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ABSTRACT
In gene expression data, a bicluster is a subset of the

genes exhibiting consistent patterns over a subset of the
conditions. We propose a new method to detect significant
biclusters in large expression datasets. Our approach
is graph theoretic coupled with statistical modeling of
the data. Under plausible assumptions, our algorithm is
polynomial and is guaranteed to find the most significant
biclusters. We tested our method on a collection of yeast
expression profiles and on a human cancer dataset.
Cross validation results show high specificity in assigning
function to genes based on their biclusters, and we are
able to annotate in this way 196 uncharacterized yeast
genes. We also demonstrate how the biclusters lead to
detecting new concrete biological associations. In cancer
data we are able to detect and relate finer tissue types
than was previously possible. We also show that the
method outperforms the biclustering algorithm of Cheng
and Church (2000).
Contact:
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INTRODUCTION
DNA microarraytechnology hasrecentlyattaineda cen-
tral role in biological andbiomedical research.It enables
monitoringthe transcriptionlevels of many thousands of
genes,while thecell undergoesspecificconditionsor pro-
cesses.The applicationsof suchtechnology rangefrom
genes functional annotationandgenetic networks recon-
structionto diagnosisof diseaseconditionsandcharacter-
izing effectsof medicaltreatment.

A key stepin theanalysisof geneexpression datais the
identificationof groups of genes that exhibit similar ex-
pressionpatterns.Clusteringgeneexpressiondatainto ho-
mogeneousgroupswasshown to beinstrumentalin func-
tionalannotation, tissueclassification,motif identification
andmore(for areview seeSharanetal. (2002)). However,
clusteringhasits limitations.First, theclusteringprocess
builds on the assumption that relatedgenesbehave sim-
ilarly acrossall measuredconditions. This assumption is
reasonablewhenthedataset containsfew conditionsfrom
�
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a single,focused experiment,but doesnot hold for larger
datasetscontaining hundredsof heterogeneous conditions
from many experiments. Second, a clusteringsolution is
often a partition of the genes into disjoint sets,implying
anassociationof eachgenewith a singlebiological func-
tion or process,whichmaybeanoversimplificationof the
biological system.

To overcome the shortcomings of clustering,we may
seekinsteadasubsetof genesthatexhibit similarbehavior
acrossa subsetof conditions. In termsof the expression
datamatrix, we seeka “homogeneous” submatrixwhose
rows andcolumns correspond to the two subsets.These
objectsarecalledbiclusters andthe processof detecting
themis termedbiclustering.

Biclusteringwasintroduced in the seventies (Hartigan,
1975). ChengandChurch(2000) were the first to apply
it to geneexpression data.They defineda bicluster as
a uniform submatrix (one having a low meansquared
residue score), and used a greedy approach to find
biclusters.Getz et al. (2000) devised a coupled two-
way iterative clusteringalgorithm to identify biclusters.
Lazzeroni and Owen (2000) introduced the notion of
a plaid model, which describes the input matrix as a
linearfunctionof variablescorrespondingto its biclusters.
They showed how to estimatea model usingan iterative
maximizationprocess.Ben-Dor et al. (2002) defineda
biclusterasanorderpreserving submatrix, orequivalently,
a group of genes whoseexpression levels inducesome
linear order acrossa subsetof the conditions. A greedy
heuristic searchprocedure is employed to detect such
biclusters.The work of Segal et al. (2001) described
rich probabilistic modelsfor studyingrelationsbetween
expression,regulatory motifs and geneannotations. Its
outcome can be interpretedas a collection of disjoint
biclustersgeneratedin asupervisedmanner.

In this paper we develop a novel approach to bicluster-
ing,whichcombinesgraphtheoreticandstatisticalconsid-
erations.The intuitive notionof a biclusteris a subsetof
genesthatexhibit similarexpression patternsover asubset
of conditions.Following this intuition we definea biclus-
terasasubsetof genesthatjointly respond acrossasubset
of conditions,wherea geneis termedrespondingin some
condition if its expressionlevel changessignificantly at
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thatconditionw.r.t. its normal level.
We model the input expression data as a bipartite

graph whose two parts correspond to conditions and
genes, respectively, with edges for significantexpression
changes.Wepresent two statisticalmodels of theresulting
graph. We show how to assignweights to the vertex
pairs of the bipartite graph accordingto eachmodel, so
thatheavy subgraphscorrespondto significantbiclusters.
Using the first, simpler statisticalmodel,we show how
to computea tight upper-bound on the probability of an
observed bicluster. For a moredetailedmodel that takes
into account genesand conditions variability, we show
how to assignweightssothatamaximumweightsubgraph
correspondsto a maximumlikelihoodbicluster. We also
show how to approximate the � -value of observing a
subgraphwith weightexceedinga given threshold.

Discovering the most significantbiclustersin the data
reduces under theseweighting schemes to finding the
heaviest subgraphs in the model bipartite graph. As
explainedbelow, unrestrictedversions of this problemare
computationally hard,so we assumea degree restriction
on thegraphsandlimit thediscussionto graphsin which
the gene vertices have degrees not exceeding a fixed
constant � . This assumption has several justifications:
First, high-degree genesare more likely to participate
in heavy subgraphs and, thus, contribute little to the
significanceof a biclustercontaining them.Second, high
degreegenesare involved in many processesanddo not
manifest a focusedspecific effect. In the datasetswe
studied,filtering high-degreegenes resultedin a modest
reduction(20%on average)in thenumberof genes.Still ,
ourpracticalimplementationconsiders high-degreegenes
aswell, in aheuristicmanner.

Requiringa biclusterto be a completesubgraph gives
rise to the problem of finding a maximum edge biclique.
This problem is NP-complete for weighted bipartite
graphs (cf. Hochbaum(1998)). We present a polynomial
algorithm for the weighted problem under the degree
restriction.

To accommodatenoisy data,we searchfor subgraphs
that are not necessarilycomplete. Let the weight of a
subgraph be the sum of the weights of gene-condition
pairs in it. We assumethat edgesare assigned positive
weightsandnon-edgesareassignednegative weights.We
show that the problem of finding a maximum weight
subgraph is NP-completein this case.In contrast,we give
a polynomial time algorithm for the problemon graphs
under thedegreerestriction.

Onecanarguethat in somesituationswe loseinforma-
tion by just looking for biclustersthat manifestchanges,
withoutconsideringif thechangewasanincreaseor ade-
creasein expression(henceforth, the unsigned problem).
We thereforestudy the problem of finding consistent
biclusters,in which every two conditions must always

havethesameeffector alwayshavetheoppositeeffecton
eachof thegenes.We show how to solve this problemby
a polynomial reduction to the unsigned problem.Hence,
our polynomial algorithmsapply to consistentbiclusters
as well, enabling the detectionof connections between
genes with eithersimilar or complementary patterns.

We implementeda practicalheuristic,called SAMBA
(Statistical-AlgorithmicMethod for Bicluster Analysis),
which follows the approach of the theoreticalalgorithm,
andis ableto analyzelarge datasetswithin minutes.We
appliedour algorithmto a broadclassof geneexpression
datasets,includingyeastandhumanclinical data.In tests
on humanlymphoma data,whenmeasuring the solution
� -value w.r.t. a known tissueclassification,our solutions
are superior to thoseof Cheng& Church (2000). Our
biclustersalso enable differentiating fine tissue types,
e.g., germinal center, from DLBCL tissues,although
thesetissuetypeswere grouped togetherusing standard
clustering techniques. We also show the utility of our
method to functional annotation, based on a compiled
datasetof some 515 yeast expression profiles. Using
GO annotations of the yeast genes, we can annotate
unknown genes that belong to a bicluster containing
many geneswith the sameknown annotation. Our cross
validation test proves the soundnessof this approach,
yielding 81.5% annotation specificity, and we are able
to annotate 196 unknown yeast genes in this manner.
For example, we discovereda link between a group of
unknown subtelomericY’ genesandDNA repairgenes,
whichwasrecentlydiscoveredexperimentally.

Thepaper is organized asfollows: We startby present-
ing our statisticalmodels for geneexpressionsdata.We
thenpresent a combinatorial algorithmfor finding maxi-
mumweightsubgraphsof abipartitegraph,andgeneralize
it to handleconsistent biclusters.Finally, we describeour
practicalimplementationandourresultsonseveral biolog-
ical datasets.For lackof spacesomedetailsareomitted.

STATISTICAL DATA MODELING
Givenaninputgeneexpressiondatasetweform abipartite
graph �
	���
���������� (see(Golumbic,1980) for basic
graph-theoreticdefinitionsandFigure1 for anexample).
In this graph, 
 is the setof conditions, � is the setof
genes, and ������������� if f � responds in condition � , that
is, if the expressionlevel of � changessignificantlyin �
(seetheSAMBA Algorithm Sectionfor details).Laterwe
shallrefineourgraphto includethedirectionof expression
change (up or down regulation). A biclustercorresponds
to a subgraph �
	 �!
#"����$"%�&�'"�� of � , andrepresents a
subset �$" of genesthatareco-regulatedunder a subsetof
conditions 
�" (seeFigure1).Theweightof asubgraph (or
bicluster)is thesumof theweightsof gene-conditionpairs
in it, includingedgesandnon-edges.
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Fig. 1. Geneexpressiondata is modeledusing a bipartite graph
whosetwo sidescorrespond to the setof conditions ( andthe set
of genes ) . An edge *,+.-%/10 indicatesthe responseof gene / in
condition + . A statisticalmodel assignsweightsto the edgesand
non-edgesof thegraph.A) Part of thegraphshowing thecondition
“tup1 deletion” and its effect on the genes“gal7” (response)and
“ecm11” (no response).B) A heavy subgraph(shaded)representing
a significantbicluster.

In the following we develop statisticalmodels for our
bipartite graphrepresentation of expressiondata.Using
thesemodelswe derive scoringschemesfor assessingthe
significanceof anobservedsubgraph (correspondingto a
bicluster).We shall develop additive scoresthat can be
decomposedacrosstheedgesandnonedgesof thegraph.
In otherwords,we shall assignweightsto the edgesand
non-edgesof thegraph, suchthattheweightof asubgraph
will correspond to its statistical significance. This will
allow us to reduce the biclusteringproblem to that of
findingheavy subgraphsin abipartitegraph.

A SimpleModel
Let � 	 ��
 " ��� " ��� " � be a subgraph of � . Denote2 
'" 2 	435"6� 2 �$" 2 	879" . Let �5	 : ;9:: <=:>: ?�: , andlet @1"�	 2 �'" 2 .
Our first modelassumes that edgesoccur independently
andequiprobablywith density � . Denote by ACB���@.���D��7E�
the binomial tail, i.e., the probability of observing @ or
more successesin 7 trials, where eachsuccess occurs
independentlywith probability � . Thentheprobability of
observing a graphat leastasdenseas � accordingto this
modelis �D���F�G	HA'BI��@1"6���D��79"J35"%� .

Our goal is to find a subgraph � with lowest �D���F� .
By bounding the terms of the binomial tail using the
first one, assumingthat � K L1MON , we obtain the
following upperbound for �D���F� : �QPR���F�E	HNTSTUJVQUJ�XWRU��!LZY
�D� STU[V\U^]_W`U . Seekinga subgraph � minimizing a b1cd� P ���F�
is equivalent to finding a maximumweight subgraph of
� whereeachedgehaspositiveweight ��YeL'Yfa bOcd�D� and
eachnon-edgehasnegativeweight ��YeLgYha bOc=��L'Yi�j�!� .

Note that �D���F� provides a reasonable approximation
only if 7k"[35"dl�7�3 , asthe calculationof �D���F� ignores
thetotalnumber of edgesin � . As weconstrainthedegree
to � , this conditionholds.

A Refined Model
We next develop a refined null model that takes into
account the variability of the degrees in � , i.e., it
incorporatesthe characteristicbehavior of eachspecific
condition andgene.

Let � 	 ��
C"%�&��"6���'"�� be a subgraph of � and
denote � " 	 ��
C"nmo�$"6�qpr�'" . For a vertex s �

C"=tu�#" let �wv denoteits degree in � . Our null model
assumes that the occurrence of eachedge ��������� is an
independentBernoulli variable with parameter �=x1y z . The
probability �.x1y z is the fraction of bipartite graphs with
degree sequence identical to � that contain the edge
�����{�|� . In practice we estimate �.x1y z using a Monte-
Carlo process.The probability of observing � is thus
�D�!�F� 	 � } x1y z�~�� ; U �Xx1y z��F�I� } x1y z{~�� ; U �!L�Y��Xx1y zT�!� .However, wecannotsimplycomparesubgraphsaccording
to thisprobability, sinceit improves(decreases)asthesize
of � increases.

To overcomethis problem, we choseto usea likelihood
ratio to capturethe significance of biclusters.Our null
model is as stated above. For the alternative model
we assumethat each edge of a bicluster occurs with
constant probability �D� � �n��� } x1y z�~�� <=��? �Xx_y z . The
estimationof �.� is described in the SAMBA Algorithm
Section.This model reflects our belief that biclusters
represent approximately uniform relationsbetweentheir
elements.Thelog likelihoodratio for � is therefore:

a b1c$�E�����G	 } x1y z�~�� ; U
a b1c �X���x1y z

�
} x1y z{~�� ; U

a bOc LZYi�X�L'Yi�Xx1y z

Settingtheweightof eachedge��������� to a b1c�����`��� � �H� and

theweightof eachnon-edge �6�Q���|� to a b1c�� ] � �� ] � ��� � K�� , we
concludethatthescoreof � is simply its weight.

Wenotethatthestatisticalmodelis moreinvolvedwhen
taking into account the direction of expression change
for eachedge. Nevertheless, a likelihood scorecan be
computedin essentially thesameway asfor theunsigned
case.

COMBINATORIAL BICLUSTERING
In theprevioussectionwe have givenanadditive scoring
schemeassigningweights to edgesand non-edgesof a
model bipartite graph. Discovering the most significant
biclustersin the datareduces underthis scoringscheme
to finding the heaviest subgraphsin the bipartite graph.
Wenow giveapolynomial algorithmto solvethisproblem
whenthedegreeof every genevertex is bounded.
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Maximum Bounded Biclique
Westartbydescribingan ��� 2 � 2 Nw�w� -timealgorithmto find
a maximum weight biclique in a bipartite graphwhose
geneverticeshave � -bounded degree. This algorithmwill
bea key componentin our moreinvolved algorithmsthat
follow.

Let ��	��!
E�&�k�&� � bea bipartitegraph.We saythat �
has � -bounded geneside, if every �¡�o� hasdegreeat
most � . Let so¢D
�mi�¤£¦¥ bea weightfunction. For a
pairof subsets
 "|§ 
���� "�§ � wedenoteby sI�!
 " ��� " �
the weight of the subgraph inducedon 
 " t¡� " , i.e.,
s¨��
 " ��� " �©	 xª� < U y z&� ? U sI�!�6���{�|�!� . The neighborhood
of avertex � , denoted «��6��� , is thesetof verticesadjacent
to � in � . We denote7¬	 2 � 2 throughout.

PROBLEM 1 (MA XIM UM BOUNDED BICLIQUE).
Givena weightedbipartite graph � with � -bounded gene
side, finda maximumweightcompletesubgraphof � .

THEOREM 1. Themaximumboundedbicliqueproblem
canbesolvedin ���67EN � � timeandspace.

Proof: Observe that a maximum bounded biclique
�­P'	��!
IP`���nP!�&�IP`� in � musthave

2 
qP 2X® � . Figure2
describes a hash-table basedalgorithm that for each
vertex �¯�°� scansall ����Nw�w� subsetsof its neighbors,
therebyidentifying theheaviestbiclique.Eachhashentry
correspondsto asubset of conditionsandrecords thetotal
weightof edgesfrom adjacent genevertices.Theiteration
over subsetsof «F���|� is done by repeatedly changing
the current subset ± by adding or removing a single
element,updating sI�!±²�&³���´O� in constanttime.Hence,the
algorithmspends ����7GN � � timeonthehashingandfinding

�µ�¶¸·¸¹ . Computing �jµ�¶º·¸¹ can be donein ���67E��� time, so
thetotal running time is � ��7GN � � . Thespacecomplexity is
���67EN � � dueto thehash-table.

MaxBoundBiClique(
 , � , � , � ):
Initialize ahashtablesI»!¼¸½D¾1¿ ; s¨»!¼º½|¾1¿�µ�¶¸·¸¹\ÀÁ�
For all �Â�¬� do

For all ± § «F���|� do
s¨»�¼¸½|¾1¿1Ã ±�Ä\Àis¨»�¼¸½|¾1¿1Ã ±�Ä �

�n����³1�1��sI�!±=��³���´1��´
If (s¨»�¼¸½|¾O¿_Ã ±�Ä\�ÅsI»!¼¸½D¾1¿�µ�¶¸·¸¹ )

Qµ�¶º·¸¹�ÀÁ±
s¨»�¼¸½|¾1¿{µ�¶¸·¸¹\À s¨»!¼º½|¾1¿1Ã ±�Ä

Compute�.µ�¶¸·º¹�	HÆ�xª� <�ÇÉÈ%Ê^Ë «��6�Q�Output( 
Qµ�¶¸·¸¹ , ��µ�¶¸·º¹ )

Fig. 2. An algorithmfor themaximumboundedbicliqueproblem.

Note that the algorithm can be adaptedto give the @
condition subsetsthat inducesolutionsof highestweight
in ���67ENT�9a bOc#@.� time usinga priority queue (heap)data
structure.

Finding Heavy Subgraphs
We now look for heavy subgraphs which arenot neces-
sarily complete.We startby giving weight L for an edge
andweight Y#L for anon-edge.Formally, given a bipartite
graph �Ì	Ì��
�������� � definea weight function s ¢Q
om
��£Í³OYeL1��L1´ suchthat sI�!�6�Q���|�!��	ÎL for ��������� �4� ,
ands¨�������������d	HYeL for �6�Q���|�E�¬��
4mÏ�I�.p\� . Consider
thefollowing problem:

PROBLEM 2. (MaximumBoundedBipartite Subgraph)
Givena bipartite graph � with � -boundedgeneside, find
a maximumweightsubgraphof � .

LEMMA 2. Let � P 	 ��
 P ��� P ��� P � be a maximum
weight subgraph of � . Then every vertex in � P is
connectedto at least half the verticeson the other side
of �­P .
Proof: Follows from the choiceof weights,sinceif a
vertex �Ð�Ñ� P haslessthan Ò 2 
 P 2 M1N�Ó neighbors, then
removing � from � P will resultin aheavier subgraph.The
proof for �i�¬
 P is symmetric.

COROLLARY 3. A maximumweightsubgraphof � has
at most N1� verticesfrom 
 .

LEMMA 4. Let � P 	 ��
 P ��� P ��� P � be a maximum
weightsubgraphof � . For each setÔ § 
 P thereexistsa
subset Õ § Ô with

2 Õ 2ªÖ Ò 2 Ô 2 M1N�Ó such that Õ § «F���|�
for some�×�­�©P .
Proof: Assumethere exists Ô § 
 P such that all
subsets ÔØÆH«��6�������Ù�
� P are of size smaller than
Ò 2 Ô 2 M1N�Ó . Then the weight of the subgraph induced on
�!
 P p\Ôi��� P � exceeds thatof � P , acontradiction.

COROLLARY 5. Let � P 	Ú��
 P �&� P ��� P � be a maxi-
mumweightsubgraph of � . Then 
 P can be covered by
at most Û�a b1c���N1���6Ü sets,each of which is contained in the
neighborhood of somevertex in � P .
Proof: Denote

2 
 P 2 	�¿ . By Lemma4 thereexists a
subset Õ § 
 P with

2 Õ 2XÖ Ò%¿�M1N�Ó , suchthat Õ § «F���|�
for some�¯�Ì� P . The sameholds for the set 
 P pIÕ ,
and we can continuein this manner until we cover 
 P .
By constructionwe have at most Û{a bOcÝ¿�Ü setsin thecover.
Since¿ ® N1� by Corollary3, theresultfollows.

Corollary 5 implies an algorithm to find a maximum
weightsubgraph. Thealgorithmtestsall collectionsof at
most Û{a b1c���N1�_��Ü subsetsof neighborhoodsof verticesin � .
Sincethereare ����7GN � � suchsubsetswehave:
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THEOREM 6. The maximum bounded bipartite sub-
graph problemcanbesolvedin �����67EN � �ßÞ à�á } â � ~ � time.

A non-redundantsubgraph is onewhoseweightcannot
be increased by removing any vertex from it. Theorem6
canbe generalizedto give the @ heaviest non-redundant
subgraphsin �����67ENw��� Þ à�á }>â � ~ a bOc#@.� time.

We now extend Theorem6 to graphswith more gen-
eral weights: Supposethat edges in � have positive
weights and non-edges have negative weights. Defineã 	Ú�n��� } x1y z{~{y } x U y z U ~�� <9�_?

2 v } x1y z�~v } x U y z U ~
2
. We call ã the max-

imum weight ratio in � . Similarly to Lemma4 we can
show:

LEMMA 7. Let �­P8	 ��
IP`�&�¨P`���IPR� be a maximum
weightsubgraph of � . For each set Ô § 
ÏP there exists
a subset Õ § Ô with

2 Õ 2GÖ Ò 2 Ô 2 M1� ã � LO�6Ó such that
Õ § «��6��� for some�×�¬�nP .

THEOREM 8. Let � be a bipartite graph with � -
bounded gene side. Suppose a weight function assigns
positive and negative weights to edges and non-edges,
respectively, suchthatthemaximumweightratio is ã . Then
the @ heaviestnon-redundant subgraphsin � canbefound
in �����67EN&��� Þ à�áTä>åçæXè[é6ê�å }ìë � ~ a b1c$@�� time.

Wenotethatthegeneral problem of findingamaximum
weight bipartite subgraph of � is NP-hard,as can be
shown by a simplereduction from CLIQUE.

THEOREM 9. For a bipartite weightedgraph � and a
number @ , the problem of determiningif � contains a
subgraphof weightat least @ is NP-complete, evenif each
edge of � has positive weight and each non-edge has
negativeweight.

INCORPORATING THE DIRECTION OF
EXPRESSION CHANGES
In our discussion so far, the underlyingbipartite graph
usedfor modeling the datacontained edgesfor signifi-
cantlychangedgenes,but ignoredthetypeof change(in-
creaseor decreasein the expression level). We caninte-
grateadditional informationinto ourmodelby associating
a sign of ”up” or ”down” with eachedge.We now have
threetypesof binaryrelationsin our bipartitegraphs: An
”up” edge,a ”down” edgeor no edge.It is reasonableto
look for a biclusterin which theconditions tendto affect
genes in a consistentway, i.e., two clusteredconditions
shouldeitherhavealwaysthesameeffectoralwaystheop-
positeeffectoneachof thegenes.This leadsto thedefini-
tion of a consistentbiclique: Givena bipartitegraph ��	
��
���������� with edgesignfunction íe¢=�Î£î³1YeLO�&LO´ , we
saythataninduced biclique �ï	¤��
 " ��� " �&� " � is consis-
tent if thereexistsanassignment ðF¢j
 " tñ� " £Á³OYeL1��LO´

suchthat for every �i��� "6���h�h
'" we have í��!�6�Q�������$	
ð9�����6ð9���|� . Themaximumconsistent bicliqueproblemcan
besolved in polynomial time by reduction to thestandard
maximumbicliqueproblem:

PROPOSITION 10. There is an ���67EN � � -timealgorithm
for themaximumconsistentboundedbicliqueproblemon
graphswith � -bounded geneside.

Proof: Given � and í , we construct the graph
�'" 	 �!
 t 
���� t �I�&�'"�� , where 
 and �
are copies of 
 and � , respectively, and �I" 	
³1�6�Q��������� �E� ��� 2 ��������� � ����í��!�6�Q���|�!� 	 LO´òt
³1�6�Q� �²���&� �G����� 2 ���������ó� � �&í��������������Ú	 Y#L1´ . Sup-
pose that ��
 " �&� " � induce a consistent biclique
in � of size @ with a sign assignment ð . Then
³��×�­
 " t�� " 2 ð9�6�|��	HL1´kt�³ � 2 �Â�¬
 " t�� " ��ð9�6�|��	HYeL1´
induce a bicliqueof size @ in �$" . Conversely, if ��
$"6�&��"6�
induce a biclique in �$" , thenno pair ��� � is containedin
it, so ³��×�¬
utn� 2 �×�¬
C"ªt©��" or �Â�­
�"Ot©��"%´ inducea
consistent bicliquein � of thesamesize,whereð9�6����	ôL
if �Ï�¬
'"ªtn��" andð=���|�E	HYeL if �Â�¬
C"ªtn�$" . Theclaim
thusfollows from Theorem1.

We now introducethe maximumconsistentsubgraph
problemandsolve it usingthealgorithmof Theorem6.

PROBLEM 3. (MaximumConsistentBounded Bipartite
Subgraph) Given a weighted signed bipartite graph
�Á	ï�!
E�&�k�&� ��í���sI� with � -bounded geneside, find an
induced subgraph �Ù	ò��
�"�����"6���'"�� andan assignment
ðÌ¢I
'"�tÅ��"õ£ ³1YeLO�&LO´ maximizingthe weight func-
tion: sI�!
'"����C"��Ð	 } x1y z�~�� < U �_? U ��YeLO�¸ö

} x1y z�~ sI�!�6�Q���|�!� ,
where ÷�����������	 � if �6�Q���|�Ñø� �g" and ÷²�6���{�|�o	
� ]_ù } x`~ ù } z�~6� }É} x_y z�~^~â otherwise.

The specialproperties of the scoringfunction together
with the assignment of positive weights to edgesand
negative weights to non-edges enable us to apply the
techniques for the unsigned case on � " . The crucial
observation is that an induced subgraph of maximum
weight in �'" cannot contain both copies of the same
vertex, sincetheneighborhoodsof two copiesaredisjoint,
so oneof themmusthave a negative contribution to the
total score. We conclude:

THEOREM 11. There is an �����67EN ��ú � �¸ûìü�ý ä>åçæXè[é6ê�å }[ë � ~ � -
time algorithm for the maximum consistent bounded
bipartite subgraph problem on graphs with maximum
weightratio ã .

Notethattheweightingschemedefinedabove is heuris-
tic in natureandis not a directoutcome of our statistical
model. An exactschemecanbeobtained usingamorede-
tailedstatisticalmodel.We omit thedetails.
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SIGNIFICANCE EVALUATION
In this section we develop a method for computing
the statistical significance of a bicluster. The method
computes a “ � -value” for a given bicluster A , i.e., the
probability of finding at random a biclusterwith at least
the weight of A . Let �Í	þ��
$"����C"6���'"ß� be a subgraph.
Supposeat first that 
 " is fixed,andwe wish to compute
the probability of observing � , given that its weight
is maximum amongall subgraphs over the sameset of
conditions 
 " . To this end,we note that � is obtained
by taking into � " all vertices ��� � whose weight
s¨��³���´O�&
Z"º� is positive. Let ÷ < U ¢G�Ñ£�¥ be a function
definedas ÷ < U �6���'	ÿ�n����³1�O�{sI�!³���´O��
Ý"¸��´ . For each�i�
� we canview ÷ < U ���|� asa random variable. Theweight
of � is just sI�!�F��	 z�� ? ÷ < U �6��� , asumof independent
random variables.Thesevariablescanbeshown to satisfy
the requirements of Liapunov’s generalization of the
CentralLimit Theorem(cf. (DeGroot,1989)), implying
that when

2 � 2 is sufficiently large, the weight of �
is approximately normally distributed. Hence, we can
compute theexpectationandvarianceof s¨���F� andderive
a � -value �D���F� for observing a subgraph with such
weight.

Finally, we have to accommodatefor the fact that the
subset
C" is optimizedby thealgorithm.For that,weapply
Bonferroni’s rule andcompute an upperboundon the � -
value:� P �!�F�E	u�D�!�F� � }ìë ú � ~ �

���� � V � , sincewe aretrying
all subsetsof 
 of sizeat most Ò�� ã � LO�!��Ó , whereã is the
maximumweight ratio in the graph. Henceforth we call
a b1c�� P �!�F� thesignificancevalueof � .

THE SAMBA ALGORITHM
We usedthe methodsdevelopedabove in implementing
a novel biclusteringalgorithmcalledSAMBA for finding
high quality and distinct biclusters.SAMBA works as
follows: We first form the bipartite graphand calculate
vertex pair weightsusingone of the weightingmethods
described above. We consider a geneto be up (down)
regulatedin acondition if its standardized level with mean
0 and variance 1 is above 1 (below -1). Depending on
thedata,we maychooseto work with signedor unsigned
graphs. Whenusingthe likelihoodweightingschemewe
optimizethevalueof �D� by measuring thesignificance of
theresultingbiclusters.

In the secondphase of the algorithm we apply the
hashingtechnique of thealgorithmin Figure2 to find the
heaviestbicliquesin thegraph. In fact,we look for the @
bestbicliquesintersectingevery given condition or gene.
This can be doneefficiently using a standardheapdata
structure.To saveontimeandspaceweignoregeneswith
degree exceeding somethreshold � , and hashfor each
geneonly subsetsof its neighbors of size rangingfrom
« � to « â .

The third phaseof the algorithmperformsa local im-
provementprocedureon the biclustersin eachheap. The
procedure iteratively appliesthe bestmodificationto the
bicluster(additionor deletionof a singlevertex) until no
scoreimprovementis possible.To avoid similarbiclusters
whosevertex setsdiffer only slightly, we greedily filter
from the outputbiclusterswhoseintersectionwith a pre-
vioussolution(numberof sharedconditionstimesnumber
of sharedgenes)is above � %.

The implementationwasbuilt on top of theGENESYS
platform(Tanay& Shamir,2001). Typical runsof theal-
gorithm for large datasets(15,000genes and500 condi-
tions) useparametervalues � 	��j�1��« � 	��j��« â 		 ��@Å	ÑN1� and �ÿ	�
O� . A completerun of SAMBA on
suchdatasettakesa few minuteson a standardPC with
limited memory(256MB).

EXPERIMENTAL RESULTS
We analyzed the performance of our algorithm on sev-
eral geneexpressiondatasetsand compared it to an ex-
tant biclusteringalgorithm.Our main tool in evaluating
biclusteringresultsusingprior biological knowledgeis a
correspondenceplot. The plot depictsthe distribution of
� -valuesof the producedbiclusters,usingfor evaluation
a known (putatively correct)classificationof conditions
(e.g.,to various cancer types)or a givengeneannotation.
We describethe plot when a classificationis given. For
eachvalueof � on a logarithmicscale,the plot presents
thefractionof biclusterswhose� -value is atmost� outof
the(say)100bestbiclusters.
� -values arecalculatedaccording to theknown classifi-

cationasfollows: Supposeprior knowledgepartitionsthe
3 conditions into @ classes,� � ��
�
�
T��� W . Let A be a bi-
clusterwith � conditions,out of which ��� belong to class
��� . The � -valueof A , assumingits mostabundant class
is � � , is calculatedas�D��A¨�\	 µ

W � µ�� :
� � :W VÝ] :

� � :µ ]_W M V µ .
Hence, the � -valuemeasurestheprobabilityof obtaining
at least � � elementsfrom theclassin a randomsetof size
� . Oneshould note,that high quality biclusterscanalso
identify phenomenathatarenotcoveredby thegivenclas-
sification.Nevertheless,we expecta largefractionof our
biclusterstoconformto theknownclassification.Notethat
ouralgorithmis unsupervisedanddoesnot usetheclassi-
ficationin any way.

PerformanceEvaluation
Wefirst comparedtheperformanceof thedifferentweight-
ing schemesfor graphedges andnon-edgespresentedin
previoussections. To this endwe usedthedatasetof (Al-
izadehet al., 2000). It contains the expression levels of
4,026 genesover 96humantissuesamples,whichareclas-
sifiedinto ninetypesof lymphomaandnormalones.Fig-
ure3(A) showsthecorrespondenceplotsfor thethreesug-

6



gestedweightingschemes.It is evident thatthelikelihood-
basedscoringmethodwith ����	ô��
�� outperformstheother
schemes.Consequently, all theexperimentswe reportbe-
low wereperformedusinglikelihood-basedweightswith
�X��	H��
�� .

Next wecomparedourperformanceto thatof (Cheng&
Church,2000)on thelymphomadataset.Correspondence
plots for the two biclusteringsareshown in Figure3(B).
The plots demonstratethat the biclustersgenerated by
our algorithmdescribemuchmoreaccurately the known
classification,andarethusmoreinformativefor extracting
additional novel biological insights.As a referencewe
added a correspondence plot calculatedon a random
annotation of the 96 samples(preserving classsizes).It
shows that random � -valuesare at very low levels and
thereforethesignalin thebiclustersis indeedverystrong.

As anadditional test,wegeneratedarandom expression
datasetwith the samecharacteristics as the lymphoma
data. This was done by generating a random bipartite
graph with the same degree sequence as the original
graph for this dataset.We then executed SAMBA on
this syntheticdataand recorded the resultingbiclusters.
Figure 3(C) presentsa scatterplot of the significance
valuesof biclustersvs. their log likelihood (weight) on
eachdataset.It can be seenthat significancevalueson
the randomdataarewell separated from thosecomputed
on the original dataand, furthermore, only two random
biclustershave significancevaluesbelow 0. The plot for
the real dataalsodemonstratesthe quadratic fit between
the significancevalue of a biclusterandits weight.Both
observations support our use of weights for detecting
biclusterswith low significancevalues.

Functional Annotation in Yeast
We have compiled a data set including 515 conditions
for the 6,200 yeastORFs.The datawas collectedfrom
five different experiments(Hugheset al., 2000; Gasch
et al., 2000,2001; Spellmanet al., 1998; Ideker et al.,
2001). Analysis by SAMBA generated2,406 biclusters
rangingover4,961 genesand515conditions.Many of the
biclusterscontain conditionsfrom several experiments.
Hence,the biclusteringprocesstruly integrates the data
from differentexperiments.

We utilized our biclusteringto perform a naive func-
tional annotationin conjunction with the SGD GO con-
sortium(2000) annotation,asfollows: We usedthefourth
level in theGO annotationasa classificationof thegenes.
We chosethosebiclustersin which more than 60% of
theirannotatedmembershadthesameclass.Outof those,
we only usedbiclustersthat were functionally enriched
(� -valuebelow L1� ]�� ). We thenassigned theunannotated
genes in thosebiclustersto this mostabundant class.Note
thateachgenemaybeannotatedmorethanonce, asis the
casefor thecuratedGO annotations.For crossvalidation,

we performed 100 runsand in eachonewe hid 30% of
theannotations,andtestedour successratein annotating
thosehidden genes.

The results of these runs are summarizedin Fig-
ure 4(A,B). Overall, 81.5% of our test set annotations
matchedthoseknown from SGD.Theresultsdemonstrate
thatbiclustersqualifying asannotatorsaccuratelyidentify
biological processesandmaybeusedto extrapolatefrom
known annotations to uncharacterizedgenes. We thus
set out to annotate unknown genes(basedon the entire
GO annotation). Using the sameprocedure,we obtained
196 annotations of unknown genesas summarized in
Figure4(C).

Detailed analysis of the results further demonstrates
the power of bicluster analysis. For example, one of
the biclustersin Figure5(A) contains DNA repairgenes
and a large family of Y’ DNA helicasegenes. The
Y’ genes are strong paralogs present at the end of
the yeast chromosome,and their function is not fully
understood.This bicluster raisesthe conjecturethat Y’
genes and DNA repair genes are associated. Indeed,a
recentstudy(Yamadaetal., 1998) suggestedaconnection
betweenDNA damageand repair mechanisms to this
family. Another bicluster shown in this figure contains
several phosphateandglucoserelatedgenes groupedwith
several unknown genes,whichmaybeassignedaputative
function according to their expression pattern in this
bicluster.

Human Cancer Data
Large datasetsof clinical samplesarean ideal target for
biclustering. Wecanusebiclustersto associategeneswith
specific clinical classesor for classifying samples.We
demonstratethe applicability of our methodsfor tissue
expressionanalysisin Figure5(B).Thelymphomadataset
is characterizedby well definedexpressionpatternsdiffer-
entiatingthreetypesof lymphoma,DLBCL, CLL andFL
from oneanother. However, usinghierarchical clustering
(see(Alizadeh et al., 2000)) germinalcentertissuesare
interleaved within theDLBCL class.In contrast,SAMBA
produced two biclusters associatingthe two germinal
centertissuesin the dataset with both the DLBCL and
FL classes,therebyuniquely characterizingthem.It is our
ability to associateseveral statisticallysignificantsignals
with each condition or gene that makes such delicate
analysispossible.

DISCUSSION
Wehavedevelopedanew statistical-algorithmicapproach
to finding significantbiclustersin geneexpression data,
anddemonstratedits utility ondiversedatasets.In addition
to facilitating novel geneannotation at high specificity
andmoreaccuratesubclassificationof cancertissues,the
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Fig. 3.Performanceof differentweightingschemesandalgorithms.A: Correspondenceplotsfor biclustersgeneratedwith differentweighting
schemes.B: Correspondenceplotsfor SAMBA, thealgorithmof ChengandChurch(2000),andrandom biclusters.Likelihoodweightsuse�����! �"$# . C: Scatterplotsof significancevalueson synthetic andrealdata.x-axis:significancevalue,y-axis:biclusterweight.
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CH Met
CC

AA Met
Pro Met

Mating 92 1 1 3

Lipid 77 1 4 15

Ene 35 6 11 46

Biotic 5 25 8 11 22 27

Abiot 14 4 41 4 10 12 13

Cyto 13 1 38 10 4 31

CH Met 30 20 49

CC 2 1 81 14 1

AA Met 1 81 15

Pro Met 2 2 6 86
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AA Met
Pro Met

Mating 94 2 18 2 4

Lipid 100 4 2 4

Ene 61 7 1 5

Biotic 4 100 4 1 1 1

Abiot 2 9 69 5 3 2 2

Cyto 2 2 70 14 1 4

CH Met 47 4 8

CC 11 4 87 9

AA Met 10 4 69 10

Pro Met 20 20 5 1 6 61

SGD GO
Known Annots

Unkown Annots

Mating 87 14 4

Lipid 93 9 6

Ene 71 6 7

Biotic 55 4 1

Abiot 91 10 1

Cyto 397 10 15

CH Met 93 10 8

CC 207 15 18

AA Met 85 36 70

Pro Met 670 31 70

A B C

Fig. 4. Yeastfunctional annotation.A: Annotation specificity. The table depictsthe annotation accuracy measuredusing 70:30 cross-
validation.Rowsrepresentclassesassignedusingourmethodandcolumnsrepresent SGDGOclasses.Cell *&%�-('_0 containsthepercentageof
genesannotated% thatbelongto GO class' . Higherpercentagesaredarker. B: Annotationsensitivity calculatedw.r.t. annotatedgenesonly.
Cell *&%�-)'_0 containsthepercentageof SAMBA annotatedgenesthatbelongto GO class' andwereannotated% . C: Annotationof unknown
genes.Thetableshows for eachfunctionalclassits sizein theSGDGO annotation,thenumber of genesthatbelongto this classandwere
annotatedby SAMBA, andthenumberof unknowngenesassignedto this classby SAMBA. Abbreviationsfor functionalclasses:Mating -
mating(sensuSaccharomyces,Fungi);Lipid - lipid metabolism;Ene- energy pathway;Biotic - responseto biotic stimulus;Abiot - response
to abiotic stimulus;Cyb - cytoplasmorganizationandbiogenesis; CH Met - carbohydratemetabolism;CC - mitotic cell cycle; AA Met -
aminoacidandderivative metabolism;ProMet - proteinmetabolismandmodification.

methodallowsperforming simultaneouslyclassdiscovery
andfeatureselection.

Statistically significant biclustersare generated in an
unsupervised fashion directly from the datasetby our
algorithm, and can be used in many contexts. Each
biclustercharacterizessometight biologicalphenomenon
andcanbeevaluatedusingexisting biological knowledge
or providenew hypotheses.

We arecurrentlyextending thetheoretical andpractical
studyto multiple responselevels.A refinedversion of the
softwarewill soonbeavailableonourwebsite.
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