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ABSTRACT

In gene expression data, a bicluster is a subset of the
genes exhibiting consistent patterns over a subset of the
conditions. We propose a new method to detect significant
biclusters in large expression datasets. Our approach
is graph theoretic coupled with statistical modeling of
the data. Under plausible assumptions, our algorithm is
polynomial and is guaranteed to find the most significant
biclusters. We tested our method on a collection of yeast
expression profiles and on a human cancer dataset.
Cross validation results show high specificity in assigning
function to genes based on their biclusters, and we are
able to annotate in this way 196 uncharacterized yeast
genes. We also demonstrate how the biclusters lead to
detecting new concrete biological associations. In cancer
data we are able to detect and relate finer tissue types
than was previously possible. We also show that the
method outperforms the biclustering algorithm of Cheng
and Church (2000).
Contact: {amos,roded,rshamir} @tau.ac.il.
Availability: www.cs.tau.ac.il/~rshamir/biclust.html.

INTRODUCTION

DNA microarraytechnol@y hasrecentlyattaineda cen-
tral role in biologicd andbiomedcal researchlt enalbes
monitoringthe transcriptionlevels of mary thousads of
gene, while thecell undegoesspecificcorditionsor pro-
cessesThe applicationsof suchtechndogy rangefrom
gene functiond annotationand gengic networks recon
structionto diagnais of diseaseonditionsandcharater
izing effectsof medicaltreatment.

A key stepin theanalysis of geneexpresson datais the
identificationof groups of genes that exhibit similar ex-
pressiorpatternsClusteringgeneexpressiordatainto ho-
mogereousgroupswasshawn to beinstrumentain func-
tionalannotationtissueclassificationmotif identification
andmore(for areview seeShararetal. (2002). However,
clusteringhasits limitations. First, the clusteringproces
builds on the assumfpion that relatedgeres behae sim-
ilarly acrossall measurectondtions. This assumgon is
reasoablewhenthe datasecontainsfew conditionsfrom

*Theseauthorscontributedequaly to this work.

asingle,focusel experiment,but doesnot hold for larger
datasetgontaning hurdredsof hetergeneos condtions
from mary experiments. Second a clusteringsolutionis
often a partition of the genes into disjoint sets,implying
anassociatiorof eachgenewith a singlebiologcal func-
tion or process,which maybeanoversimplificationof the
biologicd system.

To overcmme the shortcanings of clustering,we may
seekinsteada subsebf genethatexhibit similarbehaior
acrossa subsetof conditiors. In termsof the expression
datamatrix, we seeka “homogeneus” submatrixwhose
rows and columrs correspad to the two subsetsThese
objectsare calledbiclustess andthe process of detecting
themis termedbiclustering

Biclusteringwasintroducel in the severties (Hartigan
1975. Chengand Church(2000Q werethe first to apgdy
it to geneexpression data. They defineda bicluster as
a uniform submatrix (one having a low meansquared
residue score), and used a greed apprach to find
biclusters.Getz et al. (20) devised a couged two-
way iterative clusteringalgorithmto identify biclusters.
Lazzermi and Owen (2000 introducel the notion of
a plaid model, which descibes the input matrix as a
linearfunctionof variadescorrespadingto its biclusters.
They shoved how to estimatea modeé usingan iterative
maximization process.Ben-Dor et al. (2009 defineda
biclusterasanorderpreservig submarix, or equivalently,
a group of geres whoseexpresion levels induce some
linear order acrossa subsetof the conditions A greedy
heuristic searchprocedire is emplo/ed to detectsuch
biclusters. The work of Segd et al. (2001) described
rich probailistic modelsfor studyingrelationsbetween
expression,reguatory motifs and gene anndations. Its
outcane can be interpretedas a collection of disjoint
biclusterggenegatedin a superviseananne.

In this pape we develop a novel approadb to bicluster
ing, whichcomhbnesgraphtheoreticandstatisticalcorsid-
erations.The intuitive notion of a biclusteris a subsetof
genesthatexhibit similarexpressio patternsover asubset
of conditions Following this intuition we definea biclus-
terasasubsebf geneghatjointly respomnl acrossasubset
of conditiors, wherea geneis termedrespmdingin some
condtion if its expressionlevel chargessignificantly at

© Oxford University Press 2000



thatconditionw.r.t. its normad level.

We model the input expresion data as a bipartite
graph whose two parts correspad to condtions and
gens, respectrely, with edges for significantexpression
charges.We presentwo statisticaimodds of theresulting
graph We shav how to assignweightsto the vertex
pairs of the bipartite gragh accordingto eachmodé, so
thatheavry subgrphscorrespndto significantbiclusters.
Using the first, simpler statisticalmodel, we shov how
to computea tight upperbound on the probability of an
obsered bicluster For a more detailedmodel that takes
into accaint genesand condtions variability, we show
how to assignveightssothatamaximumweightsubgaph
correspndsto a maximumlik elihood bicluster We also
shav how to apprximate the p-value of obseving a
subgrah with weightexceealing a given threshdd.

Discovering the most significantbiclustersin the data
reducs under theseweighting schenes to finding the
heaviest subgraps in the model bipartite graph As
explainedbelow, unrestrictedversiors of this problemare
compuationally hard, so we assumea degree restriction
onthegraghsandlimit the discussiorto graphsin which
the gene vertices have degrees not exceeding a fixed
constah d. This assumfion has several justifications:
First, high-degree genesare more likely to participate
in heary subgraps and thus, cortribute little to the
significanceof a biclustercortaining them.Secondhigh
degree genesareinvolved in mary processesand do not
manifesta focusedspecific effect. In the datasetswe
studied,filtering high-degree genes resultedin a modest
reduction(20% on average)in the numberof genesStill,
our practicalimplemenation consides high-degreegene
aswell, in aheuristicmanner

Requiringa biclusterto be a completesubgrah gives
rise to the prodem of finding a maximum edge biclique.
This problem is NP-completefor weighted bipartite
grapts (cf. Hochbaum (199B)). We preseh a polynamial
algorithm for the weighted problem uncer the degree
restriction.

To accanmodatenoisy data,we searchfor subgrgphs
that are not necessarilycompete. Let the weight of a
subgrah be the sum of the weights of gene-cadition
pairsin it. We assumethat edgesare assignd positive
weightsandnon-edesareassignedegadive weights.We
shav that the problem of finding a maximun weight
subgrahis NP-completén this caseln contrastwe give
a polynamial time algorithmfor the problemon grapts
unde the degreerestriction.

Onecanamguethatin somesituationswe loseinforma-
tion by just looking for biclustersthat manifestchamges,
without corsideringif the chargewasanincreaseor ade-
creasdn expression(hencéorth, the unsignel problem).
We therefore study the problem of finding congstent
biclusters,in which every two conditiors must always

have the sameeffect or alwayshave the oppositeeffecton
eachof the geres.We shov how to solve this problemby
a polynamial redudion to the unsigred problem.Hence
our polynamial algorithmsapply to consistenticlusters
as well, enalting the detectionof connetions between
gene with eithersimilar or complemetary patterns.

We implementeda practicalheuristic, called SAMBA
(Statistical-AlgorithmicMethod for Bicluster Analysis),
which follows the appro&h of the theoreticalalgorithm,
andis ableto analyzelarge datasetsvithin minutes.We
appliedour algorithmto a broadclassof geneexpression
datasetsincludingyeastandhumanclinical data.In tests
on humanlymphora data,whenmeasung the solution
p-value w.r.t. a known tissueclassificationour solutions
are superiorto thoseof Cheng& Church (2000). Our
biclustersalso enalte differertiating fine tissue types,
e.g., germina center from DLBCL tissues,although
thesetissuetypeswere grouped togetherusing standard
clustering techniqes. We also shov the utility of our
methodto functioral annotation basel on a compled
datasetof some 515 yeast expres#on profiles. Using
GO anndations of the yeast geres, we can anndate
unkrown geres that belong to a bicluster containing
mary geneswith the sameknown annotation Our cross
validation test proves the souncdhessof this apprach,
yielding 81.5% annotgion specificity and we are able
to anrotate 196 unknavn yeastgene in this manrer.
For example, we discovereda link betwe@ a group of
unkrown subtelomericY’ genesand DNA repairgenes
whichwasrecentlydiscoveredexperimertally.

The pape is organizal asfollows: We startby present-
ing our statisticalmodds for geneexpressionsdata.We
then preseh a combnatorial algorithmfor finding maxi-
mumweightsubgaphsof abipartitegragh, andgeneréize
it to handleconsistenbiclusters Finally, we describeour
practicaimplemenationandourresultsonseverd biolog-
ical datasetskor lack of spacesomedetailsareomitted.

STATISTICAL DATA MODELING

Givenaninputgeneexpressiondatasetve form abipartite
graphG = (U,V, E) (see(Golumbic, 198)) for basic
graphtheoreticdefinitionsandFigure 1 for an examge).
In this graph U is the setof condtions, V' is the setof
gens,and(u,v) € F iff v respondin conditionu, that
is, if the expressionlevel of v chan@ssignificantlyin u
(seethe SAMBA Algorithm Sectionfor details).Laterwe
shallrefineourgraphto includethedirectionof expression
charge (up or down reguldion). A biclustercorrespads
to asubgrph H = (U’, V', E’) of G, andrepresats a
subsé V'’ of geresthatareco-regulatedunder a subsebf
condtions U’ (seeFigurel). Theweightof asubgrap (or
bicluster)is thesumof theweightsof geneconditionpairs
in it, includingedgesandnon-edges.
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Fig. 1. Geneexpressiondatais modeledusing a bipartite graph
whosetwo sidescorrespod to the setof condtions U andthe set
of genesV. An edge (u,v) indicatesthe responseof genev in
conditionu. A statisticalmodel assignsweightsto the edgesand
non-edgsof the graph.A) Partof the graphshawing the condition
“tupl deletion” and its effect on the genes‘gal7” (responsegnd
“ecml11” (noresporse).B) A heary subgraphshadedyepresenting
asignificantbicluster

In the following we develop statisticalmodds for our
bipartite graph represatation of expressiondata.Using
thesemodelswe derive scoringschenesfor assessinthe
significanceof an obsered subgrgh (correspadingto a
bicluster). We shall develop additive scoresthat can be
decanposedacrosghe edgesandnonedgesof thegraph.
In otherwords, we shall assignweightsto the edgesand
non-algesof thegraph suchthattheweightof asubgaph
will correspod to its statistical significan@. This will
allow us to redwce the biclustering problemto that of
finding heary subgrahsin abipartitegraph

A Simple Model

Let H = (U',V',E’) be a subgrap of G. Dende
U’| = m/,|V'| = n'. Letp = o, andlet k' = | E|.
Our first model assums that edgesoccurindepemlently
andequiprdablywith densty p. Dende by BT (k,p,n)
the binomial tail, i.e., the proballity of obseving k£ or
more suc@ssesin n trials, where eachsuccess occus
indepandentlywith probability p. Thenthe probaility of
obsering agraphatleastasdenseas H accordingo this
modelis p(H) = BT (k',p,n'm’).

Our goal is to find a subgrap H with lowestp(H).
By bourding the terms of the binomial tail using the
first one, assumingthat p < 1/2, we obtain the
following upperbourd for p(H): p*(H) = 2™ p* (1 —
p)"™ ¥ Seekinga subgaph H minimizing log p*(H)
is equident to finding a maximumweight subgrap of
G whereeachedgehaspositive weight(—1 — log p) and
eachnon-edje hasnegative weight (—1 — log(1 — p)).

Note that p(H) provides a reasonhle appraimation
only if n'm’ < nm, asthe calculationof p(H) ignores
thetotalnumbe of edgesin G. As we constrairthedegree
to d, this conditionholds.

A Refined Model

We next develop a refined null model that takes into
accant the variability of the degrees in G, i.e., it
incorpaatesthe characteristidberavior of eachspecific
condtion andgere.

Let H = (U’,V',E’) be a subgrap of G and
dendge B/ = (U’ x V') \ E'. For avertx w €
U’ UV’ letd, denoteits degree in G. Our null model
assums that the occurrere of eachedge (u,v) is an
indegendentBernodli varialde with paraméeer p,, ,. The
probaility p, , is the fraction of bipartite grapts with
degree sequace identicd to G that contain the edge
(u,v). In practice we estimatep,, , using a Monte-
Carlo process.The probatiiity of observirg H is thus
p(H) = (H(u v)eE’ pUI ’ w,v P, v))
However, we cannois|mplycompae suz:)gaphgaccordmg
to this probalility, sinceit improves(decreass) asthesize
of H increases

To overcomethis problem, we choseto useallikelihood
ratio to capturethe significane of biclusters.Our null
modé is as stated above. For the alternatve model
we assumethat each edge of a bicluster occurs with
constan proballity p. > max(, ,)cvxv Puy- The
estimationof p,. is describd in the SAMBA Algorithm
Section.This model reflects our belief that biclusters
represat apprximately uniform relationsbetweentheir
elementsThelog likelihoodratio for H is therefore:

H) = Z logpc + Z

(u,v)eB’ Puy (up)eE"

log L(
— Puw

> 0 and
< 0,we

Settingtheweightof eachedge(u, v) to log b=

theweightof eachnon-edje (u, v) to log = p”

condudethatthescoreof H is simplyits Welght

We notethatthestatisticaimodelis moreinvolvedwhen
taking into account the direction of expression change
for eachedge Neverthdess, a likelihood score can be
computedin essetially the sameway asfor the unsigned
case.

COMBINATORIAL BICLUSTERING

In the previous sectionwe have givenanadditive scoring
schemeassigningweightsto edgesand non-edjes of a
mode bipartite grapgh. Discovering the most significant
biclustersin the datareduce underthis scoringscheme
to finding the heaviest subgaphsin the bipartite graph
We now give a polynamial algorithmto solve this prodem
whenthe degreeof every genevertex is bounced.




Maximum Bounded Biclique

We sstartby describinganO (|V'|2¢)-time algorithmto find
a maximum weight biclique in a bipartite graphwhose
geneverticeshave d-boundel degree This algorithmwill
be a key compmentin our moreinvolved algorithmsthat
follow.

LetG = (U, V, I) beabipartitegraph.We saythatG
hasd-bounad geneside if every v € V hasdegreeat
mostd. Letw : U x V' — R beaweightfunction For a
pairof subsetd/’ C U, V' C V wedenoteby w(U’, V")
the weight of the subgaph inducedon U’ U V7, i.e.,
w(U", V') = ¥ cvrvev w((u,v)). The neighorhood
of avertex v, dended N (v), is thesetof verticesadjacen
to v in G. We denoten = |V| throughout.

PROBLEM 1 (MAXIMUM BOUNDED BICLIQUE).
Givena weightedbipartite graph G with d-bounde gene
side find a maximumweightcompletesubgiaph of G.

THEOREM 1. Themaximumboundaed biclique problem
canbesolvedin O(n2?) timeandspace

Proof: Obsere that a maximum bounad biclique
H* = (U*,V*,E*) in G musthave |U*| < d. Figure2
describs a hashtable basedalgorithm that for each
vertex v € V scansall O(2¢) subsetf its neighbors,
therebyidentifying the heaviestbiclique.Eachhashentry
correspndsto a subseéof condtions andrecord thetotal
weightof edgesfrom adjacehgere vertices.Theiteration
over subsetsof N(v) is dore by repeately charging
the currert subsetS by adding or removing a single
elementupdaing w(.S, {v}) in constantime. Hence the
algorithmspend O(n24) time onthe hashingandfinding
Upesi- ComputingV,,.; canbe donein O(nd) time, so
thetotal runring timeiis O(n2). Thespacecomplexity is
O(n2?) dueto thehashtable.m

MaxBoundiClique(U, V, F, d):
Initialize ahashtableweight; weightyes: < 0
For allv € V do
Forall S C N(v)do
weight[S] «—weight[S]+
max{0, w(S, {v})}
If (weight[S] > weightyes;)
Ubest — S
weighty.s; «— weight[S]
ComputeVes: = Nuer,,., N (1)
OUtpUt(Ubestv ‘/best)

Fig. 2. An algorithmfor the maximumboundedbiclique problem.

Note that the algorithm can be adaptedto give the k
condtion subsetghatinducesolutionsof highestweight
in O(n2?log k) time usinga priority queue (heap)data
structure.

Finding Heavy Subgraphs

We now look for heary subgraps which are not neces-
sarily complete We startby giving weight 1 for an edge
andweight—1 for anon-edje.Formally, given a bipartite
graphG = (U, V, E) defineaweightfunctionw : U x
V — {=1,1} suchthatw((u,v)) = 1 for (u,v) € E,
andw((u,v)) = —1for (u,v) € (U x V) \ E. Consider
thefollowing problem:

PROBLEM 2. (MaximumBoundedBipartite Subgaph)
Givena bipartite graph G with d-bourdedgeneside find
a maximumweightsubgaph of G.

LEMMA 2. Let H* = (U*,V*, E*) be a maximum
weight subgeph of G. Then every vertex in H* is
conrectedto at leasthalf the verticeson the other side
of H*.

Proof: Follows from the choice of weights,sinceif a
vertex v € V* haslessthan [|U*|/2] neighbas, then
removing v from H* will resultin aheavier subgrap. The
prooffor u € U* is symmetricm

COROLLARY 3. A maximumweightsubgiph of G has
at most2d verticesfromU..

LEMMA 4. Let H* = (U*,V*, E*) be a maximum
weightsubgaph of G. For eadh setX C U* thereexistsa
subseY C X with|Y| > [|X|/2] sudthaty C N(v)
for somev € V'*.

Proof: Assumethereexists X C U* suchthat all
subsés X N N(v),v € V* areof size smallerthan
[1X]/2]. Thenthe weight of the subgrgh indued on
(U*\ X,V*) exceedthatof H*, acontradction. m

COROLLARY 5. Let H* = (U*,V*, E*) be a maxi-
mumweightsubgaph of G. ThenU* can be covered by
atmost|log(2d) | sets,ead of which is contdnedin the
neigtborhoal of somevertexin V' *.

Proof: Denote|U*| = t¢. By Lemma4 thereexists a
subseY C U* with |Y| > [¢/2], suchthatY C N(v)
for somev € V*. The sameholdsfor thesetU* \ Y,
andwe can continuein this manrer until we cover U *.
By constructionwe have atmost | log ¢ | setsin thecover.
Sincet < 2d by Corollary3, theresultfollows.m

Corollary 5 implies an algorithm to find a maximum
weightsubgrap. The algorithmtestsall collectionsof at
most|log(2d) | subsésof neighborhoalsof verticesn V.
SincethereareO(n2?) suchsubsetsve have:




THEOREM 6. The maximumbourded bipartite sub-
graph probemcanbesolvedin O((n2?)0s24)) time

A nonredurdantsubgrghis onewhoseweightcanna
beincreasd by removing any vertex from it. Theorem6
canbe generalizedo give the & heaviest non-relundam
subgrghsin O((n2%)964) Jog k) time.

We now exterd Theorem6 to graphswith more gen-
eral weights: Supposethat edge in G have positive
weights and non-alges have negative weights. Define
T = MAX(y,p),(u0)EU XV \%L We call  the max-
imumweightratio in G. Similarly to Lemma4 we can
shaow:

LEMMA 7. Let H* = (U*,V*, E*) be a maximum
weightsubgeph of G. For eat setX C U* there exists
asubseY C X with |Y| > [|X]|/(r + 1)]| sud that
Y C N(v) for somev € V*.

THEOREM 8. Let G be a bipartite graph with d-
bourded gene side Suppae a weight function assigrs
positive and negative weightsto edges and non-edjes,
respetively, sudthatthemaximunweightratiois . Then
thek heavieshon-redundant subgaphsin G canbefound
in O((n24)sc+n/-(rd) Jog k) time

We notethatthegeneal problem of finding amaximum
weight bipartite subgrah of G is NP-hard,as can be
shavn by a simpleredudion from CLIQUE.

THEOREM 9. For a bipartite weightedgraph GG anda
numbe %, the problem of determiningif G contans a
subgaphofweightat leastk is NP-completegevenif eath
edee of G has positive weight and ead non-alge has
negativeweight.

INCORPORATING THE DIRECTION OF
EXPRESSION CHANGES

In our discussia so far, the underlying bipartite graph
usedfor modding the datacontainel edgesfor signifi-
cantlychargedgeneshut ignoredthe type of chamge (in-
creaseor decreasen the expressio level). We caninte-
grateadditiond informationinto ourmodelby associating
a sign of "up” or "down” with eachedge.We now have
threetypesof binaryrelationsin our bipartitegraphs An
"up” edge,a"down” edgeor no edge.lt is reasoableto
look for a biclusterin which the condtions tendto affect
gene in a consistentway, i.e., two clusteredconditiors
shouldeitherhave alwaysthesameeffector alwaystheop-
positeeffect on eachof thegenesThis leadsto the defini-
tion of a corsistentbiclique GivenabipartitegraphG =
(U, V, E) with edgesignfunctionc : £ — {—1,1}, we
saythataninducel bicligue H = (U’, V', E') is consis-
tentif thereexistsanassignmetr : U’ UV’ — {—1,1}

suchthatfor everyv € V', u € U’ we have ¢((u,v)) =
7(u)7(v). Themaximumconsistenbicliqueproblemcan
be solved in polynomial time by redudion to the standard
maximumbiclique problem

PROPOSITION 10. Theris an O(n2¢)-time algorithm
for the maximunrconsistenbourdedbiclique probdemon
graphswith d-boundel geneside

Proof: Given G and ¢, we constret the graph
G = (UuUV UV,E) where U and V
are copies of U and V, respectrdy, and £/ =
(o), @D)|(w,0) € Ee((wv) = 1} U
{(u,9). (@ )| (w,v) € E.c((uv)) = —1}. Sup-
pose that (U’,V’) induce a consistent biclique
in G of size £ with a sign assignmentr. Then
{ve U UV'|r(v) =1}u{Tlv e U'UV',T(v) = —1}
induce a biclique of sizek in G'. Corversely if (U’,V")
induce a bicliquein G’, thenno pair u, @ is containedn
it, sofv e UUV|v e U'UV'orv € U'UV'} inducea
consistenhbicliquein G of thesamesize,wherer (v) = 1
if ve U UV andr(v) = —1if v € U’ UV'. Theclaim
thusfollows from Theoreml. m

We now introducethe maximum consistentsubgaph
problemandsolweit usingthealgorithmof Theoremg.

PROBLEM 3. (MaximumConsistenBoundel Bipartite
Subgaph) Given a weighted signed bipartite graph
G = (U,V, E,c,w) with d-boundd geneside find an
induced subgeph H = (U’,V’, E’) andan assignmat
T : U UV — {-1,1} maximizingthe weight func-
tion: w(U', V') = Y (uermar (=1 “w((u,0)),
whee f(u,v) = 0 if (u,v) ¢ E’ and f(u,v) =

L-r(r@e((uw) Gtherwise
2

The specialpropeties of the scoringfunction togetter
with the assignmen of positive weights to edgesand
negative weights to non-alges enalle us to apply the
techniqies for the unsigred caseon G’. The crucial
obsenation is that an induced subgrgh of maximum
weight in G’ cannotcortain both copies of the same
vertex, sincetheneighlwrhood of two copiesaredisjoint,

so one of them musthave a negative contrikution to the
total score We condude:

THEOREM 11. Thee is an O((n24+1)legr+n/r(rd)).
time algorithm for the maximum consistet bourded
bipartite subgaph problem on graphs with maximum
weightratio .

Notethattheweightingschemealefinedaboveis heuris-
tic in natureandis not a direct outcane of our statistical
mode. An exactschemeanbeobtain& usingamorede-
tailed statisticalmodel.We omit the details.




SIGNIFICANCE EVALUATION

In this section we develop a metha for computing
the statistical significane of a bicluster The method
compues a “p-valu€ for a given bicluster B, i.e., the
probaility of finding at randan a biclusterwith at least
the weightof B. Let H = (U’,V’, E’) be a subgrah.
Supposat first that U’ is fixed, andwe wish to compue
the probalility of obsering H, given that its weight
is maximun amongall subgraps over the sameset of
condtions U’. To this end, we note that H is obtained
by taking into V' all verticesv € V whoseweight
w({v},U’") is positive. Let fi» : V' — R beafunction
definedas f1,/ (v) = max{0,w({v},U")}. Foreachv €
V we canview f/(v) asarandan varialle. The weight
of Hisjustw(H) =Y,y fur(v), asumofindepenlent
randan varialdes. Thesevariablescanbeshavn to satisfy
the requirenents of Liapunos/'s generéization of the
CentralLimit Theorem(cf. (DeGroot,1989)),implying
that when |V| is suficiently large, the weight of H
is apprimately normally distributed. Hence we can
compue theexpectationandvariarceof w(H ) andderive
a p-vaue p(H) for obsering a subgrap with such
weight.

Finally, we have to acconmodatefor the fact that the
subsel/’ is optimizedby thealgorithm.For that,we apply
Bonferron's rule and compute an upperboundon the p-

value:p*(H) = p(H) Y100 (™) sincewe aretrying
all subset®f U of sizeatmost[ (r + 1)d]|, wherer is the
maximumweight ratio in the graph Hencdorth we call

log p*(H) thesignificarcevalueof H.

THE SAMBA ALGORITHM

We usedthe methodsdevelopedabore in implementing
anove biclusteringalgorithmcalled SAMBA for finding
high quality and distinct biclusters. SAMBA works as
follows: We first form the bipartite graphand calcuate
vertex pair weightsusing one of the weighting method
describe abore. We conside a geneto be up (down)

regulaedin acondtion if its standardize level with mean
0 and variarce 1 is above 1 (belov -1). Depending on
the data,we may choaeto work with signedor unsigied
grapts. Whenusingthe likelihoodweightingschemewe
optimizethevalueof p. by measurig the significane of
theresultingbiclusters.

In the secondphase of the algorithm we apply the
hashingiechniqe of the algorithmin Figure2 to find the
heaviestbicliquesin the graph. In fact, we look for the k&
bestbicliquesintersectingevery given condtion or gene.
This can be doneefficiently using a standardheapdata
structure To save ontime andspaceve ignoregeneswith
degree exceeding somethreshdd D, and hashfor each
geneonly subsetf its neigtbors of size rangingfrom
N; to Ns.

The third phaseof the algorithm performsa local im-
provementprocelure on the biclustersin eachheap The
procealure iteratively appliesthe bestmodificationto the
bicluster(additionor deletionof a singlevertex) until no
scoreimprovementis possibleTo avoid similar biclusters
whosevertex setsdiffer only slightly, we greedly filter
from the outputbiclusterswhoseintersectiorwith a pre-
vioussolution(numker of sharectorditionstimesnumker
of sharedyeres)is abore L%.

Theimplemenationwashbuilt on top of the GENESYS
platform (Tanay& Shamir,2001). Typical runsof the al-
gorithmfor large dataset415,000gene and 500 condi-
tions) use parametervalues D = 40, N, = 4, Ny, =
6,k = 20 and L = 30. A completerun of SAMBA on
suchdatasetakes a few minuteson a standardPC with
limited memory(256MB).

EXPERIMENTAL RESULTS

We analyzd the performaige of our algorithm on sev-
eral geneexpressiondatasetsand compare it to an ex-
tant biclusteringalgorithm. Our main tool in evaluating
biclusteringresultsusing prior biological knowledgeis a
correspondece plot. The plot depictsthe distribution of
p-values of the producedbiclusters,usingfor evaluation
a known (putatively correct) classificationof condtions
(e.g.,to various caner types)or a given geneannotation
We describethe plot when a classificationis given. For
eachvalue of p on a logarithmic scale,the plot presats
thefractionof biclusterswhosep-value is at mostp out of
the(say)100bestbiclusters.

p-values arecalculatedaccordng to the known classifi-
cationasfollows: Suppae prior knowledge partitionsthe
m conditiors into £ classes(,...,C. Let B beabi-
clusterwith b conditions,out of which b; belorg to class
C;. Thep-valueof B, assumingts mostatundant class

is C;, is calculatedasp(B) = >, (19 (™ 19y /(™).
Hence the p-value measureshe probability of obtaining
atleastb; elementdrom theclassin arandomsetof size
b. Oneshoud note, that high quality biclusterscanalso
identify phenanenathatarenot coveredby thegivenclas-
sification.Neverthdess,we expecta large fraction of our
biclustergo conformto theknown classificationNotethat
our algorithmis unsupevisedanddoesnot usethe classi-

ficationin ary way.

PerformanceEvaluation

Wefirst compaedtheperfamanceof thedifferentweight-
ing schemedor graphedge and nonedgespresentedn

previous sectiors. To this endwe usedthe datasedf (Al-

izadehet al., 2000). 1t cortains the expressio levels of
4,025 gene over 96 humartissuesampleswhichareclas-
sifiedinto ninetypesof lymphomaandnormalones. Fig-
ure3(A) shavsthecorrespnderceplotsfor thethreesug-




gestedveightingschemedt is evidert thatthelikelihood

basedcoringmethodwith p. = 0.9 outperfamstheother
schems. Consegently, all the experimentswe reportbe-
low wereperfamedusinglikelihood-baedweightswith

p. = 0.9.

Next we comparedour performanceto thatof (Cheng&
Church,2000)on thelymphanadatasetCorrespadence
plots for the two biclusteringsare shavn in Figure 3(B).
The plots demamstratethat the biclustersgenerged by
our algorithmdescribemuchmore accuately the known
classificationandarethusmoreinformative for extracting
additionad novel biological insights. As a referencewe
addel a correspnderte plot calculatedon a random
anndation of the 96 sampleg(preservig classsizes).It
shaws that randomp-valuesare at very low levels and
thereforethe signalin the biclusterds indeedvery strong.

As anadditioral test,we geneateda randan expression
datasetwith the samecharateristics as the lymphoma
data. This was done by generéing a randan bipartite
graph with the same degree sequace as the original
graph for this dataset.We then executed SAMBA on
this syntheticdataand recordel the resultingbiclusters.
Figure 3(C) presentsa scatterplot of the significance
valuesof biclustersvs. their log likelihood (weight) on
eachdatasetlt can be seenthat significancevalueson
therandomdataare well separted from thosecomputed
on the original dataand, furthermae, only two random
biclustershave significancevaluesbelow 0. The plot for
the real dataalso demorstratesthe quadatic fit between
the significancevalue of a biclusterandits weight. Both
obserations suppot our use of weights for detecting
biclusterswith low significancevalues.

Functional Annotation in Yeast

We have compled a datasetincluding 515 conditiors
for the 6,20 yeastORFs. The datawas collectedfrom
five different experiments(Hugheset al., 2000; Gasch
et al., 2000,2001; Spelimanet al., 1998; Ideker et al.,
200). Analysis by SAMBA gererated2,4(% biclusters
rangingover 4,96l genesand515condtions. Many of the
biclusterscontain conditionsfrom several experiments.
Hence,the biclusteringprocesstruly integraes the data
from differentexperiments.

We utilized our biclusteringto perform a naive func-
tional annotationin conjurction with the SGD GO con-
sortium(2000) anrotation,asfollows: We usedthefourth
level in the GO anndationasa classificatiorof thegenes.
We chosethosebiclustersin which more than 60% of
theirannotatednemberdadthe sameclass.Outof those,
we only usedbiclustersthat were functiorally enriched
(p-valuebelon 10~*). We thenassignd the unanmtated
gene in thosebiclustergo this mostabundant class Note
thateachgenemaybeanrotatedmorethanonce asis the
casefor the curatedGO anndations.For crossvalidation,

we performel 100 runsandin eachonewe hid 30% of
the anndations,andtestedour successatein annotating
thosehidden genes.

The results of these runs are summarizedin Fig-
ure 4(A,B). Overall, 81.9% of our test set annotatios
matchedhoseknown from SGD. Theresultsdemorstrate
thatbiclustersqualifying asanndatorsaccuratelyidentify
biologicd processesandmay be usedto extraplatefrom
known anndations to unchaacterizedgene. We thus
setout to anndate unkrown genes(basedon the entire
GO annotatioi Using the sameprocedire, we obtained
196 anndations of unknawn genesas summarizd in
Figure4(C).

Detailed analysis of the results further demorstrates
the power of bicluster analysis. For example, one of
the biclustersin Figure 5(A) contans DNA repairgene
and a large family of Y’ DNA helicasegeres. The
Y’ gene are strong paralogs preseh at the end of
the yeastchronosome,and their function is not fully
undestood. This bicluster raisesthe conjecturethat Y’
gens and DNA repair gene are associatedindeed,a
recentstudy(Yamadeetal., 1998 suggstedaconrection
betweenDNA damageand repair mecharmsms to this
family. Another bicluster shawvn in this figure contans
several phoshateandgluccserelatedgene groupedwith
several unknavn genes, which maybeassigned putatve
function accordng to their expression patternin this
bicluster

Human Cance Data

Large dataset®f clinical samplesare an ideal target for
biclustering We canusebiclustergso associatgeneswith
specific clinical classesor for classifying samples.We
demastratethe applicalility of our methodsfor tissue
expressiomanalysisn Figure5(B). Thelymphomadataset
is characteriedby well definedexpressiorpatterndiffer-
entiatingthreetypesof lymphona, DLBCL, CLL andFL
from oneanothe. However, using hierarchich clustering
(see(Alizadehet al., 20M)) germinalcentertissuesare
interleaved within the DLBCL class.In contrastSAMBA
prodiced two biclusters associatingthe two germinal
centertissuesin the datasetwith both the DLBCL and
FL classestherebyunigLely charaterizingthem.lt is our
ability to associateseserd statisticallysignificantsignals
with each condtion or genethat makes such delicate
analysigpossible.

DISCUSSION

We have developeda new statistical-algorithmi@pprach
to finding significantbiclustersin geneexpresion data,
anddemorstratedts utility ondiversedatasetdn addition
to facilitating novel geneanndation at high specificity
andmoreaccuate subclassificatiof cancertissuesthe
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Fig. 3. Performancef differentweightingschemesndalgorithms A: Correspodenceplotsfor biclusterggeneratedvith differentweighting
schemesB: Correspondnceplotsfor SAMBA, thealgorithmof ChengandChurch(2000),andrandam biclusters Likelihoodweightsuse
pe = 0.9. C: Scattemplots of significancevalueson synthdic andrealdata.x-axis: significancevalue,y-axis: biclusterweight.

Mating Ene Abiot CH Met AA Met Mating Ene Abiot CH Met AA Met SGD GO Unkown Annots
Lipid Biotic Cyto cC Pro Met Lipid Biotic Cyto cC Pro Met Known Annots

Mating 1 1 3 Mating 2 18 2 4 Mating 87 14 4
Lipid 1| 4 15 Lipid 4 | 2 4 Lipid 93 9 6
Ene 35 6 11 | 46 Ene 61 7 1 5 Ene 71 6 7
Biotic 5 25 8 11 | 22 | 27 Biotic 4 - 4 1 1 1 Biotic 55 4 1
Abiot | 14 4 41 4 10 | 12 | 13 Abiot 2 9 69 5 3 2 2 Abiot 91 10 1
Cyto | 13 1 38 | 10 4 31 Cyto 2 2 70 | 14 1 4 Cyto 397 10 15
CH Met 30 20 | 49 CH Met 47 4 8 CH Met 93 10 8
cc 2 1 14 1 ccC 11 4 - 9 cc 207 15 18
AA Met 1 15 AA Met 10 4 69 | 10 AA Met 85 36 70
Pro Met 2 2 6 Pro Met 20 20 5 1 6 61 Pro Met 670 31 70

Fig. 4. Yeastfunctional annotation.A: Annotation specificity The table depictsthe anndation accurag measuredusing 70:30 cross-
validation.Rows representlassesssignedisingour methodandcolumnsrepresenSGD GO classesCell (z, y) containghe percentagef
genesanndatedzx thatbelongto GO classy. Higherpercentagearedarker. B: Annotationsensitvity calculatedw.r.t. annotatedyenesonly.
Cell (z, y) containsthe percentagef SAMBA annotatedyeneghatbelongto GO classy andwereannotated:. C: Annotationof unknown
genesThetableshaws for eachfunctionalclassits sizein the SGD GO annotationthe numkber of geneshatbelongto this classandwere
annotatecdby SAMBA, andthe numberof unknowngenesassignedo this classby SAMBA. Abbreviationsfor functionalclassesMating -
mating(sensuSaccharomycg Fungi);Lipid - lipid metabolismEne- enegy pathway; Biotic - resporseto biotic stimulus;Abiot - response
to abiotic stimulus;Cyb - cytoplasmorganizationand biogeneis; CH Met - carbohydratenetabolism;CC - mitotic cell cycle; AA Met -
aminoacid andderivative metabolismProMet - proteinmetabolismandmaodification.

methodallows perforning simultaneasly classdiscovery
andfeatureselection.

Statistically significant biclustersare generéed in an
unsugrvised fashion directly from the datasetby our
algorithm, and can be used in mary contets. Each
biclustercharaterizessometight biological pheromenon
andcanbe evaluged usingexisting biologcal knowledge
or provide new hypotheses.

We arecurrentlyexterding the theoréical andpractical
studyto multiple responsdevels. A refinedverson of the
softwarewill soonbeavailableonourwebsite.
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