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ABSTRACT

Motivation: A central step in the analysis of gene expres-
sion data is the identification of groups of genes that exhibit
similar expression patterns. Clustering gene expression data
into homogeneous groups was shown to be instrumental in
functional annotation, tissue classification, regulatory motif
identification, and other applications. Although there is a rich
literature on clustering algorithms for gene expression anal-
ysis, very few works addressed the systematic comparison
and evaluation of clustering results. Typically, different cluster-
ing algorithms yield different clustering solutions on the same
data, and there is no agreed upon guideline for choosing
among them.

Results: We developed a novel statistically based method for
assessing a clustering solution according to prior biological
knowledge. Our method can be used to compare different clus-
tering solutions or to optimize the parameters of a clustering
algorithm. The method is based on projecting vectors of bio-
logical attributes of the clustered elements onto the real line,
such that the ratio of between-groups and within-group vari-
ance estimators is maximized. The projected data are then
scored using a non-parametric analysis of variance test, and
the score’s confidence is evaluated. We validate our approach
using simulated data and show that our scoring method out-
performs several extant methods, including the separation to
homogeneity ratio and the silhouette measure. We apply our
method to evaluate results of several clustering methods on
yeast cell-cycle gene expression data.

Availability: The software is available from the authors upon
request.

Contact: iritg @ post.tau.ac.il; rshamir@post.tau.ac.il; roded @
icsi.berkeley.edu

INTRODUCTION

DNA microarray technology enables the monitoring of
expression levels of thousands of genes simultaneously. This
allows a global view on the transcription levels of many genes
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under specific cellular conditions. The applications of such
technology range from gene functional annotation and genetic
network reconstruction to diagnosis of disease conditions and
characterization of effects of medical treatments.

A central step in the analysis of gene expression data is the
identification of groups of genes that exhibit similar expres-
sion patterns. Clustering methods transform a large matrix
of expression levels into a more informative collection of
gene sets (or condition sets) which are assumed to share
biological properties. Clustering gene expression data into
homogeneous groups was shown to be instrumental in func-
tional annotation, tissue classification, motif identification,
and other applications [for a review see Sharan et al. (2002)].

Although there has been extensive research on cluster-
ing algorithms for gene expression analysis (Eisen et al.,
1998; Tamayo et al., 1999; Ben-Dor et al., 1999; Sharan and
Shamir, 2000; Sharan et al., 2003), very few works have been
published on the systematic comparison and evaluation of
clustering results. Typically, different clustering algorithms
yield different clustering solutions on the same data, and
often the same algorithm yields different results for differ-
ent parameter settings, and there is no consensus on choosing
among them.

Different measures for the quality of a clustering solution
are applicable in different situations, depending on the data
and on the availability of the true solution. In case the true
solution is known, and we wish to compare it to another
solution, one can use, e.g. the Minkowski measure (Sokal,
1977) or the Jaccard coefficient [cf. Everitt (1993)]. When the
true solution is not known, there is no agreed-upon approach
for evaluating the quality of a suggested solution. Several
approaches evaluate a clustering solutions based on its intra-
cluster homogeneity or inter-cluster separation (Hansen and
Jaumard, 1997; Sharan et al., 2003; Yeung et al., 2001). How-
ever, the homogeneity and separation criteria are inherently
conflicting, as an improvement in one will usually correspond
to worsening of the other. One way of getting around this
problem is to fix the number of clusters and seek a solution
with maximum homogeneity. This is done, for example, by the
classical K-means algorithm (MacQueen, 1965; Ball and Hall,

Bioinformatics 19(18) © Oxford University Press 2003; all rights reserved.

2381



|.Gat-Viks et al.

1967). For methods that evaluate the number of clusters see,In the rest of the paper, after providing some background,
e.g. Hartigan (1975); Tibshiraet al. (2000); Ben-Hurt al.  we describe our method, and give results on its performance
(2002); Pollard and van der Laan (2002); Dudoit and Fridly-on simulated and real data.
and (2002); McLachlan (1987). Another way to overcome
the problem is by presenting a curve of homogeneity versus
separation (Ben-Dor, private communication). Such a curv& RELIMINARIES
can show that one algorithm dominates another if it provides he input to a clustering problem consists of a set of elements
better homogeneity for all separation values, but typically dif-and a characteristic vector for each element. A measure of
ferent algorithms will dominate in different value range. An (dis)similarity is defined between pairs of such vectors. (In
alternative method suggested by Kaufman and Rousseeugene expression, elements are usually genes, and the vector
(1990), evaluates a solution using a numerical measure calleaf each gene contains its expression levels under each of the
the average silhouette. This method performs well in generamonitored conditions. Dissimilarity between vectors can be
but fails to detect fine cluster structures (Pollard and van demeasured, e.g. by their Euclidean distance.) The goal is to
Laan, 2002). partition the elements into subsets, which are catleders,
Clustering quality can also be visually assessed byso that two criteria are satisfied: homogeneity — elements in
using discriminant analysis [e.g. Stephanopoutbsal. the same cluster are similar to each other; and separation —
(2002); McLachlan (1992)] or principal component analysiselements from different clusters are dissimilar.
[e.g. Mendezet al. (2002)], that reduce data dimensional- Let N be a set ofi elements and lef = {Cy,...,C;} be a
ity. Single clusters can be scored based on prior biologicapartition of these elementsintolusters. We call two elements
knowledge, e.g. by checking for functional enrichment offrom the same clustemates (with respect ta’). A common
genes in a cluster or searching for common motifs in theiprocedure for evaluating a clustering solution given the true
promoter regions (Tavazodatal., 1999). Clustering solutions solution, is to compute it3accard coefficient [see, e.g. Everitt
can in some cases be assessed by applying standard statistigE993)], which is the proportion of correctly identified mates
techniques. For high-dimensional data, multivariate analysisut of the sum of the correctly identified mates plus the total
of variance (MANOVA) and discriminant analysis (Huberty, number of disagreements (pairs of elements that are mates in
1994; Mendezt al., 2002) are appropriate if the data are exactly one of the two solutions). Hence, a perfect solution has
normally distributed. For the case of non-normal data, therecore 1, and the higherthe score —the better the solution. When
are several extensions that require the data to be either lowhe true solution is not known, a solution can be evaluated by
dimensional (Bishoyet al., 1975) or continuous (Katz and its homogeneity and separation. Th@mogeneity of C is the
McSweeney, 1980). If attributes are independent one can alsaverage distance between mates, anddbaration of C is the
test the significance of the grouping for each dimension sepasaverage distance between non-mates (Hansen and Jaumard,
ately, and combine the resulting scores (Pesarin, 2001). Norf©97; Shararet al., 2003). Another popular measure is the
of these methods apply when wishing to test the significancaverage silhouette (Kaufman and Rousseeuw, 1990), which
of a clustering solution based on high-dimensional vectors ofs computed as follows: define tis#houette of element; as
dependent biological attributes that do not necessarily followb; — a;)/ maxa;,b;), wherea; is the average distance of
a normal distribution and may even be discrete. element;j from other elements of its clustér;; is the average
In this paper we devise a statistically based method fodistance of element from the members of cluster;, and
comparing clustering solutions according to prior biologicalb; = ming:j¢c,; bjx. Theaverage silhouette is the mean of
knowledge. In our method, solutions are ranked according tthis ratio over all elements.
their correspondence to prior knowledge about the clustered Our main focus is the evaluation of clustering solutions
elements. Given a vector of (continuous or discrete) attribusing external information. The setup for the problem is as
utes for each element, our method tests the dependendgllows: we are given an x p attribute matrix A. The rows
between the attributes and the grouping of the elements. Thaf A correspond to elements, and tiie row vector is called
test is applied simultaneously to all the attributes. In ourtheattribute vector of elementi. We are also given a cluster-
application, elements are genes, clustered according to théimg C = {Cy, ..., C;} of the elements, wherg = |C;|. For
expression patterns, and the attributes of a gene are binacpnvenience, we shall also index the attribute vectors by the
indicators of its membership in specific functional classesclustering, i.e. use;; = (ailj, .. ,aipj) as the vector of ele-
In this case, the method computes a quality score for thenent; in clusteri. Typically C is obtained without using the
functional enrichment of these classes among each solutioniaformation inA. Our goal is to evaluaté with respect toA.
clusters. At the heart of our method is a projection of the high- When p = 1, there are established statistical tests for
dimensional data to one dimension, to avoid the problem ofhe problem. Such tests will serve as building blocks in our
applying MANOVA to the data. Using the one-dimensional method. In the case that the attribute is normally distrib-
data, the solutions are compared based on their score inwded, and under the assumption that the variances of the
non-parametric ANOVA test. population distributions are identical, we can use standard
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analysis of variance (ANOVA) methods to test the significanceability to discriminate between the clusters using the one-
of the grouping [see, e.g. Sokal and Rohlf (1995)]: supposeimensional data. Finding the weights will be done inthe same
that the attribute of elementin clusteri has valuez;;. Let  manner as in Linear Discriminant Analysis (LDA) (Huberty,
a; denote the mean of the elements in clusteand leta 1994). The procedure for weight finding does not require
denote the total mean of all elements. When ANOVA is any assumptions on the distribution &f LDA creates such
carried out, the null hypothesis is that the groups do not difa linear combination by maximizing the ratio of between-
fer in location, i.e.Hp: w1 = u2 = --- = w;, whereu; is  groups-variance to within-groups-variance, as followsulet
the expectation of group The test statistic typically used is be somep-dimensional vector of weights. The statistic being
the ratio of variance estimator, i.e. the ratio of the hypothesisnaximized is the ratio of MSH to MSE:

(or between-groups) mean square (MSH) to the error mean

square (MSE): S _asi(w-a —a-a)?/(—1)

Fw) = == — &)
MSH SSH/( — 1) i1 2w - ai; —w - a)2/(n — 1)
Fn=ysg = SSE/(n — 1) @
wherea; is the mean vector of clustér anda is the total
where the hypothesis sum of squares is SSBT_, si(@—  mean vector. When introducing an additional constraint of a
a)? and the error sum of squares is SSEY | _; > _1(@j—  unitdenominator, the maximum value®fw) is proportional

a;)?. Under certain data conditions th@; statistic has a to the greatest root of the equatipgii — LE| = 0. Here,H is
(central)F distribution with/ —1 andz —/ degrees of freedom. a p x p matrix containing the between-groups sum of square

In case the attribute (or some transformation of it) does nof,, = Zﬁ:l si(al —a")(a] —a*), andE isap x p matrix of
follow a normal distribution, one can use the Kruskal-Wallis the sum of squared errois, = Zi’:l Z;y_ (a’; —al)(a

-
(KW) test [cf. Sokal and Rohlf (1995)] as a non-parametriczs) wherea! is the mean of aftribute in clusteri anda’
ANOVA test. The test assumes that the clusters are indepengk the total mean of attribute Thus, the desired combination
entand have similar shape. We shall denot@by (C, A)the s the eigenvector corresponding to the greatest root. This

p-value obtained by the KW test for a clusteriigising the  resyit holds without assuming any prior distribution on the
attributeA: N — R. For the multidimensional case (- 1),  attributes.

the MANOVA test [cf. Sokal and Rohlf (1995)] applies the

same objective functiofiyy, but it applies only if the attribute 2 Projection. Apply the linear combinatiow to the attrib-
matrix is multinormally distributed. ute vectors, thereby projecting these vectors onto the real line.

Thatis,z;; = 3, aj;w'.

METHOD 3. Computing CQSusing the projected values. We now eval-
Our goal is to evaluate a clustering solution given an attrib-uate the clustering vis-a-vis the projected attributes using the
ute vector for each element, which represents the prioKW test. We define CQS as — lgg wherep = P*W(C, Z),
biological knowledge about the element. To this end, thd-e. the p-value assigned to the clustering by the KW test.
MANOVA test is particularly appealing, as the numerator in Note thatp is not the probability of observing the original
Equation (1) (MSH) measures the separation (normalized bgttributes allocation randomly, since the vector data was first
the number of clusters) and the denominator (MSE) measurd¥ojected to maximize the variance ratio. Rather,thealue
the (normalized) homogeneity. However, the distribution ofis the probability that all values in this particular projection
attribute vectors does not necessarily meet the requirements Bave been taken from the same population. Hence, CQS favors
MANOVA test. Such is the case, in particular, when attributesclustering solutions whose best discriminating weights enable
are binary. Thus, we propose to project the high-dimensionagignificant grouping.
attribute vectors onto the real line using a linear combina- 4 Egimating confidence. In order to estimate the accuracy
tion of the attributes. Then, the solutighis scored by &  of the scores and the significance of differences between the
non-parametric one-way ANOVA test on the one-dimensionalcores of distinct solutions, we evaluate the sensitivity of CQS
data. We refer to the result as taS (Clustering Quality o small modifications of the clustering solution. Intuitively,
Score) of the clustering. CQS is computed as follows: the larger the influence of small perturbations in the clustering

1. Computing a linear combination of the attributes. Each ~ on the CQS value, the smaller the confidence we have in the
element is assigned a real value, which is a weighted sur@QS. Specifically, for a given original solution we generate
of its attributes. An attribute’sveight is its coefficient in  a group of alternative clustering solutions. Each alternative
the linear combination. Intuitively, we would like to weight solution is obtained by introducing exchanges of random
the attributes such that they will contribute to the solutionpairs of elements from different clusters of the original solu-
score according to their ‘importance’. Usually, we do nottion (k is typically small, such as 2% of the elements). The
know in advance the desired weighting of the attributes. INCQSconfidenceis the standard deviation of CQS for the group
such cases, we propose to use weights that maximize thaf alternative clustering solutions.
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The overall procedure is as follows:
30

1. Findthe eigenvectar corresponding to the greatest root oF=& .
of the system of equationg — AE| = 0. e
. mF=15
2. For each attribute vectay; setz;; = Y, a,?jw’. razo
3. Computep = PXW(C, 7); let CQSC, A) = —log p. zo | mrses
4. Estimate the statistical confidence of the result by
perturbations oi. T —

Our scoring scheme can be applied in several ways and fc
several purposes. Our focus in this study is the evaluation c
clustering solutions given external biological attributes, that
were not used in the clustering process. Another applicationc| =1
our score is internal validation of solutions based on the sam
attributes that were used in generating the clustering. Thi| @

can help in choosing among different clustering algorithms = 10x5/MH
as well as in optimizing the parameters of a specific algorithn [,
(for example, choosing the number of clusterskemeans). or=e 5
40N gr=10
RESULTS o || mrEts
. . . . =20
The score calculation was implemented in Perl under linux | . || :r=25

using MATLAB. Running time for a data set of 750 clustered
elements and 80 attributes is about a minute, on a standa | 25
800 MHz PC. Below we report on the performance of our
method on simulated and real data.

20

Simulations

We validate our method by conducting a series of tests o

simulated data. We tested the effect of the one-dimension:| =

projection of the attribute vector, the sensitivity of CQS to the mEn |

solution accuracy, and the ability of CQS to pinpoint the right ¢ '

number of clusters and to detect fine clustering structures.
The data were generated as follows: profiles of 80 binary

attributes were generated for five groups ef 50 geneseach. Fig. 1. Clustering parameters on simulated dataaxis: scores of

(We use the term ‘genes’ for uniformity. The simulations testfive simulation setups = 6, 10, 15, 20, 25 in different gray scale

the score irrespective of the nature of the clustered elementsdlors. @) Scores are Homogeneity (H), separation (S) and their ratio

For each attribute we randomly selected one group in whiclen the original data.B) Scores are Homogeneit§i(), separation

its frequency will ber, and in the other four groups its fre- (8*), their ratio and CQS on the projected (reduced) data. Numbers

guency was set tay. The set of (ro) genes with that attribute  are average of 10 runs.

was randomly selected from the relevant groups= 5 was

used throughout. Since we randomly select for each attribut@onotonicity of the homogeneity, separation and their ratio

the single group with frequenay, the overall density of the as a function of-, which is manifested on the original data,

attribute vectors should be about the same for all elementss preserved on the reduced data. The same monotonicity was

and the distinction must be based on individual attributesobserved ineach of the 10 repetitions. Also, as expected, CQS

Clearly, the larger the difference betweeandro, the easier improves monotonically with.

the distinction between the groups. The projected data for two simulations with= 6 and

r = 25 are visualized in Figure 2. For= 6, the clusters look

A. The effect of one-dimensional projection. First, we very similar, even though the data were reduced using the best
wished to examine the effect of reducing the attribute dimen- y ' 9 9

sionto 1. We simulated data sets witk= 6, 10, 15, 20 and 25. §eparat|ng linear cor_nbmahon. Onthe other handy f@.zs’
. : inter-cluster separation of most clusters is clearly visible.

For each data set we computed the ratio of separation to homo-

geneity of the true clustering on the original dasg &) and B. Theeffect of solution accuracy on CQS. To test the sensit-

on the projected data{/H*). This procedure was repeated ivity of CQS to the clustering solution, we simulated data with

10 times. The results are shown in Figure 1B. Clearly, the- = 25, and compared CQS of the true partition with that of

-

10xH* 10x 5% SFH* Cas
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Fig. 2. Box plots for the projection of five simulated clusters with ) ] ) )

r = 6 (A) andr = 25 (B) after dimensionality reduction. Theaxis ~ F19- 4. Comparison between clustering solutions on simulated data
is the real-valued projection of the elements. Each box-plot depict&fter spllttlng*clu?ersﬁ() or merging clusters). Each diagram
the median of the distribution (dot), 0.1 and 0.9 distribution quantilesSNoWs CQS5™/H* andS/H (y-axis) of the true solution (gray) and
(white box), and the maximum and minimum values. the modified solution (black). Numbers are average of 10 runs.

cas Jaccard
w0 - 1.2

For the merging test, we simulated two 5-cluster data sets
with r = 25 andr = 6 as above, using = 25. We then
combined these data sets into a single data set whose true
solution consists of 10 equal size clusters with 25 genes each.

# o4 We next merged pairs of clusters, one from each original

" 02 data set, to form in total five clusters with 50 genes each.

. 0 These five clusters comprised the alternative (merged) solu-
a 10 20 40 60 &0 100 200 400 600 &S00 1000 5000 10000 20000

tion. Figure 4B shows the parameters of the resulting partition
before and after the merging, averaged over 10 runs. As in the

Fig. 3. Effect of the solution accuracy on CQS. The accuracy ofgjiing test, all the measures decrease due to the merging,
different clustering solutions is measured by the number of inter-

. . o - and this is observed in all runs, as well as on the average.
cluster exchanges introduced in the original soluti+axis: number The d of/H i intained and enl d B/ H*
of exchangesY-axis: CQS (black bars, left scale) and Jaccard e decrease of/H Is maintained and enlarge /
coefficient (gray bars, right scale). and CQS. )
Next, we tested the agreement of CQS with Jaccard coef-

ficient: we simulated 5-cluster data with= 25 and applied
other, similar and remote partitions. Those were produced by -means (MacQueen, 1965; Ball and Hall, 1967) to the data,
starting with the true solution and repeatedly exchanging avith K = 2,..., 15. Sincek -means seeks a clustering solu-
randomly chosen pair of elements from different clusters. Adionwith K clusters, we expect the solution’s quality to decline
evident from the results in Figure 3, CQS is highest for theas the differencek — 5| increases. A good score should mani-
true partition and decreases with the number of exchangdest such trend. We computed CQS and Jaccard coefficient
applied (200 exchanges generate an essentially random parigr each clustering solution, as well 8¢H. The results are
tion, so further exchanges have no effect). We also computeshown in Figure 5. CQS behaves as the Jaccard coefficient
for each intermediate solution its Jaccard score. As expectednd S/H, with a maximum atk = 5, the true number of
the Jaccard coefficients of these solutions decrease with tr@usters. Moreover, the ranking of all 14 solutions according
number of exchanges. to the Jaccard score (which is based on the true solution) and

C. Sensitivity of CQStothe number of clusters. Our nextgoal a.ccordin.g to QQS (WhiCh.is based on the attribIJtes onIy)_are
was to test the sensitivity of CQS with respect to the numbeI"rtua".y identical. The ratio score also dp es quite vyell, with
of clusters. A robust score is essential for comparing soly@ Maximum ak = 5. Howeyer, the ranking of solutions by
tions with different number of clusters. To this end we testeoth'S score does not agree with the Jaccard score.
how CQS changes when splitting or merging clusters. For the D. CQSability to detect fine clustering structures. Our next
splitting test we simulated data with= 25. We compared goal was to test the ability of CQS to identify fine structures
the true 5-cluster solution with a 25-cluster solution obtainedn the data. Profiles of 30 binary attributes were generated for
by randomly splitting each of the 5 clusters into 5 equal-sizefour clusters of: = 50 genes each. For each attribute, its fre-
sub-clusters. This test was repeated 10 times. The parametengenciesin clusters 1, 2, 3and 4 were set g 80— b and 48,
of the solutions before and after the splitting, averaged overespectively. We simulated data sets witk- 3, 5, 10, 15, 20.

10 runs, are shown in Figure 4A. In all runs, as well as onFor each data set, we scored two clustering solutions: the
the average, we observe a decrease of the clustering qualityiginal 4-cluster solution, and a 2-cluster solution obtained
measures. The decreasé¢@f{ is maintained (and even made by merging cluster 1 with 2 and merging cluster 3 with 4.
more pronounced) in CQS and on the reduced d&itar *). Thus, for large values df we expect the 4-cluster solution to
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Fig. 6. Ability of the different scores to distinguish similar clusters.
Fig. 5. Comparison of quality measures on solutions of variousWe simulated 4-cluster data with attribute frequenciés 20—b, 48,
accuracies. Scores are plotted for differéftmeans’ solutions. and used different values for We obtained a 2-cluster solution by
X-axis: K-means’ solutions witlk = 2,...,15.Y-axis: CQS (light  merging cluster 1 with 2 and 3 with 4 axis: value ofb in the
gray), Jaccard (black) angl/ H (gray) scores. The true number of simulation.Y-axis: the ratio of the scores for the 4-cluster and 2-
clusters is 5. cluster solutions. The scores are silhouette (gréiy§ (dark gray)
and CQS (black).

score higher than the 2-cluster solution. Note that unlike the
previous simulations, where distributions of individual attrib-
utes were designed to differ between clusters, here it is onligentified in these data 800 genes that are cell-cycle regulated.
the overall attribute density which is directly controlled. This We used the expression levels of 698 out of those 800 genes,
design is the binary equivalent to the Gaussian clusters witwhich have up to three missing entries, over the 72 condi-
different means that appears, e.g. in Pollard and van der LadiPns. The missing entries in each gene were completed with
(2002). For each data set and each of the two solutions, wée average of its present entries. Each row of the 692
computedS/H, CQS and the average silhouette score. matrix was normalized to have mean 0 and variance 1.

The ratios of the 4-cluster to 2-cluster scores, averaged over Based on the analysis conducted by Spelleta. (1998),
10 runs, are presented in Figure 6. As expected, the ratios avée expect to find in the data five main clusters, each one
increasing withb in all scores. The silhouette for the 2-cluster corresponding to genes peaking in one of the cell cycle
solution is always greater than for the corresponding 4-clustephases (G1, S, G2, M and M/G1). The 69872 data
solution. Similarly, fo» = 3,5, 10, 155/ H is greater forthe  set was clustered using four clustering methosmeans
2-cluster solution. In all those cases, the scores would prefdMacQueen, 1965; Ball and Hall, 1967), SOM (Kohonen,
the incorrect, 2-cluster solution. In contrast, CQS is able tol997; Tamaycet al., 1999), CAST (Ben-Doket al., 1999)
identify the fine structure in the data: for alivalues except and CLICK (Sharan and Shamir, 2000; Shaetal., 2003).
b = 3, CQS rates the 4-cluster solution above the 2-clustefhe solutions ofk-means, SOM and CLICK were obtained
solution, as desired. Fér = 3, the 2-cluster CQS is higher usingthe EXPANDER software (Shararal., 2003). CAST'’s
than the 4-cluster CQS, since there is almost no differencgolution was produced by the authors of the software and
between the clusters with 2 or 3 occurrences of attributes, anig the same as reported in (Shamir and Sharan, 2002). The

between the clusters with 47 or 48 occurrences. K-means algorithm was executed wikh = 5. The SOM
algorithm was executed on a2 3 grid and produced six
Yeast cell-cycle data clusters. The CAST solution has five clusters. CLICK was

We also tested our approach on clustering solutions computeskecuted with default parameters and generated a solution
on the yeast cell-cycle data set of Spellmatral. (1998).  with six clusters and 23 singletons. Each singleton was sub-
The data set contains 72 expression profiles from yeast cusequently assigned to its closest cluster in order to produce a
tures synchronized by four independent methaddactor  solution with no singletons. The similarity measure used in

arrest, arrest of a cdc15 temperature sensitive mutant, arreslf cases was Pearson correlation coefficient. Another solution
of a cdc28 temperature sensitive mutant and elutriation. [Ashat we included in the analysis is the one reported in Spellman
in Tamayoet al. (1999), an additional 90 min data point in et al. (1998), which was generated by manually dividing the

the cdcl5 experiment was not used.] Spellregal. (1998)  genes into five groups using their peak of expression, in order
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to approximate the five cell-cycle phases. We shall refer to it
as the ‘true’ solution.

To evaluate the five solutions, we used as gene attributes the
GO classes (The Gene Ontology Consortium, 2000) at level
5 of the ontology, including process, function and component
attributes. In addition, we used the MIPS annotation (Mewes
et al., 2002) at level 4. We removed attributes indicating that
the functional class of the gene is still unknown and used only
attributes that occur in at least four of the genes. Overall we
used 51 GO process attributes, 37 GO function attributes, 27
GO component attributes and 59 MIPS attributes. We applied
the analysis to 370 genes that had at least one attribute. CQS
was computed three times, using the GO process attributes
only, all GO attributes, and the MIPS attributes only. The
results are depicted in Figure 7. For comparison purpose, we
also scored arandom clustering of the data into five equal-size
clusters.

The random solution consistently obtained the lowest scores
in all annotation categories. Using the process GO annotation
(Fig. 7A), the CLICK, CAST and SOM solutions achieved
the highest scores. Notably, they are scored higher than the
‘true’, K-mean and random solutions. When using all GO
annotations (Fig. 7B), a similar pattern of scores is observed.
Qualitatively, we got the same results when using GO annota-
tions at level 4 of the hierarchy (data not shown). When
evaluating all solutions based on MIPS level 4 annotations
(Fig. 7C), CAST achieved the highest score. This exemplifies
the fact that different biological attributes lead to different
evaluations of clustering solutions.

In a different test, we ran SOM with 2, 3,., 8 clusters on
the same data set and calculated CQS of each solution. Clear
best results were obtained for 5 and 6 clusters, as expected,
(28 + 1, 29+ 1 respectively, with all other cluster solutions
scored below 23).

Next, we present an analysis of CQS for the CLICK solu-
tion using all 115 GO attributes. Figure 8A is a scatter plot
of weight versus enrichment for each attribute, using this
solution. Theenrichment of a k-cluster solution for a given
attribute, is defined by-log p wherep is the p-value of the
G-test of independence (Sokal and Rohlf, 1995) with-aR2
table. It tests independence between element attributes and
the partition into clusters. Note that tligtest enables us to
evaluate functional enrichment for more than a single cluster.
The frequently used hyper-geometric Fisher exact test of inde-
pendence (Sokal and Rohlf, 1995) tests functional enrichment
of a single cluster only.

As expected, the highest ranking attributes (both using the
weights and the enrichment) are related to cell cycle. Notably
there is a correlation between the enrichment of an attrib:
ute and the absolute value of its assigned weight (Fig. 8B)
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Fig. 7. CQS of six clustering solutions for the yeast cell cycle data of
Spellmaret al. (1998). CQS is computed using GO level 5 process
attributes only A), all GO level 5 attributesR) and MIPS level 4

This corr_elation is expected,__since r_nor_e E_:nriched attribUteﬁttributes C). Y-axis: CQS.X-axis: clustering solutions. CQS for
can contribute more to our ability to discriminate between thesach clustering solution is presented along with its confidence, by

clusters and, thus, they are expected to have higher weightéemputing the standard deviation of 10 other solutions achieved by
However, we do not expect a perfect correlation between theeven random pair exchanges in the original solution.
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two measures, since the goals of the attributes weighting and

. ® the enrichment measure are different and, more importantly,
because thes-test takes into consideration each attribute

® o) separately, while the weights are computed by considering all

* attributes together and, thus, they reflect relations between
& & attributes. For example, consider the ‘DNA metabolism’
attribute, which deviates significantly from the correlation
. M (Fig. 8C). The enrichment of ‘DNA metabolism’ in clusters 1
and 2 overlaps to a large extent with that of ‘DNA replication’

— and ‘Chromosome organization and biogenesis’, and this is
. . . . . . partially reflected in their weights. Therefore, the weight of

03 2 -01 D 0 02 03 04 ‘DNA metabolism’ is lower than expected.

enrichment
*

®®
@

A

weight
A
. . DISCUSSION
weight |enrichrment Go Mame | GO number ] . ) ) . .
0.18 DMA metahalism 0:0006259 Clustering is a central tool in gene expression analysis. Dif-
-g-fg DA replication ggiggggégg ferent clustering methods usually produce different solutions,
-0. SENsOry perception : : . .
B nucleoplasm 500005654 of which one has to pick one or few preferred sglutlons. We
0.27 amino acid metabolism GO-0006520 propose here a method called CQS for evaluating a cluster-
017 ATP dependent DNA helicase (30:0004003 ing solution based on its biological relevance. Our method
U2 chromatin G007t/ can be applied to compare the functional enrichment of many
017 chromatin binding 00003652 . . . . . . .
0132 hexase transparter 500015149 blologlcal attrlbu_tgs smultaneously in d|ffer.en.t clustering
0.28 microtubule organizing center GO:0005815 solutions. In addition, it may be applied to optimize the para-
L spindle 50:0005819 meters of a clustering algorithm (e.g. to determine the number
022 269 DNA hinding 00003677 £ ol Th hod is based : “ f th
013 283 cellwal GO-O0IEE1G of clusters). The met od is based on using attributes of the
0.24 262  chromosome organization 50:0007001 clustered elements, which are available independently from
0.02 2.58 nucleotidyltransferase GO:0016779 the data used to generate the clusters.
-0.20 2,55 cytoplasm 00005737 - . . . .
0o 281 transpon ~O-000EG10 . We emplrlca!ly validated CQS using a variety of S|mu'la—
009 241 ronosaccharide transpart 500015749 tions. Our scoring method was shown to outperform previous
0.21 235 structural constituent of cytoskeleton  GO:0005200 numeric methods for C|u5tering evaluation, inc|uding the
-0.06 2.33 zygote formation (sensu Fungi) 000304652 : f : :
0o 312 endoplasmic reticulurn 50 0005753 separation to homogen_elty ratio and the average S|Ih0L_1ette
0.28 211 organelle organization and biogenesis GO:0006396 measure. We also app“ed CQS to compare between differ-
ent clustering solutions of the cell cycle data set of Spellman
B et al. (1998) using binary attributes from the GO and MIPS
By BT L2 &8 &8 6 G annotation databases.
DMA Metabolism (7 = 1 1 0 : . . -
DNA Replication (i) 7 3 5 0 = _ According to our results_, CQSis sensitive tqsmall r_nod|f|qa-
Chromosome organization (i | 4 10 O 1 1 0 tion of the clustering solution and to changes in the simulation
(Jy+ii) woono 1 1.0 0 setting. In order to evaluate the significance of the difference
E?;EHE) g g g g g g in CQS between clustering solutions, we use a CQS confid-
Total ganes in clusters TR R ence measure. For example, the CAST, CLICK and SOM

solutions in Figure 7A and B, cannot be meaningfully ranked
C by their scores. We may only conclude that CAST, CLICK
and SOM have higher scores than the ‘True’, Random and
Fig. 8. Attribute weights and enrichment values in the CLICK solu- K-means solutions. According to the results, although the
tion to the cell cycle data of Spellmat al. (1998), using all GO “True’ solution was hand crafted in order to approximate the
attributes. A) A scatter plot of enrichmenty¢axis) versus weight ¢g|| cycle phases, the solutions produced by CAST, CLICK
(x-axis), for each GO attribute. Attributes with high absolute weights;nq SOM are more aligned with the biological attributes.
(>0.15) are marked in black. Attributes with high enrichmenBl  \ve note that these results should be treated with caution
are circled. B) The 22 most enriched attributes. High attribute _. . .
; ) . o since the database annotations are incomplete and may be
values in enrichmentx3) or weight &0.15) are highlighted. Note ggiased

that the 14 top weighted attributes are contained in the 22 mo ) . . .
enriched attributes.@) The distribution and co-occurrence of the The attribute weights were computed using information

attributes ‘DNA metabolism’, ‘DNA replication’ and ‘Chromo- about all the attributes together, without assuming that the

some organization and biogenesis’ in the six clusters of the CLICKattributes are independent. Frequently, the functional enrich-
solution. ment of each attribute in each cluster, is computed separately
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[e.g. Tavazoiest al. (1999)]. In such cases, since the attrib- Mendez,M., Hoedar,C., Vulpe,C., Gonzales,M. and Cambiazo,V.

utes might be dependent (as we exemplify in Fig. 8B), the (2002) Discriminant analysis to evaluate clustering of gene

real fraction of functionally enriched attributes might be over expression dat&EBSLett., 522, 24-28.

estimated. Mewes,H.W., Frishman,D., Guldener,U., Mannhaupt,G., Mayer,K.,
CQS can be applied to a wide range of other attribute types. MOkrejs;M., Morgenstern,B., Munsterkotter,M., Rudd,S. and

For example, one can use continuous attributes corresponding Ve 'B- (2002) MIPS: a database for genomes and protein

to sequence motifs, that represent the likelihood of having tha’;ez:l?;eg Cé?g&auftﬁgﬁ;fbﬁ&a;;; Tests. Wiley, New York

motif. QQS has the advanf[age that it can use such continuo%”ard‘K. and van der Laan,M. (2002) A method to identify

data without any assumption on the data distribution. significant clusters in gene expression data.Srth World
Multiconference on Systemics, Cybernetics, and Informatics, to
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