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Utilizing yeast chemogenomic 
profiles for the prediction of 
pharmacogenomic associations in 
humans
Yael Silberberg1, Martin Kupiec1 & Roded Sharan2

Understanding the genetic basis underlying individual responses to drug treatment is a fundamental 
task with implications to drug development and administration. Pharmacogenomics is the study of 
the genes that affect drug response. The study of pharmacogenomic associations between a drug 
and a gene that influences the interindividual drug response, which is only beginning, holds much 
promise and potential. Although relatively few pharmacogenomic associations between drugs 
and specific genes were mapped in humans, large systematic screens have been carried out in the 
yeast Saccharomyces cerevisiae, motivating the constructing of a projection method. We devised a 
novel approach for the prediction of pharmacogenomic associations in humans using genome-scale 
chemogenomic data from yeast. We validated our method using both cross-validation and comparison 
to known drug-gene associations extracted from multiple data sources, attaining high AUC scores. We 
show that our method outperforms a previous technique, as well as a similar method based on known 
human associations. Last, we analyze the predictions and demonstrate their biological relevance to 
understanding drug response.

In the genomic era, personalized medicine has been in the focus of the medical field with the promise of safer 
and more efficient patient-tailored treatment1. To realize it, one must gain a deeper understanding of individual 
drug responses and the underlying genetic variance involved in their activation. Pharmacogenomics (PGx) is 
the study of the genetic basis underlying individual variation in drug response. As such, identifying PGx associ-
ations between genes that affect drug response and the corresponding drugs is the first step toward patient- tai-
lored medicine. By its nature, PGx associations are not constrained to physical drug-gene interaction, and may 
involve genes that indirectly affect drug response such as disease-related genes2, in addition to physical interac-
tions such as drug receptors or metabolizing enzymes3. The number of PGx associations started to bloom with 
the emergence of high throughput genomic technologies; however, the discovery of PGx associations is still far 
from completion4–6 with only a few thousands associations available in public databases such as PharmGKB7 and 
GWASCatalog8.

A few methods for the automatic prediction of PGx associations have been proposed in the literature. Hansen 
and co-workers9 characterized a gene using its network neighbors and scored its association to a drug, based on 
known associations of the gene neighbors to similar drugs. Their method thus crucially depends on the availa-
bility of protein-protein interaction data and prior knowledge on PGx associations. Another study10 used bio-
medical knowledge and functional annotations to predict genes that either affect drug response or are involved 
in disease. The predictions of this method, however, lack the distinction between the drug-related genes and the 
disease-related genes, and provide only a list of putative genes without the relevant context (i.e. its associated 
drugs or diseases). A genome-scale, unbiased effort for PGx discovery was performed in the context of cancer 
research: Barretina and co-workers evaluated extensive genomic data from different cancer cell lines and analyzed 
variations in cell lines responses to compounds in order to recover key genomic predictors of drug sensitivity11. 
However, these predictions were made in the context of a specific disease.
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Earlier work known as the connectivity map project12 set to map genes that are involved in drug response in 
humans, with the goal of finding novel connections between diseases and drugs. Gene expression response was 
measured for over a thousand drugs in multiple cell lines, identifying genes whose activity is altered upon drug 
administration. While this is a valuable resource about the workings of drugs, the resulting data cannot be directly 
used to infer pharmacogenes, i.e., genes that affect drug response, but rather identifies the effect of a drug by high-
lighting genes which alter their activity in its presence.

Remarkably, genes that affect the cell’s sensitivity to drug administration have been carefully cataloged in 
yeast for over a decade. A collection of strains is available, each deleted for a different gene. The complete dele-
tion library in yeast was screened in the presence of a large number of chemical compounds, and the growth 
phenotype of all strains were measured13. Thus, the so-called chemogenomic profile of a drug captures knockout 
strains whose sensitivity to the drug is altered compared to the wild type. Two main types of profiles exist: (i) The 
haploinsufficient profile (HIP), which measures the growth fitness (i.e., the growth ability of a knockout strain 
vs. the wild type) of a diploid yeast strain heterozygous for the gene deletion in the presence of a drug, and (ii) 
the homozygote profile (HOP), which quantifies the fitness of a diploid strain homozygote for a particular gene 
deletion; this analysis is, of course, applicable for non-essential genes only. Previous studies have demonstrated 
the relevance of these data in uncovering drug mechanism of action14, drug targets15,13 and drug off-targets16 in 
yeast. For example, Parsons and co-workers10 screened 12 inhibitory compounds and clustered the resulting che-
mogenomic profiles with a set of genetic interaction profiles to illuminate the drug’s targets and drug’s pathways 
in yeast. They showed that the chemogenomic profile of an inhibitory drug resembles the genetic interaction 
profile of the gene the drug inhibits, allowing the discovery of drug targets and proteins related to a drug’s mode of 
action. Their method is, however, limited to inhibitory compounds, and provides prediction to drug-target genes 
in yeast only. Ericson et al.16 aimed at identifying off target effects of psychoactive drugs in yeast by screening 81 
bioactive drugs and analyzing the resulting chemogenomic profiles. Their analysis again remains bounded to 
yeast genes and pathways only.

The projection of the chemogenomic association in yeast to infer valuable drug mode-of-action in humans is 
a complex task, which requires careful identification of relevant chemogenomic associations, as well as the devel-
opment of a method allowing the projection of the identified drugs and yeast genes to human genes and relevant 
drugs of interest.

In this paper, we utilize three of the largest chemogenomic experiments available17–19 to predict pharmacog-
enomic associations in humans based on the similarity between human and yeast genes, drug similarity meas-
urements and the measured effect of a drug on a yeast deletion strain. In cross-validation our method obtains a 
very high area under the receiver operating characteristic curve (AUC) of 0.95, outperforming previous methods 
based on existing knowledge of human drug-gene associations. Our predictions are also in accordance with well 
established drug-gene association data sources that were not used in the learning stage. Genes involved in the 
predicted PGx associations were found to be enriched with biologically relevant processes.

Results
We designed a novel prediction scheme that scores a potential PGx association by its similarity to a chemog-
enomic interaction in yeast and the confidence of that interaction (Fig. 1). Each potential PGx association was 
scored by applying a machine learning technique on a set of eight unique features, each representing a distance 
to a chemogenomic association based on three similarity measurements. The core of our method is the feature 
score, which takes into account the similarity between the query drug and all drugs tested in yeast, the similarity 
between the human and yeast genes, and the chemogenomic score as observed in yeast. The feature score was cal-
culated by applying the geometric mean on the three measurements, across all drugs and yeast genes in a chemog-
enomic database, and then choosing the maximal score (Fig. 1B). The maximal score represents the most similar 
drug-gene pair in yeast, with an observable chemogenomic reaction, eliminating the noise raised from genes 
that did not alter drug response in yeast, and the noise raised from a chemogenomic association for non-similar 
drugs or non-similar genes to the query pair. The geometric mean assigns to each of the tree measurements an 
equal contribution to the final feature score. Formally, a feature score for PGx association between a drug D and 
a human gene G is calculated as follow:

= ⁎ ⁎F D, G DrugSim D d HipHopScore d g GeneSim g, G( ) max ( , ) ( , ) ( ) (1)d,g 3

where d, g range over all drugs and yeast genes present in the relevant chemogenomic data set.
We constructed two drug-drug similarity measures (chemical- and ATC- based), two gene-gene similarity 

measures (sequence- and domain-based) and two types of chemogenomic association scores (HIP and HOP) (see 
Methods for a full description). Combining three out of the six similarity measurements into a single score results 
in a set of eight features per potential association (Table 1).

We obtained three large scale data sources of chemogenomic interactions from Hillenmeyer and co-workers17, 
Lee and Co-workers and Hoepfner and co-workers19, each of which contains both HIP and HOP scores for a 
different set of drugs tested (Methods). From each data source we extracted the HIP/HOP scores provided by 
the author describing yeast chemogenomic profile of drug administration. We considered only drugs and genes 
which were mapped to our ground set, to which drug and gene similarity measurements were available, and thus 
feature construction was feasible. We then used the three data sources to derive 24 features, eight features derived 
from each data set, characterizing each potential PGx association. Finally, we trained a Random Forest classifier 
on the set of 24 features to predict PGx associations. The process resulted in predictions of PGx associations 
between 27,311 human proteins, to which gene similarity calculation was feasible, and 1,333 drugs to which drug 
similarity calculation were feasible, covering the majority of FDA approved drugs. All our reported results are 
with respect to this ground set of genes and drugs. We evaluated our results using a 10-fold cross validation against 
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Figure 1. (A) Algorithmic pipeline: Step 1: using genetic datasets (e.g. PFam), drug datasets (e.g. DrugBank) and 
chemogenetic datasets (e.g. Lee) to construct gene similarity measurements, drug similarity measurements and HIP/
HOP scores respectively. Step 2: Example of how to combine the three similarity measurements (gene similarity, 
drug similarity and HIP/HOP score) to construct one feature score. Step 3: Generating eight feature scores for each 
of the three main HIP/HOP data-sources, resulting in three three-dimentional feature matrices. Step 4: Uniting the 
three feature matrices into one matrix with 24 features. Using true PGx association extracted from PharmGKB as 
the positive training set, and applying Random Forest classifier to predict PGx associations. (B) Feature construction 
example, demonstrating step 2 in the algorithmic pipeline. The feature score for a given PGx association between a 
drug D, and human gene G, is the maximal geometric mean of three measurements, across all drugs and genes in 
a chemogenomic database. In this example the maximal score (marked in red) is achieved by the geometric means 
of the three following measurements: (i) the chemical similarity between the query drug and the drug marked in 
blue (ii) the domain similarity between the human query gene and the yeast gene marked in green and (iii) the HIP 
chemogenomic association between the drug marked in blue and the yeast knock-out gene marked in green.
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gold standard PGx associations retrieved from PharmGKB (Methods), consisting of 680 direct drug-gene associ-
ations and 760 additional associations extrapolated from drug-gene class relations. Both types of associations gave 
similar performance in cross validation (AUC of 0.92 ±  0.007 for the direct associations vs. 0.95 ±  0.004 for the 
complete set; area under the precision-recall curve (AUPR) of 0.93 ±  0.006 vs. 0.96 ±  0.003, respectively), hence 
we used the entire set of 1,440 associations as our gold standard in the sequel. We repeated the cross-validation 
with different sizes of negative sets ranging from a negative set whose size is equal to the positive set and up to 
50-fold larger. The resulting AUCs and areas under the precision-recall curves are summarized in Fig. 2. As 
observed in the figure, while the AUCs are unaffected by class imbalance, the AUPRs deteriorate as the number 
of negative examples increases. However, even in the most unbalanced setting, we were able to obtain a high pre-
cision score of 0.98 (for a classification score cutoff of 1), although at a lower recall value of 0.25. Henceforth, we 
applied this strict cutoff in order to minimize false positive predictions.

To evaluate the contribution of the yeast chemogenomic interactions to the prediction power of our method 
we applied our method on the same subset of PGx associations, omitting the chemogenomic interactions from 
feature calculation. To this end, we used a similar scheme that scores a feature for a potential PGx association by its 
similarity to known PGx associations in humans using drug and gene similarity measurements only (Methods). 
This method yielded an AUC score of 0.84, demonstrating the added value obtained by integrating yeast che-
mogenomic interaction information into the prediction framework. To validate the robustness of the results, we 
excluded 5% of the drugs with the highest sums of CGI scores from each data set (Methods) and repeated the 
feature calculation and classifier learning steps without this set of drugs. We verified that neither the quality of 
predictions (as measured in cross validation), nor the quantity of the predictions is affected by the drug removal. 
Indeed, both AUC and AUPR remain essentially unchanged (AUC =  0.96 ±  0.003 and AUPR =  0.96 ±  0.002), and 
the total number of predicted PGx associations remained similar with 136,840 ±  25,680 predictions in the new 
setting vs. 118,901 ±  16,912 in the original set (averaged over 10 random negative sets).

Feature formulation

= ⁎ ⁎F D G ChemSim D d HIPScore d g BlastSim g G( , ) max ( , ) ( , ) ( , )d g1 , 3

= ⁎ ⁎ ⁎F F G ChemSim D d HIPScore d g PFamSim g G( , ) max ( , ) ( , ) ( , )d g2 , 3

= ⁎ ⁎F D G ATCSim D d HIPScore d g BlastSim g G( , ) max ( , ) ( , ) ( , )d g3 , 3

= ⁎ ⁎ ⁎F F G ATCSim D d HIPScore d g PFamSim g G( , ) max ( , ) ( , ) ( , )d g4 , 3

= ⁎ ⁎F D G ChemSim D d HOPScore d g BlastSim g G( , ) max ( , ) ( , ) ( , )d g5 , 3

= ⁎ ⁎ ⁎F F G ChemSim D d HOPScore d g PFamSim g G( , ) max ( , ) ( , ) ( , )d g6 , 3

= ⁎ ⁎F D G ATCSim D d HOPScore d g BlastSim g G( , ) max ( , ) ( , ) ( , )d g7 , 3

= ⁎ ⁎ ⁎F F G ATC D d HOPScore d g PFamSim g G( , ) max Sim ( , ) ( , ) ( , )d g8 , 3

Table 1.  A list of the eight features derived from each data source.

Figure 2. Cross validation. (A) Precision recall graph evaluating cross validation performance, using different 
sizes of negative sets (B). ROC graph evaluating cross validation performance, using different sizes of negative sets.
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We further compared our method with the one previously published by Hansen and co-workers9, which is, 
to the best of our knowledge, the only previous method predicting PGx associations in a large scale. Hansen 
used two types of drug-gene associations, two measures of drug-drug similarity and the protein-protein inter-
action (PPI) network to construct a set of four features for a potential PGx association (Methods). Each feature 
represents the similarity of a query drug to a drug known to associate with a PPI-neighbor gene of the query 
genes, based on the assumption that neighbor genes tend to associate with similar drugs. Each PGx association 
is scored by applying a logistic regression classifier on the set of the four features (Methods). To compare our 
method with that of Hansen, we defined a valid association set for each method as the set of associations for 
which feature calculation was feasible, based on data availability (Methods). Out of the 3075 PGx associations 
retrieved from PharmGKB, 1400 (45%) were valid for our method, while only 389 (13%) associations were valid 
for Hansen’s method, demonstrating the more than 3-fold power of our method to detect true associations. Out 
of these associations, 140 were valid for both methods. We trained each method on the set of all its valid PGx 
associations (minus the intersection set) and an equally sized set of random negative associations, and compared 
their performance on the 140 common associations. Our method obtained an AUC of 0.95 vs. 0.74 when using 
Hansen’s method.

Next, we validated our predictions against two external data sources: (i) Drug-gene associations downloaded 
from DrugBank20, a chemoinformatics data source of drugs and small molecules and their targets; and (ii) the 
Small Molecule Pathway Database (SMPDB)21, a manually curated database of small molecule pathways in 
humans. The results are summarized in Fig. 3.

For the first comparison, we used a set of drug-gene associations downloaded from DrugBank. Each drug 
stored in DrugBank may be associated with one or more proteins in each of the following categories: (i) Drug 
target: representing a protein to which the drug binds, leading to the therapeutic effect. (ii) Enzyme, catalyzing 
chemical reactions in which the drug serves as the substrate. (iii) Transporter: a membrane bound protein which 
transfers the drug across membranes, into or out of the cells. Or (iv) carrier: a protein facilitating the trans-
mission of the drug to the transporter protein. We extracted 1,239 drug-target associations between 581 genes 
and 496 drugs from our ground set; 1,106 drug-transporter associations between 76 genes and 423 drugs from 
our ground set; And 2,562 drug-enzyme associations between 126 genes and 742 drugs from our ground set. 
Only two drug-carrier associations were available for our ground set, and thus they were dismissed from further 
analysis. Our predictions obtained AUC scores of 0.69, 0.86 and 0.95 with regard to drug targets, transporters 
and enzymes, respectively. This suggests that metabolic enzymes may have a higher effect on the drug response 
than drug targets, e.g. failing to metabolize a drug may cause severe side effects, which may be noticeable in cell 

Figure 3. Performance evaluation. (A) Areas under the curves (AUC) obtained in a 10-fold cross-validation 
setting comparing our method (yeast based) to a similar human-based method, omitting the HIP/HOP score 
from feature construction. (B) AUC scores obtained for 140 joint valid associations in both our method and 
Hansen’s. (C) Performance evaluation on external data sources: A comparison of our predictions to different 
pathway categories downloaded from The Small Molecule Pathway Database (SMPDB). (D) A comparison of 
our prediction to different association types extracted from DrugBank.
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viability in yeast3. Alternatively this observation may result from a higher conservation between human and yeast 
metabolic enzymes than drug-target genes, many of which lack a yeast homolog16, allowing for a more accurate 
prediction of metabolic enzymes using our method.

To compare our predictions to SMPDB, we downloaded 718 pathways for over 600 drugs, 244 of which were 
present in our ground set. For each of the six pathway categories stored in SMPDB (metabolic, drug metabolism, 
drug action, disease, signaling and physiological) we constructed a drug-gene association matrix based on path-
ways associated with that category and their corresponding genes and drugs. The association was made based on 
the assumption that genes involved in a drug’s pathway are likely to confer sensitivity to the drug when mutated. 
We generated ROC curves for each pathway type independently (Methods). The resulting AUC scores ranged 
between 0.71 and 0.87 for the different pathway types, with an average of 0.75 (Fig. 3). The highest AUC score 
belonged to the ‘drug metabolism’ category, in line with previous studies reporting that drug metabolism plays a 
key role in variation to drug response among individuals3.

After establishing the accuracy of our method, we turned to evaluate our predictions. By focusing on the top 
predictions with a perfect classification score of 1, we obtained 124,010 novel predictions between 3,586 proteins 
and 1,197 drugs (out of 36,405,563 possible associations between 27,311 proteins and 1,333 drugs). Top predic-
tions are provided in supplementary Table S1, the full prediction list is available for download at www.cs.tau.
ac.il/~roded/PGxPredictions.zip. Figure 4 displays the distribution of the number of PGx associations predicted 
per drug. While over 85% of the drugs were associated with less than 200 pharmacogenes, we found a small group 
of 26 drugs associated with over 600 genes (see Fig. 4). Out of the 26 drugs, 23 belong to the antidepressant class 
(hyper-geometric p-value < 2.5e−26, see Table 2). We noticed that these drugs also have significantly more known 
PGx associations stored in PharmGKB than other drugs (average of 8.65 vs. 0.93, Wilcoxon ranksum p-value 
< 1.6e−12) and significantly more known associations with enzymes stored in DrugBank (average of 3.9 vs. 2, 
p-value < 1.2e−4). To evaluate the relevance of the predicted pharmacogenes to antidepressant treatment, we com-
pared the list of the predicted pharmacogenes to a set of proteins known to associate with depression, retrieved 
from Diseases22 (Methods). Out of the 55 depression-related proteins retrieved from Diseases, 34 were found in 
our ground set, six of which were found in the predicted list of antidepressant-pharmacogenes (hypergeometric 
p-value <  1.2e−6).

To investigate the biological mechanism underlying the predicted response to antidepressants, we analyzed the 
functional annotations of the corresponding pharmacogenes. Overall, 112 GO processes were enriched in this set 
of pharmacogenes (e-val <  0.01). The top three enriched annotations involved drug metabolism (xenobiotic met-
abolic process, drug catabolic process and exogenous drug catabolic process, q-val <  3e−20). Indeed, variations in 
the activity of metabolic enzymes are currently the genetic factors most associated with response to antidepres-
sants and antipsychotics23.Moreover, antidepressants are a class of drugs known to be ineffective in a particularly 
high percentage of patients in comparison to other drug classes (up to 50% of individuals)24–26. The high number 
of metabolic enzymes exhibiting sensitivity for antidepressant response may suggest one explanation for this high 
diversity in drug response among the population. More interesting perhaps, was the GO-category ‘response to 
hormone’, which was also enriched in this set of genes (q-value <  1.4e−4). Indeed, it is widely acknowledged that 
hormones, and especially sex hormones, play a role in depression mechanisms and affect the success of antide-
pressant treatment27–30. Within this GO-category we found four proteins belonging to the GNB family (GNB1, 
GNB3, GNB5 and GNB2L1) that are predicted to associate with this set of antidepressant drugs. Out of these 
proteins, GNB3 is a serotonin-related gene, whose polymorphism was reported to be associated with depression 
in a meta-analysis31. A following study associated polymorphisms in this gene with differences in short-term 
response to antidepressant treatment32.

Figure 4. Distribution of number of pharmacogenes associations per drug. 

http://www.cs.tau.ac.il/~roded/PGxPredictions.zip
http://www.cs.tau.ac.il/~roded/PGxPredictions.zip


www.nature.com/scientificreports/

7Scientific RepoRts | 6:23703 | DOI: 10.1038/srep23703

At the other extreme we checked for drugs with the smallest number of associated genes and found 252 drugs 
(19%) that were associated with five or less pharmacogenes. These drugs were enriched with several categories 
including ‘contrast medium’ (hyper-geometric p-value <  8.6e−12), ‘anti-inflammatory agents’ (hyper-geometric 
p-value <  7.4e−10) and ‘diagnostic agents’ (hyper-geometric p-value <  2e−8), see Table 3. Many of this categories 
(e.g. anti-inflammatory agents), are not expected to be active in yeast, explaining the low number of associa-
tion predicted for this drugs. Among the drugs with a small number of predicted PGx, we found three anabolic 
agents: oxandrolone, nandrolone phenpropionate and ethylestrenol; all three were associated with the LATS2 pro-
tein (large tumor suppressor kinase 2), a serine/threonine kinase that regulates cell organization during mitosis. 
LATS2 is known to interact with Androgen Receptor, AR, which is the known target of both nandrolone phen-
propionate and oxandrolone. Moreover LATS2 was shown to mediate repression of AR activity33. Nandrolone 
phenpropionate, which is used to treat, among others, breast carcinoma, was further associated with the MDC1 
protein (mediator of DNA-damage checkpoint 1). The level of MDC1, a critical component in DNA damage 
response, was shown to be aberrantly reduced in 30% of breast carcinoma tissues34, and its expression was fur-
ther suggested as a prognostic marker in early-stage breast cancer35. Last, MDC1 was shown to participate in 
AR-mediated p53-dependent apoptosis in prostate cancer36.

To test whether drugs with many PGx predictions affect the results, we repeated the cross-validation and 
external evaluation steps after removing drugs with more than 600 or 150 predicted associations (Methods). 
While removing drugs according to the higher cutoff did not affect the performance, removing drugs with over 
150 predicted associations slightly deteriorated the performance for both cross validation and external validation 
steps, possibly due to the significantly lower number of positive example in the training set (1400 vs. 479). The 
results are summarized in Table 4, further demonstrating the robustness of our approach.

Discussion
We have developed a novel method for the prediction of PGx associations, by harnessing chemogenomic data 
from yeast. Using our method we were able to obtain predictions of PGx associations between 27,311 human pro-
teins and 1,333 drugs (covering the majority of FDA approved drugs), based on a small subset of relevant drugs 

Drug name Drug class

phenelzine Antidepressive Agents | Monoamine Oxidase Inhibitors

trazodone Antidepressive Agents, Second-Generation | Anti-Anxiety Agents | Sero-
tonin Uptake Inhibitors

fluvoxamine Antidepressive Agents, Second-Generation | Anti-Anxiety Agents | Sero-
tonin Uptake Inhibitors

tacrine Nootropic Agents | Cholinesterase Inhibitors | Parasympathomimetics

l-tryptophan Antidepressive Agents, Second-Generation

amitriptyline Antidepressive Agents, Tricyclic

amineptine

paroxetine Serotonin Uptake Inhibitors | Antidepressive Agents

iron Trace Elements | Anti-anemic Agents | Supplements

tranylcypromine Antidepressive Agents

mirtazapine Histamine H1 Antagonists | Antidepressive Agents, Tricyclic | Adrener-
gic alpha-Antagonists

iproniazid

nefazodone Antidepressive Agents, Second-Generation

clomipramine Serotonin Uptake Inhibitors | Antidepressive Agents, Tricyclic

duloxetine

protriptyline Adrenergic Uptake Inhibitors | Antidepressive Agents, Tricyclic

minaprine Antidepressive Agents

vilazodone Serotonin Uptake Inhibitors | Serotonin Receptor Agonists | Antidepres-
sive Agents

citalopram Antidepressive Agents, Second-Generation | Serotonin Uptake Inhibi-
tors | Antidepressive Agents

sumatriptan Vasoconstrictor Agents | Serotonin Antagonists

venlafaxine Antidepressive Agents

reboxetine

maprotiline Antidepressive Agents, Second-Generation | Adrenergic Uptake Inhibi-
tors | Antidepressive Agents

nortriptyline Adrenergic Uptake Inhibitors | Antidepressive Agents, Tricyclic | Antide-
pressive Agents

amoxapine Antidepressive Agents, Second-Generation | Serotonin Uptake Inhibi-
tors | Adrenergic Uptake Inhibitors

doxepin Adrenergic Uptake Inhibitors | Antidepressive Agents

Table 2.  Drugs predicted to have the highest numbers of associated PGx. Categories extracted from 
DrugBank and are ‘|’ delimited.
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screened in yeast. Our method was cross validated, as well as validated against independent test data, yielding 
high AUC scores. We demonstrated the added value of using chemogenomic associations from yeast by compar-
ing to a similar method based on existing knowledge in human.

With the rapid growth of current pharmacogenomic knowledge, the predictive power of our method is 
expected to increase. In addition, our method can easily be extended by introducing new similarity measure-
ments, expected to improve the accuracy of the prediction. For example, the gene similarity measurements used 
here (BLAST and PFam based), are both structure-based. While Blast similarities were limited to significant 
alignments only, retrieving a small set of human homologs for each yeast gene, the PFam similarity measurement 
is able to match more human orthologs per yeast gene, resulting in more potential PGx associations. The different 
measurements are balanced by the classifier, which weights the different features according to their contribu-
tion in identifying true associations. Expanding the scope of gene similarity measurements (e.g. by introducing 

Drug category
Hyper geometric 

p-value # drugs

Histamine H1 Antagonists 7.59E-09 22

Contrast Media 9.21E-09 11

Diagnostic Agents 4.98E-07 11

Anti-Inflammatory Agents, Non-Steroidal 1.26E-06 21

Bisphosphonates 8.06E-06 7

Muscle relaxant, Skeletal 1.12E-05 8

Anti-Inflammatory Agents 2.99E-05 24

Anti-Allergic Agents 5.56E-05 13

Histamine Antagonists 5.56E-05 13

Cyclooxygenase Inhibitors 2.75E-04 10

Histamine H1 Antagonists, Non-Sedating 1.19E-03 5

Antiresorptives 1.25E-03 4

Muscle Relaxants, Genitourinary 1.25E-03 4

Neuromuscular Nondepolarizing Agents 1.25E-03 4

Bronchodilator Agents 1.52E-03 10

Oxytocics 3.51E-03 5

Antihypocalcemic Agents 4.84E-03 7

Nicotinic Antagonists 5.33E-03 4

Anti-Incontinence Agents 6.69E-03 3

Cyclooxygenase 2 Inhibitors 6.69E-03 3

Bone Density Conservation Agents 7.35E-03 8

Muscle Relaxants, Central 8.51E-03 6

Indicators and Reagents 2.30E-02 3

Insecticides 2.30E-02 3

Neuromuscular Agents 2.71E-02 4

Carbonic Anhydrase Inhibitors 3.56E-02 2

Expectorants 3.56E-02 2

Hormone Replacement Agents 3.56E-02 2

Leukotriene Antagonists 3.56E-02 2

Muscle Relaxants, Respiratory 3.56E-02 2

Phosphodiesterase 5 Inhibitors 3.56E-02 2

Adrenergic alpha-1 Receptor Antagonists 4.63E-02 4

Anti-Asthmatic Agents 4.95E-02 3

Table 3.  Enriched categories in drugs with few PGx associations.

#Drugs removed
Maximal number of PGx 

predictions per drug
# positive exam-

ples in training set

Cross validation AUC w.r.t. DrugBank associations

AUC AUPR
Drug 

targets
Drug trans-

porters
Drugs 

enzymes

26 600 1215 0.95 0.96 0.69 0.85 0.94

351 150 479 0.93 0.94 0.64 0.81 0.92

Table 4.  Cross validation and external evaluation on filtered set of drugs, removing drugs with high 
volume of predictions. The filtered sets of drugs were evaluated by cross validation, reporting the AUC and 
AUPR scores. Next PGx predictions were obtained and compared to drug-gene associations extracted from 
DrugBank. Area under ROC curve for three gold-standard association types is reported.
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GO-based similarity), may both increase the range of our prediction by finding additional similar human genes, 
and refine the current predictions by requiring genes to be similar in multiple aspects. In a similar manner, our 
method is readily extensible to other sources on chemogenomic associations. Chemogenomic association derived 
from Schizosaccharomyces pombe37, Candida albicans38 or Escherichia coli39 may not only refine our prediction, 
but also expand the collection of potential human orthologs. Last, using data sources such as chemogenomic 
studies based on genes over expression40 or multi-copy variant41 may lead to better prediction power, by provid-
ing a more comprehensive description of cell responses to drug administration.

Methods
Data Sets. The following data was extracted from DrugBank20: Anatomical Therapeutic Chemical (ATC) 
classification and canonical Simplified Molecular Input Line Entry Specification (SMILES) were extracted and 
used for drug similarity measurements. Out of 7,740 drugs in DrugBank, 1,333 drugs with both chemical struc-
ture (SMILES formulation) and ATC classification were available, enabling drug similarity calculation. All our 
reported results are with respect to this ground set of drugs. Additionally drug transporters, drug enzymes and 
drug targets were obtained and used for external validation.

Chemogenomic interactions (HIP/HOP scores) were obtained from Hillenmeyer and co-workers17, Lee and 
co-workers18 and Hoepfner and co-workers19, henceforth Hillenmeyer, Lee and Hoepfner, respectively. For each 
data set, scores provided by the authors which best describe gene sensitivity to the relevant drug were used as fol-
lows: for Hillenmeyer, we extracted the fold-change of a knock-out strain in the presence of drug vs. the wild type. 
This score was measured as a simple log2 ratio of the mean control intensity vs. treatment intensity. Scores were 
available for the sensitivities of 4,769 and 5,337 genes in 418 and 726 redundant conditions for the homozygote 
(HOP) and heterozygote (HIP) set, respectively. From this data set 22 HOP conditions and 60 HIP conditions 
were mapped to drugs from the ground set using generic drug names resulting in a set of 104,918 chemogenomic 
associations used in the HOP dataset and 320,220 HIP associations. Hoepfner supplied the MAD logarithmic 
(MADL) scores of each strain with respect to the average of the control sample. Scores were retrieved for 1,776 
drugs and for 4,913 and 4,845 genes from the HIP and HOP datasets, respectively. Out of the 1,776 drugs, 18 
were mapped to the ground set, creating a set of 88,434 HIP associations and 87,210 HOP associations. Last, the 
fitness defect score (FD-score) was extracted for Lee. This score represents the log2 ratio between the signal from 
the control samples to that from the chemical sample was. The FD-Score matrix contains information about 3,250 
compounds, 4,810 HOP and 1,095 HIP genes. From these compounds, 111 drugs were mapped to the ground set, 
creating a set of 533,910 HOP associations and 121,545 HIP associations. In the case of multiple experiments for 
the same drug, the experiment with the highest drug concentration was chosen to represent the drug effect (26 
drugs from Lee and 17 and 45 drugs from the Hillenmeyer HOP and HIP data sets respectively). To enable data 
integration we normalized all scores to be in the range [0, 1] by dividing the absolute value of HIP/HOP scores 
by the maximal score in the data set. The normalized scores approximate the strength of the effect that a gene 
deletion has on a cellular reaction to a drug.

For gold standard PGx associations, a set of 3,490 manually curated studies was downloaded from 
PharmGKB7, each study reporting associations between genes and drugs or drug classes. Overall, these records 
spanned 33 unique drug classes, with an average size of 12.2 drugs. They gave rise to 4,434 drug-gene associations 
and additionally 5,687 associations obtained by extrapolating gene-drug class associations to their corresponding 
gene-drug associations. Constraining the associations to the ground-set yielded 1,440 gold standard associa-
tions between 362 drugs and 203 genes, 680 of which (between 191 drugs and 188 genes) derived directly from 
gene-drug association records without extrapolation.

For gene similarity measurements we downloaded: (i) BLAST sequence similarity between 3,711 yeast genes 
and 9,621 human genes from the Saccharomyces Genome Database (SGD)42, and (ii) PFam domains files for 
yeast (tax id =  559292) and human (tax id =  9606) from PFam version 27.043. The yeast domain file contained 
domain information for 4,908 yeast proteins, and the human domain file contained domain information for 
51,444 human proteins.

For validation, drug pathways were downloaded from the ‘small molecule pathway database’ (SMPDB) version 2.021.
Finally, to reproduce Hansen method, we downloaded 350,029 human protein-protein interactions spanning 

12,561 proteins from InWeb44.

Similarity Measures. We computed two drug-drug similarities and two gene-gene similarities. All similar-
ities were normalized to be in the range [0, 1]. The drug similarities we used are:

(1) Chemical similarity: chemical similarity was defined as the Tanimoto score between the chemical fingerprints 
of two compounds, i.e. the size of intersection over union of chemical elements present in the chemical fin-
gerprints of the compounds. The hashed daylight-like fingerprint was computed for each compound from its 
SMILES structure using the open source Python library RDKit with default parameters.

(2) ATC based similarity: World Health Organization (WHO) ATC classification system45 is a five-level hier-
archical classification system that categorizes drugs according to the anatomical group on which they act, 
their therapeutic effect, and their chemical characteristics. We used the top three levels, omitting chemical 
characteristics to create the ATC similarity measure. The similarity score was defined as the lowest common 
ancestor ATC level in the hierarchical tree across all ATC categories assigned to the drug.

For gene-gene similarities we used:

(1) Sequence similarity: The similarity between yeast and human proteins was defined as the percentage of the 
yeast protein aligned to the human protein, considering only significant alignments (E-value <  0.01). In the 
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case of multiple alignments between two proteins, the largest aligned portion was used.
(2) Domain similarity: We defined the similarity between a pair of proteins as the Jaccard score between their 

corresponding domains after filtering for domains present in both species.

For each similarity measurement, all similar genes/drugs were considered, creating many-to-many mapping. 
This type of mapping allows for consideration of all similar entities in feature calculation. E.g., by using many 
to many mapping in gene similarity we allow not only the closest homolog to affect feature score, but rather all 
homologs are consider and the chemogenomic association obtaining maximal score across all three similarity 
measurement is used.

All similarity measurements are provided in Supplementary Tables S2–S5.

Classification methodology. We constructed classification features by combining drug-drug similarity, 
human-yeast gene similarity and drug-gene association measurement (i.e. yeast chemogenomic association 
scores). Each feature is a combination of one of the two drug similarity measures, one of the two gene-similarity 
measures, and one of the two chemogenomic association scores (either HIP or HOP), resulting in a set of eight 
features describing each query PGx association, obtained from each data set.

We trained a Random Forest classifier on the set of 24 features obtained from the three data sets. Random for-
est was implemented using Python scikit-learn library with default variables. Predict_proba functions was used 
to calculate the predicted class probability score which represents the mean predicted class probability of the trees 
in the forest, while the probability returned by a single tree is the normalized class probability of the leaf a sample 
lands in. To predict novel PGx associations we used the full training set from PharmGKB including 1,440 true 
associations and an equally sized randomly chosen negative set. Negative associations were generated in random 
out of 36,404,123 drug-gene pairs not known to associate.

Performance evaluation. To evaluate the accuracy of our prediction method, we performed 10 independ-
ent runs of 10-fold cross-validation, choosing in each run a different set of randomly chosen negative examples 
(non-associations). The training set includes 1,440 true drug-gene PGx associations extracted from PharmGKB 
between 362 drugs and 203 human genes and a randomly generated set of 1,440 associations, not included in the 
positive set, simulating non-PGx associations. Each cross-validation run consists of ten iterations, in each we hide 
10% of the associations, train on the remaining associations and test our performance on the hidden set. We score 
the prediction performance using the area under the receiver operating characteristic curve (AUC) and the area 
under the precision-recall curve (AUPR). We repeated the cross-validation process with different sizes of negative 
sets, ranging from the same size as the positive as to 50-fold higher.

To test whether the results are biased by a possibly high conservation between yeast genes and known human 
PGx genes, we repeated the test with a set of negative genes with the same conservation level as the genes in the 
positive set. To this end, we first obtained for each human gene the matching yeast gene with the highest BLAST 
score, retaining only significant matches. We then binned the scores into 50 groups according to the percentage of 
the yeast protein aligned to the human protein. From each bin we chose a random set of human genes to serve as 
negative examples in a frequency proportional to the representation of this bin in the positive set. Repeating the 
10-fold cross validation test ten times with different random sets of negative associations, yielded similar AUCs 
(mean AUC =  0.95 ±  0.003) and AUPRs (mean AUPR =  0.97 ±  0.002) as the original negative set.

To validate the robustness of the method, we removed from each yeast chemogenomic dataset the 5% drugs 
with the highest sums of normalized chemogenomic association scores. Overall one out of 18 drugs was removed 
from Hopfner Hip and Hop data set (total of two drugs), three out of 60 drugs were removed from Hillenmeyer 
Hip dataset, 2 out of 22 drugs were removed from Hillenmeyer Hop data set, and six out of 111 drugs were 
removed from Lee Hip and Hop data sets each (total of 12 drugs). The feature construction and learning steps 
were then repeated without these drugs.

Last, to evaluate the influence of drugs with multiple predictions on the performance of both drug prediction 
and subsequent evaluations, we removed drugs with over 600 or 150 PGx predictions from the training set and 
repeated the learning and subsequent analysis. The evaluation was done in two steps: (i) filtering drugs with 
over 600 PGx predictions resulted in a set of 1,307 drugs to which 1,215 positive example were available from 
PharmGKB. The set of drugs filtered for over 150 PGx predictions resulted in a set of 982 drugs to which 479 
positive examples were available. Cross validation was done on these subsets of drugs, with the available pos-
itive examples and random set of negative examples of the same size as the positive set. We repeated the cross 
validation ten times with different random sets of negative examples and evaluated performance using AUC and 
AUPR scores. (ii) Obtaining the full set of PGx predictions for each set of drugs. Prediction scores were com-
pared with gold-standard drug-targets associations, drug-enzyme associations and drug-transported associations 
obtained from DrugBank for the corresponding set of drugs. We evaluated the performance using AUC scores 
for each association type. The filtered set of drugs yielded 2,485, 1,011 and 1,215 gold- standard associations for 
drug-enzymes, transporters and targets respectively for the set of drugs filtered for maximal 600 PGx predictions 
and 1,588, 771 and 886 associations respectively for drugs with less than 150 predicted PGx associations.

Constructing SMPDB association matrices. We iterated over all pathways downloaded from SMPDB 
and matched all proteins associated with a pathway to all drugs associated with the same pathway. This resulted 
in a set of both physical and indirect associations between a drug and a set of genes associated with its pathway. 
Next we constructed a drug-gene association matrix for each of the six pathway categories based on associations 
extracted for all pathways cataloged into that category. Matrices representing ‘Physiological’ and ‘Signaling’ cate-
gories which spanned only 3 and 4 drugs from the ground set, respectively, were discarded from further analysis. 
We compared the classifier score to each of the remaining four category types to compute a ROC curve.
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GO enrichment analysis was carried out using the Gorilla online analysis tool46.
To compare the predicted antidepressant pharmacogenes to a list of depression-related genes, we’ve down-

loaded a set disease-gene association from Diseases database22. We extracted genes associated with disease names 
containing ‘depression’ or ‘depressive’ keywords from the filtered text-mining table. The following diseases were 
retrieved: ‘Postpartum depression’, ‘Major depressive disorder’, ‘Atypical depressive disorder’ and ‘Endogenous 
depression’. A total of 55 unique genes were associated with this set of diseases, 34 of which were mapped to our 
ground set. From the set of 733 pharmacogenes associated with antidepressants, 233 were mapped to generic gene 
names allowing their comparison to the genes extracted from Diseases. We applied accumulative hypergeometirc 
test on the intersection protein to obtain the p-value.

Comparison to previous methods. To compare our method to that of Hansen and co-workers9, we con-
structed a gene-gene-drug sub-network by compiling protein-protein interaction (PPI) network from InWeb44, 
drug-target associations from DrugBank and pharmacogenomic associations from PharmGKB. Hansen uses 
known drug-target and drug-pharmacogene (PGx) associations in human and a PPI network in order to build 
for each query protein a small subnetwork comprising of the protein, its immediate neighbors in the PPI network 
and their associated drugs. To rank possible PGx association for a query drug and gene it utilizes drug chemical 
similarity and indication similarity between the query drug and drugs associated with query gene neighbors 
in PPI. Subsequently, four features were constructed based on indication- or chemical- based drug similarity 
between the query drug and drugs associated with the query protein’s interactors by either PGx or drug-target 
associations. Finally, a logistic regression classifier was applied to these features to retrieve a score for each poten-
tial association. To facilitate the evaluation of the results we used our own similarity measures between drugs 
(based on chemical structure and ATC) and applied a Random Forest classifier, with the same set of positive and 
negative PGx associations.

We defined for each method a valid gold standard set as the set of PGx associations for which feature cal-
culation is feasible; i.e. for Hansen’s method the valid set contains PGx associations between drugs annotated 
to either ATC category or chemical structure and proteins with at least one reported PPI. For our method, the 
valid set consists of associations between drugs annotated to both ATC category and chemical structure and pro-
teins with sequence/domain similarity to yeast proteins. Overall, out of the 3075 PGx associations retrieved from 
PharmGKB, 1400 (45%) were valid for our method, while 389 (13%) associations were valid Hansen’s method. 
Out of these associations 140 PGx associations were valid for both methods (henceforth, the intersection set). We 
compared the performance of both methods, by training each method on the set of its valid associations minus 
the intersection set, and an equally sized set of random negative examples. The intersection set and an equally 
sized set of random negative associations were used as the test set.

To evaluate the contribution of HIP/HOP chemogenomic interactions to the PGx prediction task we applied 
our method on the same subset of PGx associations, omitting the chemogenomic interactions. For each query 
gene and query drug we constructed features based on known PGx in human, as the geometric mean of drug 
similarity and gene similarity between query pair and all known PGx associations as follow:

= ⁎F D, G max D d G g( ) { Sim( , ) Sim( , ) } (2)d g,

where D, G are the predicted drug and human gene, and d, g range over all known PGx between drugs and human 
genes in the training set. The sequence/domain gene similarities were calculated for all human genes as described 
above.
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