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ABSTRACT

Motivation: Several recent studies attempted to establish measures

for the similarity between genes that are based on the topological

properties of metabolic networks. However, these approaches

offer only a static description of the properties of interest and offer

moderate (albeit significant) correlations with pertinent

experimental data.

Results: Using a constraint-based large-scale metabolic model, we

present two effectively computable measures of functional gene

similarity, one based on the response of the metabolic network

to gene knockouts and the other based on the metabolic flux activity

across a variety of growth media. We applied these measures to

750 genes comprising the metabolic network of the budding yeast.

Comparing the in silico computed functional similarities to Gene

Ontology (GO) annotations and gene expression data, we show that

our computational method captures functional similarities between

metabolic genes that go beyond those obtained by the topological

analysis of metabolic networks alone, thus revealing dynamic

characteristics of gene function. Interestingly, the measure

based on the network response to different growth environments

markedly outperforms the measure based on its response to gene

knockouts, though both have some added synergistic value

in depicting the functional relationships between metabolic genes.

Contact: olegro@cs.technion.ac.il

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Recent advances in systems biology have resulted in

the reconstruction of several types of genome-scale biochemical

networks—metabolic, regulatory, signaling, protein–protein

interaction and more. The availability of these interaction

networks in turn has stimulated the analysis of the structural,

i.e. topological, properties to gain insights to the functionality

of their genes. Even though recent analyses have provided

valuable insights regarding this issue (Jeong et al., 2000; Ravasz

et al., 2002), topological characteristics alone (as devised by

e.g. Chen and Vitkup, 2006; Kharchenko et al., 2005) offer only

a static description of the properties of interest. On the other

hand, accurate prediction of dynamic cell activity using kinetic

models requires detailed information on the rates of enzyme

activity which is rarely available; moreover, such analysis

is usually limited to small-scale networks.
Fortunately, for metabolic networks, the use of stochiometry

and other sources of information can provide an added value

over the topology of the underlying structure. Specifically,

constraint-based models (CBMs) have emerged as a key

method for studying such networks, permitting the large-scale

analysis thereof. CBMs use genome-scale networks to predict

steady-state metabolic activity, regardless of specific enzyme

kinetics. In these models, stoichiometric, thermodynamic, flux

capacity and possibly other constraints affect the space

of attainable flux distributions.
In this article we employ constraint-based modeling to devise

two effectively computable functional similarity measures

between genes. The two measures employ large-scale

in silico experiments, based on flux balance analysis (FBA),

that can be further validated in vitro. Our first measure,

the genetic response similarity (GRS) measure, is based on the

similarity in metabolic network response to gene knockouts.

The second measure, environmental response similarity (ERS),

is based on similarity in the metabolic network activity across

an array of various growth environments. These two measures

reveal two complementary ways of defining the relation

between gene u with its surrounding: the GRS measure defines

the effect of gene u on its surroundings, whereas the ERS

measure defines the effect of the surroundings on gene u.
To assess the veracity of the suggested measures, we validate

them based on various biological data sources, including Gene

Ontology (GO), phylogenetic profiling and gene expression

measurements. The basic relation between metabolic fluxes

and gene expression was previously studied and established

both computationally (showing only a moderate correlation)

as well as experimentally. Several studies (Bilu et al., 2006,

Famili et al., 2003; Reed and Palsson, 2004; Schuster et al.,

1999, 2002) have shown that the expression patterns of enzyme

coding genes are correlated with the flux patterns predicted

by FBA. In this work we extend these studies to look into ways

of building upon the reported correlation between fluxes

and expression, to construct efficient measures of functional

similarity among metabolic genes. To this end, in contrast with
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the previous studies, we examine the relation between fluxes

and expression while concomitantly controlling for correlations

caused solely by the network’s topology.
Our comparison focuses on 750 metabolic genes of the

yeast Saccharomyces cerevisiae. We find that the ERS

measure outperforms topological, conservation-based and

expression-based measures when testing for similarity with

GO. Moreover, for many GO terms it is the only measure that

succeeds to provide a significant result. On the other hand,

the GRS measure shows only moderate results with only a

few unique successes. We also find the correlation between

model-based measures and co-expression to be statistically

significant. However, we find GRS to be only moderately

correlated with experimental data, whereas ERS exhibits

a strong and significant correlation. Furthermore, this

correlation remains so even after canceling the effect of

the underlying (static) network topology. These results support

the notion that a model-based ERS measure indeed captures

the true functional similarity between metabolic genes.

2 METHODS

2.1 Modeling metabolism

Constraint-based modeling allows a steady-state analysis of metabolic

behavior. FBA (Fell and Small, 1986; Kauffman et al., 2003) is

a particular constraint-based method which assumes that the network

is regulated to maximize or minimize a certain cellular function, which

is usually taken to be the organism’s growth rate. FBA has been

demonstrated to be a very useful technique for the analysis of metabolic

capabilities of cellular systems (Price et al., 2004; Varma and Palsson,

1993). It involves carrying out a steady state analysis, using

the stoichiometric matrix (as defined below) for the system in question.

The system is assumed to be optimized with respect to functions such

as maximization of biomass production or minimization of nutrient

utilization; it is solved accordingly to obtain a steady state flux

distribution, which is then used to interpret the metabolic capabilities

of the system.

In FBA, the constraints imposed by stoichiometry imply that for each

of the M metabolites in a network the net sum of all production

and consumption fluxes, weighted by their stoichiometric coefficients,

is zero:

XN

j¼1

Si jvj ¼ 0; i ¼ 1; . . . ;M ð1Þ

Here, Sij is the element of the stoichiometric matrix S corresponding

to the stoichiometric coefficient of metabolite i in reaction j. The flux

vj is the rate of reaction j at steady state, and is the j-th component

of an N-dimensional flux vector v, where N is the total number

of fluxes.

Additional constraints, including those pertaining to the availability

of nutrients, the reversibility of reactions, or the maximal fluxes

that can be supported by enzymatic pathways, can be introduced by

using the bounds � and � in the following inequalities:

�j � vj � �j ð2Þ

A natural choice for an objective function in metabolic models of

prokaryotes and simple eukaryotes is biomass production (Price et al.,

2004; Varma and Palsson, 1993), as it is reasonable to hypothesize

that unicellular organisms have evolved towards maximal growth

performance. This process is formalized by introducing a growth

flux that transforms a linear combination of fundamental metabolic

precursors into biomass. The maximization of biomass production is

implemented by defining an additional flux vgro associated with

cell growth. For this flux, the stoichiometric factors of the reactants

are the experimentally known proportions ci of metabolite precursors

Xi contributing to biomass production (Price et al., 2004):

c1X1 þ c2X2 þ � � � þ cMXM �!
vgro

Biomass ð3Þ

The search for the flux vector maximizing vgro under the constraints

of Equations (1) and (2) is solved using linear programming.

2.2 Expression-based measure for metabolic genes

We used Rosetta’s compendium dataset (Hughes et al., 2000) which

measures expression profiles of over 6200 S.cerevisae ORFs across

287 deletion strains and 13 chemical conditions. In addition, the dataset

contains 63 negative control measurements comparing two independent

cultures of the same strain. These were used to establish individual error

models for each ORF, providing not only the raw intensity and

the ratio measurement values for each experimental data point, but also

a P-value evaluating the significance of change in expression level.

The expression-based similarity (EXBS) measure between ORFs

X and Y was computed according to 1-|Spearman_rank(px,py)| where

px and py are expression profile vectors of X and Y, respectively,

and the Spearman rank was calculated as in Press et al. (2002).

2.3 Topology-based measure for metabolic genes

As proposed in Kharchenko et al. (2005), the metabolic network

structure can be used to calculate the network distance between genes.

Let us define a pair of directly connected metabolic genes as separated

by distance 1, and the network distance between genes X and Y to

be the length of the shortest path from X to Y in the metabolic network.

For sake of consistency, we call this measure a topology-based similarity

(TOBS) measure. While any metabolite can be used to establish

connections between metabolic genes, the relationships established

by the common metabolites and cofactors—such as ATP, water

or hydrogen—are not likely to connect genes with similar metabolic

functions. Hence, when compiling the metabolic network to this end,

we consider a subset of metabolites which excludes the most highly

connected metabolic species. An exclusion threshold was determined

based on the connectivity of the resulting network. A total of the

10 most highly connected metabolites (ATP, ADP, AMP, CO2, H,

H2O, NADP, NADPH, phosphate and diphosphate), which compose

1% of all metabolites, and their mitochondrial and external analogs

were excluded. Excluding up to the top 3% of all metabolites maintains

the general trends described above.

2.4 Phylogenetic profiling analysis

Ten sequenced fungal genomes (S.cerevisiae, C.albicans, C.glabrata,

C.neoformans, D.hansenii, E.cuniculi, E.gossypii, K.lactis, S.pombe,

Y.lipolytica) were used to construct phylogenetic profiles.

The phylogenetic profile of a gene is a string of ones and zeros

that encodes the presence or absence, respectively, of the gene in

the corresponding genomes. We define a conservation-based similarity

(COBS) measure to be the similarity between phylogenetic profiles,

computed using a normalized Hamming distance (Hamming, 1950).

The normalized Hamming distance measures the degree of overlap

between two sets of values, x and y, and is computed as the fraction

of unmatched non-zeros between x and y among all non-zeros of

x and y:

ĥðx; yÞ ¼
xTxþ yTy� 2xTy

n
;
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where kxk ¼ kxk22 ¼ kxk1 is the number of non-zeros in an

n-dimensional binary vector x.

2.5 Model-based similarity measures for metabolic genes

In the context of the aforementioned motivation, we suggest

two basic approaches for defining and measuring the similarity

between metabolic genes: a GRS measure and an ERS measure.

These are two complementary approaches, where the first reveals

the effect of a genetic perturbation on the metabolic surrounding of a

gene of interest, the other reveals the effect of the environmental

perturbations on the gene of interest. A schematic illustration of both

approaches can be seen in Figure 1.

2.5.1 Genetic response similarity Previous studies suggest that

the metabolic state of an organism following genetic perturbations

is close to that of the wild-type strain and does not necessarily achieve

optimal growth rates as predicted by FBA (Segre et al., 2002; Shlomi

et al., 2005). Specifically, regulatory on-off minimization (ROOM)

was shown to successfully predict the metabolic state of knocked-out

strains by minimizing the number of significant flux changes required

for the wild-type strain to adapt to the gene knockout (Shlomi et al.,

2005). Here, we use a variant of ROOM that uses the L1 norm to

minimize the number of significant flux chances (Kuepfer et al., 2005;

Shlomi et al., 2005) instead of L0 which is computationally harder.

We define the GRS similarity measure between two genes as

the distance between the ROOM solutions obtained for each of their

knockouts. In some cases, ROOM (similarly to FBA) does not provide

a unique solution, but rather a space of possible solutions. In these

cases, instead of arbitrarily choosing a single ROOM solution,

we define the GRS measure as the minimal distance between any

two ROOM solutions for both genes. This is achieved by formulating

a single optimization problem to find two ROOM solutions with

minimal distance between them. The pseudocode of the procedure

for computing GRS appears in Figure 2.

Throughout our study, we also examined the effect of excluding

the isoenzymes from the analysis, as the model is uncapable to define

which one of them is active. Notably, after exclusion of isoenzymes, the

results obtained remain qualitatively similar across the entire analysis.

2.5.2 Environment response similarity This measure aims

to capture the similarity betweens the patterns of flux activity of two

genes across a variety of growth media. To this end, we follow

and extend the approach of Bilu et al. (2006), which studied

the relation between the flux ranges of different reactions/genes

and their regulation and conservation. Specifically, we compute

genes’ activities across 100 randomly generated growth media, employ-

ing flux variability analysis (Mahadevan and Schilling, 2003; Reed

and Palsson, 2004): for each reaction we computed the maximal

and minimal flux values attainable in the space of optimal flux

distributions for growth conditions simulating 100 different growth

media. Random growth media were generated by setting limiting values

to the uptake reactions independently at random. With probability 0.5,

the maximal uptake rate was set to 0, i.e. only excretion was allowed.

Otherwise, uptake rate was limited to a value chosen uniformly

at random in the range [0.01, 5], at a resolution of 0.01. A similar

sampling method was used in Almaas et al. (2005). In addition, to

ensure sufficient variability between media, we switched between

aerobic and anaerobic growth media with probability 0.5.

For each generated growth medium, we predicted which of

the reactions are active, i.e. carry a non-zero metabolic flux (namely

either its maximum or minimum flux values are different than zero).

Active genes were denoted by ‘0’ and non-active ones by ‘1’. This

way we created for each gene a binary vector of its activity across a

series of generated media. We define the ERS measure as

the normalized Hamming distance (see Section 2.4) between two

binary vectors reflecting metabolic genes’ activity. The pseudo-code of

the entire procedure is presented in Figure 3.

3 RESULTS

Functional similarity between genes is commonly inferred based
on similarity in expression patterns across conditions (Eisen
et al., 1998; Tavazoie et al., 1999). Following this paradigm, we

define the ERS measure between gene pairs as the similarity1 in
their predicted flux activity patterns across multiple growth
environments (Fig. 1a and the Methods section).

(a) (b)

Fig. 1. A schematic illustration of two types of similarity measures between metabolic genes. (a) The ERS measure. Each element in vector u(v)

corresponds to the response of gene u(v) to environment i. (b) the GRS measure. Each element in vector u(v) corresponds to the response of flux i to

the knockout of gene u(v).

1For sake of clarity and for being consistent we use the similarity notion
instead of distance for all the measures presented in this study.
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Cellular response to a gene knockout involves rerouting

of metabolic flux through alternative pathways and

the utilization of isoenzymes (Emmerling et al., 2002).

We hypothesize that similar metabolic responses to gene

knockouts may provide evidence for similar metabolic

functionality between genes. Based on this hypothesis,

we define the GRS measure between gene pairs as the similarity

in the metabolic response following their knockout

(Fig. 1b and the Methods section).

We applied the proposed computational measures to

the metabolic network model of S.cerevisiae by Duarte et al.

(2004). The model consists of 1060 metabolites and 1149

reactions (accounting for 750 genes). The obtained ERS

and GRS measures were found to be significantly

correlated (R2
¼0.53, P-value ¼ 3.2 � 10�3), testifying

that indeed both measures capture the same overall signal.

The remaining analysis provides evidence that these

measures are indeed indicative of functional similarity

and outperform the strictly topological measures.

3.1 Validating the similarity measures based on GO

To assess the accuracy of the ERS and GRS measures,

we compared them to the GO functional annotations.

Specifically, we expect an accurate similarity measure to have

relatively high values for genes that are annotated with

the same GO term, and low values for genes in different

terms. In our analysis, we used all non-redundant

(i.e. containing different genes) GO terms of sizes between

5 and 100. The overlap between these gene sets is quite low,

as shown in Figure 1 of the Supplementary Material. For each

such GO term, we computed the average distance between

all genes annotated with this term. To assess the statistical

significance of the average distance, we compared it to average

distances obtained for 10 000 random sets of genes, whose

annotations were randomly shuffled while preserving

the overall annotation distribution, obtaining an empirical

P-value. The resulting P-values were further corrected

for multiple testing of the many annotations via the false

discovery rate procedure (Benjamini and Hochberg, 1995).

The averaged similarity measures and the corresponding

P-values are shown in the Supplementary Material.
We define a GO term to be consistent under some similarity

measure if the resulting P-value (after FDR correction) for

this term under this similarity measure is significant (�0.05).

Our results show that 86.5 and 18.7% of the GO terms are

consistent under the ERS and GRS measures, respectively

(Fig. 4). Interestingly, although the ERS provides better results

Fig. 2. The procedure for computing the GRS measure. First, for each

knocked-out gene the flux distribution is computed over the remaining

fluxes. Then for each pair of genes the minimal distance (under L1

norm) between the corresponding flux distributions is computed. When

solving LP problems, S is a stoichiometric matrix and vmin, vmax limit

nutrient uptake and define the reactions’ irreversibility.

Fig. 3. The procedure for computing the ERS measure. For each

simulated medium flux variability analysis is applied in order to create

an activity profile for each gene. Then the distance between the

computed profiles is calculated.
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overall, in some cases, only the GRS measure truly captures

the functional similarity within some GO terms. For example,

GRS finds the GO term 42 724 corresponding to thiamin

and derivative biosynthetic process to be consistent, while ERS

does not. The results suggest that GRS outperforms ERS only

for small GO terms (of size 5) where ERS does not receive

a P-value significant enough to define a GO term as consistent.

One putative reason for this may be the noisyness of the

ERS measure, due to the large number of genes that tend to be

active across many growth media. Comparing the ERS

measure with other commonly used measures of functional

similarity (Fig. 5 and theMethods section), we find that the ERS

measure outperforms both: the EXBS and COBS measures,

which obtain only 29.1 and 12.6% of consistent GO terms,

respectively. Moreover, 82 and 96.5% of consistent terms found

by EXBS and COBS measures were also found consistent by the

ERS method. Using an alternative similarity measure (the

Jaccard coefficient) between phylogenetic profiles provided

similar results. Additionally, we tested the COBS measure

with a different set of phylogenetic profiles, consisting of 17

higher eukaryotes (from NCBI’s HomoloGene’s database).

Using this dataset, only 5.6% of the GO terms were found to be

consistent under the COBS measure, testifying that conserva-

tion coherency is indeed much stronger among the closely

related yeast genomes. As a next step, we compared the accuracy

of the ERS and GRS measures to a measure obtained by

considering only the topology of the network—TOBS (Fig. 5).

We find that the ERS measure outperforms TOBS with 86.5%

against only 63.9% rate of discovering consistent GO terms.

ERS covers 82 and 96.5% while TOBS covers only 74 and 3.5%

of consistent GO terms found by EXBS and COBS, respectively.

To gain further insights as to why ERS outperforms

the simpler topological measure, it is illustrative to examine

the GO term 0006696 which corresponds to the process

of ergosterol biosynthesis, for example. As shown in Figure 6,

ergosterol biosynthesis is carried out through a long, chain-like

pathway, and hence the average distance between

genes annotated with this term is significantly high (with a

topological similarity P-value of 0.35). On the other hand,

since these genes form an unbranched linear pathway,

mass-balance constraint determines that all genes should

either be coherently active or non-active. In this case,

both the ERS and GRS measures show significant high

similarity scores with P-values of 9.99�10�5 and 1.7�10�3,

respectively. We note however that for this specific example,

the expression similarity term is also relatively high, with a

P-value of 1.8�10�3.
Other cases where the topological similarity measure fails

to identify true functional similarities relate to the identification

and removal of currency metabolites. The removal of

currency metabolites (which are hubs in the network) is

essential for the topological similarity measure to make

any sense. Without the removal of these metabolites, the

average distance between two genes is as low as 1.78

and only 1.3% of the GO terms are identified as consistent.

However, the removal of currency metabolites may cause

functionally related genes to be relatively far. For example, the

genes annotated as involved in GO term 15 698, corresponding

to inorganic anion transport dissociate into four densely

connected clusters in the network if the currency metabolite

inorganic phosphate is removed.

3.2 Validating the similarity measures based on gene

expression data

Similarity in gene expression patterns across multiple condi-

tions is commonly used as indication of functional similarity

(Eisen et al., 1998; Tavazoie et al., 1999). Specifically, this

paradigm is further strengthened in the context of metabolic

Fig. 4. A Venn diagram displaying the consistency of GO terms under

the ERS and GRS measures.

Fig. 5. A Venn diagram presenting the consistency of GO terms under

ERS and TOBS versus the EXBS (a) and COBS (b) measures.
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genes, whose expression is adjusted ‘just-in-time’ according

to metabolic demands (Zaslaver et al., 2004). Notably,

although similarity in expression is believed to be indicative

of functional similarity, a comparison between the two only

reveals a moderate correlation (Sevilla et al., 2005), with this

claim further supported in the results shown in Figure 5.

Measuring the correlation between the GRS and EXBS

measures we observed (see Fig.7a) a moderate correlation

(R2
¼0.38 with a P-value of 2.1�10�2). As for the ERS

measure, we observe (see Fig. 7a) that it exhibits a strong

correlation with the expression similarity (R2
¼0.94 with

a P-value of 1�10�9). The correlations were obtained using

a linear binning procedure (Sevilla et al., 2005) which

averages one measure values over uniform intervals of the

second measure. We note that our results regarding

the correlation between ERS and expression similarity are

in agreement with previous findings (Bilu et al., 2006;

Famili et al., 2003; Reed and Palsson, 2004; Schuster et al.,

1999, 2002).
Measuring the topological similarity measure and expression

similarity showed a weaker, but still strong correlation of

R2
¼0.78 (P-value = 6.6�10�5), demonstrating that genes

closer to each other in the metabolic network tend to have, on

average, higher level of co-expression (Fig. 7b), in agreement

with the previous findings of Kharchenko et al. (2005).
Finally, we tested whether the ERS measure is advantageous

over the TOBS measure, using a partial correlation

test (Kendall and Stuart, 1969). The partial correlation

method quantifies the correlation between two variables

whilst eliminating the effects of another variable on this

relationship, namely network distance in our case. Our results

show a significant partial correlation (R2
¼ 0.65, with

a P-value of 3.8�10�6) between ERS and similarity in

expression levels. This result further supports the claim

that the ERS similarity measure better captures the true

functional similarity between genes compared to the TOBS

topological measure. Furthermore, this result reaffirms FBA’s

ability to accurately predict metabolic behavior across

multiple conditions.

Fig. 6. The ergosterol biosynthesis pathway. Each node (rectangle)

represents an enzyme [except for the last one (ellipse) representing the

final product—ergosterol]. Each edge represents a metabolite which is

produced by one enzyme and consumed by the following one in the

pathway. Since ergosterol biosynthesis is carried out through a long,

chain-like pathway, the average distance between genes annotated with

this term is significantly high, while mass-balance constraint determines

that all genes should either be coherently active or non-active. Thus

ERS outperforms the TOBS topological measure.

Fig. 7. Correlation between co-expression levels (EXBS) and model-based (GRS and ERS) or topology-based (TOBS) measures. The correlation is

obtained by dividing the EXBS axis into uniform intervals and averaging the corresponding values of GRS, ERS and TOBS in each interval.

(a) GRS/ERS measures. (b) TOBS measure.
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4 DISCUSSION

This article shows that metabolic network-based similarity

measures between genes can go beyond previous measures

that are based solely on network topology. We applied

two schemes to compute this similarity: the GRS scheme and

the ERS scheme. While the former shows a fairly moderate

correlation with the experimental results as well as a

pretty modest ability for explicating GO terms, the latter

provides a strong, statistically significant measure. One possible

explanation of this behavior may be that the ERS studies probe

the natural wild type across a variety of media, whereas

the GRS method does it in less natural strains and in a sole

media. Another reason may be the more cumbersome

computational method used in the GRS case, which is

likely to add significant noise to the results obtained.
Furthermore, when examining the correlation with

co-expression levels, one can observe that the GRS measure

shows a certain decline as levels of EXBS approach 1. We

believe that this phenomenon is driven by the nature of

the GRS measure which is based on an underlying process

of rerouting the metabolic fluxes through isoenzymes

and alternative pathways. Recently, Kafri et al. (2005) have

shown that in yeast most duplicate-associated backups involve

genes that—on average—are not strongly co-expressed.
Notably, one cannot expect to find a 100% accuracy

in finding consistent GO terms under the model-based

measures as well as an absolute correlation between

the model-based measures and gene co-expression. In essence,

the fluxes predicted by the ERS measure across various growth

media reflect a ‘wishful thinking’ of an ideal system whose

regulatory apparatus has developed with the sole optimization

objective of maximizing growth. In this sense, the high levels

of consistent terms (80–90%) and the high levels of correlations

(0.8–0.9) found with the ERS measure in this study are truly

striking.
Similarity in gene expression patterns across multiple

conditions is commonly used as an indication of functional

similarity. However, our results show that in many cases

genes that are annotated with the same GO term are not

expression coherent. Specifically, we find that only �30%

of the GO terms are composed of genes which are expression

coherent. This lack of expression coherency may be the result

of the complex interplay ongoing between metabolic

and hierarchical regulation (ter Kuile and Westerhoff, 2002).

Remarkably, the ERS and GRS measures show significant high

similarity values for 62.6 and 13% of the GO terms that are

not expression coherent, showing their advantage over this

traditional similarity measure.

One important problem that can be addressed in this context

is that of functional prediction of gene annotation. It is

well known that sequence similarity predicts rather well

GO function annotations but fails to predict GO process

annotation. In a similar vein, we computed the correlation

between GO function and process annotations and sequence

similarity of metabolic genes, using the measure of semantic

similarity introduced by Resnik 1995. We observed a

significant correlation between sequence similarity and

GO functional annotations (R2
¼0.95, P-value ¼ 2.3�10�5),

while for process annotation the correlation was very low

and insignificant (R2
¼0.4, P-value ¼ 0.2). Hence, quite

obviously there is much room for new approaches for

process annotation. Our study suggests that model-based,

topology-based and expression measures can contribute to

the GO process annotation in a synergistic manner, with ERS

having the largest potential contribution. Nevertheless, the

goal of the method presented is not to provide functional

annotation of new, unannotated genes, but rather to explore

the functional relations between genes across the network,

showing quite a few novel and interesting insights.
Finally, it is pertinent to consider the role of genomic

and annotation information used in the reconstruction of

the metabolic networks that are at the basis of our approach.

We believe that one of the main ideas underlying the study

of networks in systems biology is that one may find emergent

network properties, i.e. new phenomena that were not explicit

when constructing the network from its basic building blocks.

The same idea is applied in this work: although genomic

and annotation information have been used during the

reconstruction of the metabolic network, our model is further

based on considerable additional information, including

the intrinsic network topology, the reactions stochiometry,

the growth media and the mass balance and biomass

maximization assumptions. All these transcribe together in

a complex manner to reveal additional and different functional

roles/annotations of the genes involved, as testified to by

the results we report in this article. Specifically, one can note

that our approach is essentially different than using similarity

that is solely computed based on GO annotations (known also

as semantic similarity). First, the latter is based on

the partitioning of genes to groups/terms while this partition

does not explicitly exist in the metabolic network. Furthermore,

as we show by comparing to expression and conservation data,

the functional similarity measures presented in this article

outperform the metabolic network TOBs measure which

is obviously closely related to the GO annotation.
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