusivity and co-occurrences. Despite significant efforts, the

understanding of the patterns harbored by specific genes and their interplay with func-

tional interactions are still limited. Both mutual exclusivity and co-occurrence can arise

due to several reasons. For example, two functionally interacting genes may dysregulate

the same cancer related pathway when either of them is mutated, leading to mutually

exclusive mutations. Alternatively, mutual exclusivity might reflect mutations specific to

two different cancer types. Methods for joint analysis of co-occurrence, mutual exclusiv-

ity, and functional interaction relationships can lead to a better understanding of the

causes and impacts of mutations in cancer. We report a new computational approach,

BeWith, which identifies groups of genes (or gene modules) with coherent patterns within

modules, but distinct properties among genes in different modules. The general formula-

tion of our method allows us to investigate various aspects of the cancer mutational land-

scape, leading to uncovering relationships between mutated gene modules, cancer

subtypes, and mutational signatures.

“This is a PLOS Computational BiologyMethods paper.”

Introduction

The analysis of the mutational landscape of cancer has been instrumental in studying the dis-

ease and identifying its main drivers and subtypes. In particular, mutual exclusivity of muta-

tions in cancer drivers has recently attracted a lot of attention. This relation can help identify

cancer drivers, cancer-driving pathways, and cancer subtypes [1–10]. Although less studied,

co-occurrence of mutations can also provide critical information about possible synergistic

effects between pairs of genes [11–13] or underlying mutagenic processes [14–16].

Importantly, both properties can arise due to several different reasons, making the interpre-

tation of the implied gene-gene relations challenging. Specifically, mutually exclusive muta-

tions within functionally interacting genes may indicate that a mutation in either of the two

genes dysregulates the same pathway. On the other hand, mutually exclusive mutations might

also reflect a situation where mutations in two genes are associated with two different cancer

types or subtypes. We have previously observed that within cancer type mutual exclusivity is

more enriched with physically interacting pairs of genes compared to between cancer type

mutual exclusivity [3]. Thus, the presence or absence of interactions between genes with mutu-

ally exclusive mutations might provide hints toward the nature of mutual exclusivity. In addi-

tion, the property of mutual exclusivity of mutations is not necessarily limited to cancer

drivers, and therefore a proper understanding of this property is critical for obtaining a better

picture of the cancer mutational landscape, both in general and for cancer driver prediction.
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As with mutual exclusivity, co-occurrence of mutations might emerge due to a number of

different causes. One of the most important cases is when simultaneously disabling two genes

might be beneficial for cancer progression. Examples of such a scenario include the co-occur-

rence of TP53 mutation and Myc amplification [12,17] or co-occurring mutations in PIK3CA

and RAS/KRAS [5,11,18]. An alternative explanation for the co-occurrence of somatic muta-

tions might be the presence of a common mutagenic process. If patients were exposed to the

same mutagen, the process might have left its footprint in regions susceptible to the mutagenic

process. For example, we observed in the previous work that the co-occurrence of TP53 and

TTN mutations in breast cancer patients was not statistically significant based on a test cor-

rected with the patients’ mutation frequencies, although they were found to co-occur using an

uncorrected Fisher’s exact test [16]. This suggests that the co-occurrence of mutations in TP53

and TTN are due to the fact that both genes were affected by a common mutagenic process act-

ing on them, and not due to a benefit to cancer progression from mutations in both genes.

Examples of mutagenic processes include the presence of APOBEC activities, aging, smoking,

and deficiency of DNA damage repair process. Recent studies have found that many such pro-

cesses are associated with different mutational signatures [14,15]. In addition, mutagenic pro-

cesses can be context specific, leading to differences in mutational signatures even within the

genome of an individual patient.

Given the diversity of reasons for observing the mutual exclusivity and co-occurrence rela-

tions, we hypothesised that jointly considering co-occurrence, mutual exclusivity, and func-

tional interaction relationships will yield a better understanding of the mutational landscape

of cancer. As a step in this direction, our goal was to develop a method to identify groups of

genes (or gene modules) that show coherent patterns within modules, but distinct properties

with genes outside modules. While many methods to identify cancer related modules exist,

such modules are typically identified by focusing on the relationships of genes within a mod-

ule. In particular, there have been several previous attempts to combine mutual exclusivity and

functional interactions for module identification [1–3,19]. However, most of these methods

were primarily focused on finding functional modules that include genes with mutually exclu-

sive mutations without considering the relationships between such modules.

To address this challenge, we designed a general framework, named BeWith, for identifying

modules with different combinations of mutation and interaction patterns. On a high level,

BeWith tackles the following problem: given a set of genes and two types of edge scoring func-

tions (within and between scores), find clusters of genes so that genes within a cluster maximize

the “within” scores, while gene pairs spanning two different clusters maximize the “between”

scores. We formulated the BeWith module identification problem as an Integer Linear Pro-

gramming (ILP) problem and solved it to optimality. The flexibility of the ILP formulation

allowed us to include additional constraints, such as module density, to enhance the module

discovery process (See Methods for the description of ILP formulation).

As we consider different combinations of interactions for between and within scores, there

are many possible settings to which we can apply the BeWith framework. In this work, we

focused on the following three settings of the BeWith framework, in each of which we expect to

uncover a set of modules with different biological properties (Fig 1). Below we provide a brief

overview of the settings and defer the detailed explanation of each setting to Results Section.

Setting 1 (BeME-WithFun): Our first setting (Fig 1A) uses functional interactions to make

sure genes in the same pathway are clustered together by rewarding within functional interac-

tions and penalizing between functional interactions. At the same time, we reward mutual

exclusivity without functional interactions between modules. Different from many previous

attempts to utilize mutual exclusivity for the identification of functional modules dysregulated

in cancer [1–10], here we ask the question of whether there exist functional modules that show

BeWith: Discovering relationships between cancer modules via integrated analysis
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mutual exclusivity between modules. Such modules, if found, could suggest subtype specific

modules or be related to a mechanism similar to between pathways epistasis in a cancer setting

[20].

Setting 2 (BeME-WithCo): This setting searches for groups of genes that are co-mutated

(within), exclusively compared to other groups (Fig 1B). There are several possible explana-

tions for co-occurring mutations. First, such co-mutations may be observed in cancer patients

because of possible benefit to cancer progression. For example, deficiency in the DNA damage

repair machinery by itself does not cause cancer, but rather makes a cell vulnerable to cancer

causing mutations. Interestingly, if a co-mutation is indeed beneficial for cancer progression,

then the mutations in turn might lead to a pattern of mutual exclusivity with other cancer driv-

ing mutations, as we look for in this setting. Second, co-mutation may arise because a muta-

tional process affects a subset of genes disproportionately. Indeed, recent analysis has found

that mutational signatures due to different mutagenic processes (such as aging, smoking, and

APOBEC activity) can be observed in cancer patients [14]. In this context, ensuring mutual

exclusivity between modules can help separate groups of genes affected by different mutagenic

processes. In either case, combining co-occurrence within modules and mutual exclusivity

between modules can lead to a more insightful understanding of the cancer mutational land-

scape. This setting is another novel way of analyzing the patterns of cancer mutations, using

co-occurrence within modules.

Setting 3 (BeCo-WithMEFun): Our third setting is specifically designed to identify co-

occurring driver pathways. We seek modules displaying functional and mutual exclusivity

relations inside a module and co-occurrence between modules (Fig 1C). Leiserson et al. pre-

sented an anecdotal example of such co-occurring pair of modules (of two genes in each) in

their GBM data analysis [5], which we were able to identify using this BeWith setting as dis-

cussed below.

We applied BeWith in the above three complementary settings to two TCGA datasets:

somatic mutation profiles in breast cancer (BRCA) and endometrial cancer (UCEC).

Results

Method evaluation

To validate our method, we computed the significance of the results compared to those

obtained with 100 randomized instances. To evaluate the effectiveness of using both

Fig 1. Overview of three settings for which BeWith was applied. (A) The goal of BeME-WithFun is to discover modules which have dense functional

interactions within the modules while having mutually exclusive mutations with genes in other modules (B) In BeME-WithCo we aim to identify modules which

have co-occurring mutations within the modules while having mutual exclusivity between the modules (C) In BeCo-WithMEFun, we look for modules of

functional and mutual exclusivity relations inside a module with co-occurring mutations between modules.

https://doi.org/10.1371/journal.pcbi.1005695.g001
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between and within scores, we also used randomization of specific types of edges only

(See Section C in S1 Text for additional details of the methods used to generate random

instances). We evaluated the modules obtained in each setting for the objective function

value and how well the modules identified known driver genes. Although BeWith is not spe-

cifically targeted toward detecting cancer driving genes, but rather searching for gene mod-

ules that may expose various biological properties, our modules are still expected to be

enriched with cancer related genes. Indeed, we found that our modules significantly outper-

formed the random ones with respect to all measures (Table 1 for BRCA and Table 2 for

UCEC). Randomizing only functional/co-occurring edges but keeping mutual exclusivity

information has led to finding many singleton modules that are mutually exclusive with

each other (essentially finding a set of genes with mutually exclusive mutations). Therefore

for this setting, we performed the comparison using non-trivial modules (of size > 1) only.

We did not include setting 3 in the evaluation because this setting only identified a small

number of genes. For the list of cancer drivers, we used a combined list from COSMIC Can-

cer Gene Census [21] and 138 cancer driver genes from [22].

Table 1. Comparison of the results of three settings of the BeWith schema on real and randomized BRCA data. For the genes identified in each set-

ting, we computed the number of known drivers, enrichment p-value, and objective function value. In addition, we provided the significance of each value by

comparing it with those obtained with 100 randomized instances and computing empirical p-values.

Features # Known Drivers Driver Enrichment

(Hypergeometric test)

Objective Function

Value

BeME-WithFun Real 14 6.9e-8 57.60

Randomization of all edges (average) 3.85 (p <0.01) 0.074 (p <0.01) 9.92 (p <0.01)

Randomization of functional edges only 8.37 (p<0.01) 9.57e-4 (p = 0.03*) 31.49 (p<0.01)

Randomization of ME edges only 6.31 (p<0.01) 0.03 (p<0.01) 20.17 (p<0.01)

BeME-WithCo Real 7 2.41e-3 43.79

Randomization of all edges (average) 2.55 (p <0.01) 0.17 (p = 0.02) 10.75 (p <0.01)

Randomization of CO edges only 4.81 (p<0.01) 0.69 (p<0.01*) 19.35 (p<0.01)

Randomization of ME edges only 3.20 (p = 0.01) 0.13 (p = 0.05) 14.93 (p<0.01)

* p-values computed for the subset of modules with more than one gene.

https://doi.org/10.1371/journal.pcbi.1005695.t001

Table 2. Comparison of the results of the three settings of the BeWith schema on real and randomized UCEC data. We also performed additional

evaluation of our method by running BeWith on simulated data to validate if BeWith indeed find modules with the desired properties in presence of random

noise (See Section C in S1 Text for discussion). The results demonstrated that our method is robust and recover the planted modules in most instances

(�99%). The accuracy decreased if the planted module was increasingly noisy (See Table A in S1 Text). In addition, we compared our modules with the mod-

ules identified by other module detection algorithms and showed that our method is better than or comparable to previous methods in terms of cancer driver

identification, while our modules have additional properties such as co-occurrences and functional coherence (See Section D in S1 Text).

Features # Known Drivers Driver Enrichment

(Hypergeometric test)

Objective Function

Value

BeME-WithFun Real 10 1.53e-4 116.08

Randomization of all edges (average) 3.75 (p <0.01) 0.08 (p = 0.03) 15.17 (p <0.01)

Randomization of functional edges only 1.8 (p<0.01) 0.36 (p = 0.02) (*) 15.09 (p<0.01)

Randomization of ME edges only 4.70 (p<0.01) 0.05 (p = 0.05) 21.05 (p<0.01)

BeME-WithCo Real 7 6.05e-4 84.55

Randomization of all edges (average) 2.55 (p <0.01) 0.17 (p = 0.02) 10.75 (p <0.01)

Randomization of CO edges only 3.85 (p<0.01) 0.38 (p = 0.03) (*) 27.49 (p<0.01)

Randomization of ME edges (average) 1.79 (p<0.01) 0.24 (p<0.01) 15.09 (p<0.01)

https://doi.org/10.1371/journal.pcbi.1005695.t002
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BeME-WithFun: Functional modules with mutual exclusivity between

modules

Motivation. In this setting (Fig 1A), we search for functionally related groups of genes

with potential relevance to cancer, using functional interactions and mutual exclusivity infor-

mation. Our setting is different from most previous module detection methods based on

mutual exclusivity in the sense that we do not assume that a group of genes with mutually

exclusive mutations is necessarily in the same pathway. While pairs of genes with mutually

exclusive mutations have been shown to be enriched among many cancer drivers, some of

those genes are found to not be in a direct functional relation (such as prominent cancer driv-

ers TP53 and GATA3). As we noted in the introduction, mutual exclusivity can arise due to

various reasons other than dysregulating the same pathways. We hypothesize that mutually

exclusive pairs are likely to be relevant to cancer progression whether or not their partners are

in the same pathways, and asked whether mutual exclusivity observed between distantly func-

tionally related genes leads to modules associated with cancer.

Starting with this question, we identify modules within which genes that are functionally

related and at the same time between which genes that show mutual exclusivity. Note that

while genes within a module may also be mutually exclusive with each other, we do not opti-

mize for within module mutual exclusivity nor do we penalize it. Instead, we enforce func-

tional edges within modules and penalize functional interactions of genes between different

modules to ensure that genes within the same module are likely to be in the same pathway.

We also reward the edges between modules for mutual exclusivity, with which we expect to

uncover functional modules that are mutually exclusive with each other. Such modules could

suggest subtype specific mutations or be related to a mechanism similar to between pathways

epistasis in cancer.

Results. We applied this setting to two datasets: TCGA BRCA and UCEC somatic muta-

tion dataset (See Methods for the description of the ILP formulation and definitions, and Sec-

tion A in S1 Text for additional details of parameter selection). For the BRCA dataset, we

identified seven modules (Fig 2A) including many known drivers in breast cancer, such as

TP53, AKT1, CDH1, PIK3CA, GATA3, and MAP3K1 (in modules 1, 2, 3 and 6). Notably,

many of the mutual exclusivity relations between modules we identified are among different

pathways. As one exception, we note that despite being separated, modules 1 and 2 are closely

related functionally since PIK3CA is a member of the PIK3CA/AKT1/MTOR pathway.

Although they are functionally well connected, the algorithm split them into two groups as we

maximized mutual exclusivity between modules, and the strong mutual exclusivity between

modules outweighed the functional relationships.

The results reveal that mutual exclusivity, although commonly sought for within pathways,

may also frequently occur between pathways. In addition, since BeME-WithFun strictly

enforces functional interactions within the modules, we obtain functionally coherent modules.

In particular, TP53 and GATA3 are typically put together into one mutual exclusivity module

[4,5] even though they are only distantly functionally related. Overall, by the design of our

method, the BeME-WithFun modules are densely connected (distance = 1.03) in terms of

functional interactions compared with an average distance of 2.52 for Multi-Dendrix and 1.08

for MEMCover on BRCA mutation dataset. Benefiting from the combined analysis with func-

tional modules, the method also allowed us to identify less frequently mutated drivers such as

MED23, FOXA1, PIK3R1, and genes previously not implicated in breast cancer such as

MTOR (we consider genes not reported in [23] as novel in breast cancer).

Interestingly, module 7 contains two genes with co-occurring mutations: NCOR2 (nuclear

co-repressor) and NCOA3 (coactivator), with the latter being a well-known cancer driver [22].

BeWith: Discovering relationships between cancer modules via integrated analysis
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Fig 2. The Results in BeME-WithFun Setting for TCGA BRCA Dataset. (A) Modules uncovered by BeME-WithFun for TCGA breast cancer

dataset. Cyan and brown edges represent pairs of genes with significantly mutually exclusive and co-occurring mutations, respectively. Darker

edges correspond to lower p-values and p-values less than or equal to 1e-6 have same darkness. Black edges represent functional interactions.

BeWith: Discovering relationships between cancer modules via integrated analysis
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However, neither of the two genes has been previously associated with breast cancer. TBLR1 is

another nuclear co-repressor not previously reported to be associated with breast cancer, and

MED23 is a component of the mediator complex and a coactivator involved in regulated tran-

scription. The module was probably not detected by previous methods due to the co-occur-

rence between NCOR2 and NCOA3, as most previous methods enforce mutual exclusivity

within modules.

Although not including known cancer drivers, module 5 contains a cluster of 4 Mucins—

members of a family of large proteins which are components in most gel-like secretions, with

some involved in signaling. Mucins have been typically associated with cancer via abnormal

expression. For example, MUC4 is proposed to contribute to tumor progression by promoting

cell survival [24–26]. As a cautionary note, TTN and Mucins are very long genes. Yet, the

mutual exclusivity pattern of the genes is prominent even after considering the length of the

genes, and our previous studies found that the increased mutations in TTN in breast cancer

are possibly linked to APOBEC activity [16]. A network based analysis also provided support-

ing evidence of TTN mutations as a disease marker [27].

We next examined the association of the modules with traditional breast cancer subtypes

[28] (Fig 2B and Table C in S1 Text) as well as their association with mutagenic processes inde-

pendent of the traditional subtyping. We found that the mutations in the PIK3CA/CDH1,

MAP3K1/MAP2K4, FOXA1/GATA3 module are significantly enriched in the Luminal A

subtype (p< 0.0l, Fisher’s exact test). The NCOA3/TBL1XR1/NCOR2/ MED23 module is

moderately associated with the Luminal A subtype (p< 0.1). It is important to note that the

enrichment is relative to the overall mutations across all the subtypes for a given module. In

addition, the enrichment of modules with low mutation rates (e.g., NCOA3 module) may be

underestimated due to the lack of statistical power. The association of the GATA3/FOXA1

module with the Luminal subtype is consistent with the fact that they co-regulate the expres-

sion of genes essential for luminal mammary epithelial cell development [29–32]. Strong asso-

ciation of both MAP3K1 and MAP2K4 genes with the Luminal A subtype is in agreement with

the previous finding that mutations in MAP2K4 produce perturbations similar to MAP3K1

loss [33]. Mutual exclusivity between mutations in these genes (Figure C in S1 Text) further

supports this interpretation.

On the other hand, the mutations in the TTN/NEB/DMD module is enriched in the Her2

(p< 0.05) and Basal (p< 0.1) subtypes, and Mucins are mutated significantly in the Luminal

B subtype (p< 0.05). An interesting property of the modules containing TTN and Mucins is

an underrepresentation of mutations in the Luminal A subtype. (Note also that while both

modules are mutually exclusive with several other modules, they are not mutually exclusive

with each other, Figure C-A in S1 Text). As we have previously linked mutations in TTN to

the APOBEC mutagenic process [16], the under-representation is consistent with the observa-

tion that APOBEC level is lower in the Luminal A subtype relative to its activity in other sub-

types [34], and thus these modules might be related to replication stress [35]. Finally, the

module including TP53 is strongly associated with the Basal and Her2 subtypes (p < 0.01) pre-

dominantly due to mutations in TP53.

We also examined whether the modules identified by BeME-WithFun are more signifi-

cantly mutually exclusive with other genes when compared to the mutual exclusivity of the

modules’ individual genes. The confidence of the mutual exclusivity test is largely limited by

The node sizes of genes reflect the number of mutated samples. (B) The mutated samples for each subtype for the modules identified in

BeME-WithFun. * indicates the significance of subtype enrichment relative to the overall mutations of a given module across all the subtypes (***
for p < 0.01, ** for p < 0.05, * for p < 0.1).

https://doi.org/10.1371/journal.pcbi.1005695.g002
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the number of mutated samples, causing the patterns in rarely mutated genes to be hard to

observe. Merging genes in the same module into one supergene, we computed the significance

of mutual exclusivity between supergenes and other individual genes, allowing us to identify

many new mutually exclusive pairs. For example, module 2, which contains PIK3CA and

CDH1, is mutually exclusive with several genes implicated in cancer, including MED23 and

DCC, a gene implicated in colorectal cancer but novel in the context of breast cancer (For the

newly created supergene, we define that the supergene has a mutation in a patient if there is

any mutated gene in the module for the patient. WeSME p-values were computed for the

supergene and all other genes. WeSME is a mutation frequency aware, sampling based test for

mutual exclusivity [16]). The mutual exclusivity of these two genes with either PIK3CA or

CDH1 was not statistically significant, but was statistically significant with the supergene cor-

responding to module 2. Interestingly, module 5 (with Mucins) is mutually exclusive with

many known breast cancer drivers including PIK3CA, MAP3K1, and RUNX1. The list of all

statistically significant module-gene pairs where the statistical significance of the mutual exclu-

sivity of the module-gene pair is higher than the mutual exclusivity of the given gene with any

gene in the module is provided in Section I in S1 Text.

We also applied this setting to the TCGA UCEC somatic mutation dataset and identified

six modules that include many prominent cancer drivers/associated genes in endometrial

cancer such as TP53, CCND1, KRAS, PTEN, PIK3CA, PIK3R1, RPL22, and ARID1A (see

Fig 3). BeME-WithFun also uncovered the same TTN and mucin modules as in the case of

breast cancer. While it is possible that the increased number of mutations in these genes is

related to their lengths, mutual exclusivity with respect to the mutations in other genes can-

not be explained by gene lengths and requires an additional explanation.

Fig 3. Modules uncovered by BeME-WithFun for Endometrial TCGA Dataset. Edge color-coding and node size coding are the

same as in Fig 2A.

https://doi.org/10.1371/journal.pcbi.1005695.g003
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As a novel finding, we also retrieved a module related to nonsense mediated decay (SMG1,

SMG7). SMG7 is also known to regulate p53 stability and function in DNA damage stress

response.

BeME-WithCo: Co-occurrence modules that are mutually exclusive with

each other

Motivation. We consider a second setting (Fig 1B), in which our goal is to find multiple

co-occurrence modules. Two explanations have been proposed for the co-occurrence of muta-

tions in cancer patients. First, such co-mutations of some genes might benefit cancer progres-

sion via their synergistic interactions. For example, deficiency in the DNA damage repair

machinery by itself does not cause cancer but rather makes a cell vulnerable to cancer-causing

mutations. Another possible explanation is that co-mutations arise when a mutational process

causes mutations in some genomic regions more likely than in other regions. For the patients

exposed to a particular mutagen, genes in the regions susceptible to the mutagenic process will

be co-mutated. For example, mutations related to APOBEC activity would be enriched in

genomic regions where the two DNA strands are more frequently separated (such as in repli-

cation origins, highly expressed genes, etc.). In contrast, mutations caused by the deamination

of 5-methylcytosine would be more likely to occur in non-expressed genes since DNA methyl-

ation is associated with the silencing of gene expression [36,37]. Other examples of mutagenic

processes include aging, smoking, and deficiency of the DNA damage process. Uncovering

such mutational signatures can provide important insights on mutagenic processes affecting

cancer patients [14,15]. Recently, several mutational signatures were identified in breast cancer

patients, and a collection of identified signatures are available in Sanger COSMIC Signatures

of Mutational Processes [23]. Below we show that some of modules we found indeed include

unique mutational signatures.

Motivated by the fact that the co-occurrence of cancer mutations can be closely related to

cancer progression, this setting searches for groups of genes that are co-mutated (within) and,

at the same time, are mutually exclusive with genes in other groups (Fig 1B). While we are

mostly interested in co-occurrence within modules in this setting, mutual exclusivity between

modules helps separate groups of genes affected by different mutagenic processes. Combining

co-occurrence within modules and mutual exclusivity between modules can lead to a more

insightful understanding of the cancer mutational landscape. The setting is also very different

from previous approaches of searching for genes with mutually exclusive mutations and is

another novel way of analyzing the patterns of cancer mutations, using co-occurrence within

modules.

Results. By applying BeME-WithCo to BRCA, we obtained six modules of genes (Fig 4A).

As expected, the analysis of the modules in this setting revealed both types of co-occurring

modules: modules containing putative cancer drivers with synergistic mutations and modules

that are likely a result of common mutagenic processes. Interestingly, we found some modules

with both properties, meaning that the genes in the module undergo similar mutational pro-

cesses but their synergistic roles in cancer were also implicated in the literature.

Specifically, we found consistent mutational signatures in modules 1, 3, and 6 (Fig 4B, The

remaining modules either did not have sufficient number of observed somatic mutations and/

or their mutational spectrum could not be decomposed into signatures with a small error e.g.

due to selection towards specific mutations.). Mutational signatures are distinctive patterns in

a mutational spectrum that can reveal the underlying mutation generating processes [14,15].

See Section E in S1 Text for the method used to decompose mutational profiles into different

signatures. It is interesting to see that different modules have different compositions of
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mutational signatures, which in turn implies that genes in different modules are affected by

different mutagenic processes. The mutual exclusivity between modules in this setting facili-

tates the partitioning, if present in data. Uncovering such relations is important for a proper

interpretation of mutual exclusivity, which can be extended to genes beyond cancer drivers.

Note that in this setting we used the hypergeometric test for co-occurrence to allow the detec-

tion of modules due to the same mutagenic processes. We also applied the more stringent

WeSCO test for the identified modules to test whether co-occurrence within modules is likely

to be functional (see the detailed discussion for three representative modules presented

below).

For module 1, the mutational signatures associated with DNA repair are the dominating

signatures in this module (matched with Signatures 3, 6, and 26 from COSMIC Signatures

of Mutational Processes in Human Cancer, http://cancer.sanger.ac.uk/cosmic/signatures).

In addition, both genes in the module (TP53 and DCC) are known to be associated with

cancer. TP53 is involved in DNA repair, growth arrest, and apoptosis. In particular, muta-

tions in TP53 can lead to uncontrolled proliferation and invasive growth. On the other

hand, DCC is suggested to have an anti-metastatic role [38], meaning that it may only con-

tribute to cancer in the context of a preexisting condition. We conjecture that the mutations

in DCC may be contributing to cancer progression for patients with defective mismatch

repair and/or impaired TP53 functionality.

In contrast, module 3 is most strongly enriched with Signature 3, which is known to be

associated with BRCA1 and BRCA2 germline and somatic mutations. The presence of BRCA2

in this module is consistent with the finding. Interestingly, the module includes PREX2, which

has been recently identified as a negative regulator of PTEN in breast cancer [39]. In addition,

the gene has been shown to be not only significantly mutated in human melanomas, but also

Fig 4. The Results in BeME-WithCo Setting for TCGA BRCA Dataset. (A) Modules uncovered by BeME-WithCo on breast cancer data. Edge color-

coding and node size coding are the same as in Fig 2A. (B) Decomposition of the observed mutational spectra of modules 1, 3, and 6 into predefined

COSMIC signatures of mutational processes identified in breast cancer. Signature 2 is APOBEC related, Signature 3 is associated with failure of DNA

double-strand break-repair and also with BRCA1 and BRCA2 mutations. Signatures 6 and 26 are associated with defective mismatch repair. The aetiology

of signatures 5 and 30 is unknown.

https://doi.org/10.1371/journal.pcbi.1005695.g004
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relevant for melanoma tumorigenesis by a combination of mutations and overexpression [40].

However, the precise mechanism(s) of action remains unknown. The inclusion of PREX2 in

the cluster with the BRCA1/2 mutation pattern might shed some light on possible synergistic

interactions of this recently proposed driver.

Different from the above two modules, module 6 contains three long genes including

MUC16 and TTN. An interesting aspect of this cluster is the presence of an APOBEC related

signature (Signature 2), but no mismatch repair associated signatures. For more discussion of

this and the remaining modules, see Section F in S1 Text.

BeCo-WithMEFun: Mutually exclusive modules that are co-occurring

with each other

Our third setting is specifically designed to identify co-occurring driver pathways by seeking

modules displaying functional and mutual exclusivity relations inside a module and co-occur-

rence between modules. This setting is motivated by the fact that a single mutation may be

enough to cause pathway dysregulation (thus mutual exclusivity within a module), and multi-

ple dysregulated pathways are required for cancer progression. It is most similar to the tradi-

tional way of looking at mutually exclusive modules (Fig 1C). For example, Leiserson et al.

presented an interesting example of such co-occurring pair of modules (CDK4/RB1 and TP53/

MDM2) in GBM data analysis [5]. For validation, we applied BeWith to their GBM data (and

the same criterion for co-occurrence/mutual exclusivity) in this setting and found that the set-

ting successfully recovered the two modules.

Applying BeCo-WithMEFun to TCGA BRCA dataset, we identified a pair of modules:

Module 1 with TP53 and BRCA2, and Module 2 with DCC (Figure E in S1 Text).

Both BRCA1 and BRCA2 are known to interact with TP53 and contribute to DNA repair

and transcriptional regulation in response to DNA damage [41,42]. The activation of TP53

can also occur in response to DNA damage amongst other stresses. As discussed in the previ-

ous section, DCC is believed to have an anti-metastatic role, so its reduced functionality might

have a synergistic effect with other cancer driving events. This observation is consistent with

the finding in the BeME-WithCo setting, and points to a possible synergy between DCC and

the broader DNA repair pathway. However, BeCo-WithMEFun did not find larger co-occur-

ring modules in either of the two cancers types.

Discussion

We introduced the BeWith framework to identify multiple mutated modules displaying spe-

cific mutation patterns between and within modules. In this work, we considered three set-

tings: BeME-WithFun (ensuring mutual exclusivity of mutations between different modules

and functional similarity of genes within modules), BeME-WithCo (ensuring mutual exclusiv-

ity between modules and co-occurrence of mutations in genes within modules), and BeCo-

WithMEFun (ensuring co-occurrence between modules while enforcing mutual exclusivity

and functional interactions within modules). By utilizing these different settings of within and

between properties, BeWith revealed complex relations between mutual exclusivity, functional

interactions, and co-occurrence. In particular, BeME-WithFun identified functionally coher-

ent modules containing cancer associated genes, including previously unappreciated modules

such as the NCOA3/NCOR2 module. Different from most of previous methods focusing on

mutual exclusivity within modules, our first two settings enforce mutual exclusivity between

modules. Interestingly, our modules still include many known cancer drivers (more than or

comparable to previous methods), while they also exhibit significant mutual exclusivity
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relationships between modules. The BeME-WithCo setting also allowed us to investigate

mutated modules in a novel way by looking for co-occurring mutations inside a module. This

setting was particularly insightful in helping us uncover pairs of genes with likely synergetic

effects in breast cancer. Going beyond cancer driving mutations, the setting provided addi-

tional insights into underlying mutagenic processes in cancer. Specifically, it revealed that dif-

ferent gene groups might differ with respect to their vulnerability to different mutagenic

processes. The differences can contribute to strong mutual exclusivity signals between mod-

ules. Finally, while with BeCo-WithMEFun, we were able to elevate some of the observations

obtained by BeME-WithCo to the pathway level, the setting did not uncover any larger co-

occurring functional modules where the members of individual modules are mutually exclu-

sive. The observation suggests that after conservative correction in the co-mutation test with

mutation frequencies, co-occurrence of mutations in two different functional modules appears

to be a rather rare event.

Overall, we demonstrated that BeWith can be used to uncover relationships between genes,

gene groups, and pathways that were not accessible by previous methods. Importantly, the

BeWith formulation is very general and can be used to interrogate other aspects of the muta-

tional landscape by exploring different combinations of within-between definitions and con-

straints with simple modifications.

Methods

We start by defining the Between-Within module finding (BeWith) problem, and then for-

mulating it as an integer linear program. The optimization problem provides a general

framework for identifying a set of clusters. By adjusting reward and penalty functions and

some of the constraints, we can apply the framework to detect modules occurring in the dif-

ferent settings. In detail, we are given two weight functions between(i, j) and within(i, j) for

pairs of genes between and within modules, respectively. We aim to identify a set of mod-

ules that maximizes between weights for gene pairs from different modules, while maximiz-

ing within weights inside a module simultaneously. The optimization problem is NP-hard

(as it generalizes Max Cut), but can be solved optimally for current datasets, as we demon-

strate below.

General ILP formulation for the between-within module finding problem

Let K be the target number of modules, let M be the maximum number of genes per module,

and let V be the set of genes we consider. We aim to group genes into one of Kmodules, where

the (K + 1)-th cluster includes all unselected genes. Denote K0 = K + 1. We use the binary vari-

able yik to indicate whether gene i is in module k (yik = 1) or yik = 0 otherwise. We define ij to

be a between module pair if gene i and j are in two different modules k1 and k2, respectively

(1� k1 6¼ k2� K) and to be a within module pair if both genes belong to the same module k
(1� k� K); ij is an unselected pair otherwise. Additionally, the following integer binary vari-

ables are used to capture different types of pairs:

• xijk = 1 if pairs ij is a within module pair and gene i and j are in the same module k, 0
otherwise.

• zij = 1 if pair ij is a between module pair, 0 otherwise.

• uij = 1 if pair ij is unselected, 0 otherwise.
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The objective of ILP is defined as:

Max
X

ij

betweenði; jÞ zij þ
X

ij

XK

k¼1

withinði; jÞ xijk ð1Þ

The constraints (2)–(3) ensure that each gene i belongs to exactly one of the modules and

that the module size is bounded byM.

PKþ1

k¼1
yik ¼ 1 8i 2 V ð2Þ

P
i2Vyik � M 8k 2 ½1;K� ð3Þ

The set of constraints (4)–(6) ensure that xijk = 1 if both i,j are selected to module k, 1� k�
K.

xijk � yik 8ij; 8k 2 ½1;K� ð4Þ

xijk � yjk 8ij; 8k 2 ½1;K� ð5Þ

xijk � yik þ yjk � 1 8ij; 8k 2 ½1;K� ð6Þ

Similarly, the constraints (7)–(10) ensure the proper assignment of uij and zij.

uij � yiK0 8ij ð7Þ

uij � yjK0 8ij ð8Þ

uij � yiK0 þ yjK0 8ij ð9Þ

zij ¼ 1 � uij �
PK

k¼1
xijk 8ij ð10Þ

In some settings, we also added additional constraints for ensuring that the density of the

modules is at least D:
P

j2fj0j9ij02EXg
yjk � DðM � 1Þðyik � 1Þ þ Dð

P
j2Vyjk � 1Þ 8i 2 V; 8k 2 ½1;K� ð11Þ

where EX is a subset of gene pairs depending on the setting. The constraints ensure that each

gene i in module k is connected with at least D fraction of genes in module k via edges in EX.

Note that if D� 0.5, the module is a connected subgraph since for any two non-adjacent verti-

ces, they must have a common neighbor. We additionally required in some settings that for

each gene i in a module, it has at least one edge in a certain type of subset of edges EY (e.g.,

mutual exclusivity or co-occurrence) with genes in other modules:
P

j2fj0jij02EYg
zij � yik 8i 2 V; 8k 2 ½1;K� ð12Þ

Finally, although all the variables yik,xijk,uij,zij are required to be binary, it is sufficient to

require the variables yik to be binary and leave the other variables xijk,uij,zij continuous in [0,1],

which makes sure that all the variables in the optimal solution are binary but reduces the run-

ning time (See the proof in Section B in S1 Text). To improve the efficiency of the method, we

implemented a symmetry breaking technique. Symmetry in ILPs not only allows for equivalent

solutions but can also create multiple equivalent subproblems in branch-and-bound trees.

These equivalent solutions and equivalent subproblems can lead to a significant increase in the
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running time and memory usage of branch-and-bound algorithms. We reduced the symmetry

in solving our ILPs by adding constraints to restrict to a feasible solution set. For the details of

our solution and its impact on the running time we refer to Section C in S1 Text.

Application of BeWith to TCGA datasets

We applied BeWith in three complementary settings for two TCGA datasets: somatic muta-

tion profiles in breast cancer (BRCA) and endometrial cancer (UCEC). With somatic muta-

tion profiles of 665 BRCA samples and 207 UCEC samples (after removing ultra mutated

samples), we first computed their mutual exclusivity and co-occurring relationships for each

gene pair and constructed networks retaining only significant relationships. To this end,

we used WeSME and WeSCO, which are efficient, weighted sampling based methods for

testing mutually exclusivity and co-occurrence respectively, taking into account mutation

frequencies of cancer samples [16]. Specifically, we constructed a mutual exclusivity network

GME = (V,EME), in which EME is a set of gene pairs that have significantly mutually exclusive

mutations based on WeSME. A co-occurrence network GCO = (V,ECO) was computed with

hypergeometric tests or WeSCO tests, depending on the setting. In addition, we utilized

functional interaction information in some settings, obtained from the STRING database

[43].

The weights wF(ij), wME(ij) and wCO(ij) for each pair are defined based on the protein func-

tional interaction confidence scores and p-values from the mutual exclusivity and co-occur-

rence tests, respectively. The weights are set to be 0 if the edge does not exist. In the three

BeWith settings we used different definitions of between and within functions, and slightly dif-

ferent variants of the constraints as described below.

Settings for BeWith

Setting 1: BeME-WithFun. This setting searches for functionally related groups of genes

with potential relevance for cancer. In order to ensure that genes within each module are likely

to be in the same pathway, we enforce functional edges within modules while penalizing func-

tional interactions of genes from different modules. We also reward mutual exclusivity

between modules, so our optimization function is:

Max
X

ij

XK

k¼1

wFðijÞ xijk þ
X

ij

ðwMEðijÞ � wFðijÞÞ zij

To strengthen the functional relationships among genes of the same module, we utilize the

constraints (11) to ensure that each module is dense in the functional interaction network. In

addition, we required that for each gene i in a module, it has at least some mutual exclusivity

edge(s) with genes in other modules as in constraints (12) by setting EY = EME.
P

j2fj0jij02EMEg
zij � yik 8i 2 V; 8k 2 ½1;K�

Setting 2: BeME-WithCo

In order to identify co-occurring modules, we perform BeWith enforcing the co-occurrence

within a module but penalizing within module mutual exclusivity (within(i,j) = wCO(ij) −
wME(ij)). To capture co-occurrence modules that are biologically relevant, we reward mutual

exclusivity relations between modules (between(i,j) = wME(ij) − wCO(ij)). The objective
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function is then defined as follows:

Max
X

ij

ðwMEðijÞ � wCOðijÞÞzij þ
X

ij

XK

k¼1

ðwCOðijÞ � wMEðijÞÞ xijk

To strengthen the co-occurrence within each module, we enforce that each module has

dense co-occurring interactions by the constraints (11). Similarly to BeME-WithFun, we uti-

lize the constraints (12) to enforce a stronger mutual exclusivity requirement (EY = EME)

among the modules.

Setting 3: BeCo-WithMEFun. Complementing the above analyses we utilized BeWith to

look for modules that contain mutually exclusive and functionally related gene modules that

might co-occur with other modules. Specifically, we enforce mutual exclusivity while penaliz-

ing co-occurring mutations within modules (within(i,j) = wME(ij) − wCO(ij) + wF(ij)). Genes in

different modules are rewarded for co-occurrence (between(i,j) = wCO(ij) – wME(ij) – wF(ij)).
The objective function is then defined as:

Max
X

ij

ðwCOðijÞ � wMEðijÞ � wFðijÞÞzij þ
X

ij

XK

k¼1

ðwMEðijÞ � wCOðijÞ þ wFðijÞÞ xijk

In order to ensure that genes within modules are likely to be in the same pathways, we

ensure that each module is a dense subnetwork in the STRING functional interaction network

using the constraints (11).

To strengthen the co-occurrence between modules and mutually exclusivity within each

module, we additionally required that for each gene i in a module, it has at least some co-

occurrence edge(s) with genes in other modules (EY = ECO):

P
j2fj0jij02ECOg

zij � yik 8i 2 V; 8k 2 ½1;K�
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