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ABSTRACT
Motivation: A central step in the analysis of gene expres-
sion data is the identification of groups of genes that exhibit
similar expression patterns. Clustering gene expression data
into homogeneous groups was shown to be instrumental in
functional annotation, tissue classification, regulatory motif
identification, and other applications. Although there is a rich
literature on clustering algorithms for gene expression anal-
ysis, very few works addressed the systematic comparison
and evaluation of clustering results. Typically, different cluster-
ing algorithms yield different clustering solutions on the same
data, and there is no agreed upon guideline for choosing
among them.
Results: We developed a novel statistically based method for
assessing a clustering solution according to prior biological
knowledge. Our method can be used to compare different clus-
tering solutions or to optimize the parameters of a clustering
algorithm. The method is based on projecting vectors of bio-
logical attributes of the clustered elements onto the real line,
such that the ratio of between-groups and within-group vari-
ance estimators is maximized. The projected data are then
scored using a non-parametric analysis of variance test, and
the score’s confidence is evaluated. We validate our approach
using simulated data and show that our scoring method out-
performs several extant methods, including the separation to
homogeneity ratio and the silhouette measure. We apply our
method to evaluate results of several clustering methods on
yeast cell-cycle gene expression data.
Availability: The software is available from the authors upon
request.
Contact: iritg@post.tau.ac.il; rshamir@post.tau.ac.il; roded@
icsi.berkeley.edu

INTRODUCTION
DNA microarray technology enables the monitoring of
expression levels of thousands of genes simultaneously. This
allows a global view on the transcription levels of many genes
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under specific cellular conditions. The applications of such
technology range from gene functional annotation and genetic
network reconstruction to diagnosis of disease conditions and
characterization of effects of medical treatments.

A central step in the analysis of gene expression data is the
identification of groups of genes that exhibit similar expres-
sion patterns. Clustering methods transform a large matrix
of expression levels into a more informative collection of
gene sets (or condition sets) which are assumed to share
biological properties. Clustering gene expression data into
homogeneous groups was shown to be instrumental in func-
tional annotation, tissue classification, motif identification,
and other applications [for a review see Sharan et al. (2002)].

Although there has been extensive research on cluster-
ing algorithms for gene expression analysis (Eisen et al.,
1998; Tamayo et al., 1999; Ben-Dor et al., 1999; Sharan and
Shamir, 2000; Sharan et al., 2003), very few works have been
published on the systematic comparison and evaluation of
clustering results. Typically, different clustering algorithms
yield different clustering solutions on the same data, and
often the same algorithm yields different results for differ-
ent parameter settings, and there is no consensus on choosing
among them.

Different measures for the quality of a clustering solution
are applicable in different situations, depending on the data
and on the availability of the true solution. In case the true
solution is known, and we wish to compare it to another
solution, one can use, e.g. the Minkowski measure (Sokal,
1977) or the Jaccard coefficient [cf. Everitt (1993)]. When the
true solution is not known, there is no agreed-upon approach
for evaluating the quality of a suggested solution. Several
approaches evaluate a clustering solutions based on its intra-
cluster homogeneity or inter-cluster separation (Hansen and
Jaumard, 1997; Sharan et al., 2003; Yeung et al., 2001). How-
ever, the homogeneity and separation criteria are inherently
conflicting, as an improvement in one will usually correspond
to worsening of the other. One way of getting around this
problem is to fix the number of clusters and seek a solution
with maximum homogeneity. This is done, for example, by the
classical K-means algorithm (MacQueen, 1965; Ball and Hall,

Bioinformatics 19(18) © Oxford University Press 2003; all rights reserved. 2381



I.Gat-Viks et al.

1967). For methods that evaluate the number of clusters see,
e.g. Hartigan (1975); Tibshiraniet al. (2000); Ben-Huret al.
(2002); Pollard and van der Laan (2002); Dudoit and Fridly-
and (2002); McLachlan (1987). Another way to overcome
the problem is by presenting a curve of homogeneity versus
separation (Ben-Dor, private communication). Such a curve
can show that one algorithm dominates another if it provides
better homogeneity for all separation values, but typically dif-
ferent algorithms will dominate in different value range. An
alternative method suggested by Kaufman and Rousseeuw
(1990), evaluates a solution using a numerical measure called
the average silhouette. This method performs well in general,
but fails to detect fine cluster structures (Pollard and van der
Laan, 2002).

Clustering quality can also be visually assessed by
using discriminant analysis [e.g. Stephanopouloset al.
(2002); McLachlan (1992)] or principal component analysis
[e.g. Mendezet al. (2002)], that reduce data dimensional-
ity. Single clusters can be scored based on prior biological
knowledge, e.g. by checking for functional enrichment of
genes in a cluster or searching for common motifs in their
promoter regions (Tavazoieet al., 1999). Clustering solutions
can in some cases be assessed by applying standard statistical
techniques. For high-dimensional data, multivariate analysis
of variance (MANOVA) and discriminant analysis (Huberty,
1994; Mendezet al., 2002) are appropriate if the data are
normally distributed. For the case of non-normal data, there
are several extensions that require the data to be either low-
dimensional (Bishopet al., 1975) or continuous (Katz and
McSweeney, 1980). If attributes are independent one can also
test the significance of the grouping for each dimension separ-
ately, and combine the resulting scores (Pesarin, 2001). None
of these methods apply when wishing to test the significance
of a clustering solution based on high-dimensional vectors of
dependent biological attributes that do not necessarily follow
a normal distribution and may even be discrete.

In this paper we devise a statistically based method for
comparing clustering solutions according to prior biological
knowledge. In our method, solutions are ranked according to
their correspondence to prior knowledge about the clustered
elements. Given a vector of (continuous or discrete) attrib-
utes for each element, our method tests the dependency
between the attributes and the grouping of the elements. The
test is applied simultaneously to all the attributes. In our
application, elements are genes, clustered according to their
expression patterns, and the attributes of a gene are binary
indicators of its membership in specific functional classes.
In this case, the method computes a quality score for the
functional enrichment of these classes among each solution’s
clusters. At the heart of our method is a projection of the high-
dimensional data to one dimension, to avoid the problem of
applying MANOVA to the data. Using the one-dimensional
data, the solutions are compared based on their score in a
non-parametric ANOVA test.

In the rest of the paper, after providing some background,
we describe our method, and give results on its performance
on simulated and real data.

PRELIMINARIES
The input to a clustering problem consists of a set of elements
and a characteristic vector for each element. A measure of
(dis)similarity is defined between pairs of such vectors. (In
gene expression, elements are usually genes, and the vector
of each gene contains its expression levels under each of the
monitored conditions. Dissimilarity between vectors can be
measured, e.g. by their Euclidean distance.) The goal is to
partition the elements into subsets, which are calledclusters,
so that two criteria are satisfied: homogeneity – elements in
the same cluster are similar to each other; and separation –
elements from different clusters are dissimilar.

Let N be a set ofn elements and letC = {C1, . . . ,Cl} be a
partition of these elements intol clusters. We call two elements
from the same clustermates (with respect toC). A common
procedure for evaluating a clustering solution given the true
solution, is to compute itsJaccard coefficient [see, e.g. Everitt
(1993)], which is the proportion of correctly identified mates
out of the sum of the correctly identified mates plus the total
number of disagreements (pairs of elements that are mates in
exactly one of the two solutions). Hence, a perfect solution has
score 1, and the higher the score – the better the solution. When
the true solution is not known, a solution can be evaluated by
its homogeneity and separation. Thehomogeneity of C is the
average distance between mates, and theseparation of C is the
average distance between non-mates (Hansen and Jaumard,
1997; Sharanet al., 2003). Another popular measure is the
average silhouette (Kaufman and Rousseeuw, 1990), which
is computed as follows: define thesilhouette of elementj as
(bj − aj )/ max(aj ,bj ), whereaj is the average distance of
elementj from other elements of its cluster,bjk is the average
distance of elementj from the members of clusterCk, and
bj = min{k:j �∈Ck} bjk. Theaverage silhouette is the mean of
this ratio over all elements.

Our main focus is the evaluation of clustering solutions
using external information. The setup for the problem is as
follows: we are given ann × p attribute matrix A. The rows
of A correspond to elements, and theith row vector is called
theattribute vector of elementi. We are also given a cluster-
ing C = {C1, . . . ,Cl} of the elements, wheresi = |Ci |. For
convenience, we shall also index the attribute vectors by the
clustering, i.e. useaij = (a1

ij , . . . ,ap

ij ) as the vector of ele-
mentj in clusteri. Typically C is obtained without using the
information inA. Our goal is to evaluateC with respect toA.

When p = 1, there are established statistical tests for
the problem. Such tests will serve as building blocks in our
method. In the case that the attribute is normally distrib-
uted, and under the assumption that the variances of thel

population distributions are identical, we can use standard
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analysis of variance (ANOVA) methods to test the significance
of the grouping [see, e.g. Sokal and Rohlf (1995)]: suppose
that the attribute of elementj in clusteri has valueaij . Let
āi denote the mean of the elements in clusteri, and let ā
denote the total mean of alln elements. When ANOVA is
carried out, the null hypothesis is that the groups do not dif-
fer in location, i.e.H0 : µ1 = µ2 = · · · = µl , whereµi is
the expectation of groupi. The test statistic typically used is
the ratio of variance estimator, i.e. the ratio of the hypothesis
(or between-groups) mean square (MSH) to the error mean
square (MSE):

FH = MSH

MSE
= SSH/(l − 1)

SSE/(n − l)
(1)

where the hypothesis sum of squares is SSH= ∑l
i=1 si(āi−

ā)2 and the error sum of squares is SSE= ∑l
i=1

∑si

j=1(aij−
āi )

2. Under certain data conditions theFH statistic has a
(central)F distribution withl−1 andn−l degrees of freedom.

In case the attribute (or some transformation of it) does not
follow a normal distribution, one can use the Kruskal–Wallis
(KW) test [cf. Sokal and Rohlf (1995)] as a non-parametric
ANOVA test. The test assumes that the clusters are independ-
ent and have similar shape. We shall denote byP KW(C,A) the
p-value obtained by the KW test for a clusteringC using the
attributeA : N → R. For the multidimensional case (p > 1),
the MANOVA test [cf. Sokal and Rohlf (1995)] applies the
same objective functionFH, but it applies only if the attribute
matrix is multinormally distributed.

METHOD
Our goal is to evaluate a clustering solution given an attrib-
ute vector for each element, which represents the prior
biological knowledge about the element. To this end, the
MANOVA test is particularly appealing, as the numerator in
Equation (1) (MSH) measures the separation (normalized by
the number of clusters) and the denominator (MSE) measures
the (normalized) homogeneity. However, the distribution of
attribute vectors does not necessarily meet the requirements of
MANOVA test. Such is the case, in particular, when attributes
are binary. Thus, we propose to project the high-dimensional
attribute vectors onto the real line using a linear combina-
tion of the attributes. Then, the solutionC is scored by a
non-parametric one-way ANOVA test on the one-dimensional
data. We refer to the result as theCQS (Clustering Quality
Score) of the clustering. CQS is computed as follows:

1. Computing a linear combination of the attributes. Each
element is assigned a real value, which is a weighted sum
of its attributes. An attribute’sweight is its coefficient in
the linear combination. Intuitively, we would like to weight
the attributes such that they will contribute to the solution
score according to their ‘importance’. Usually, we do not
know in advance the desired weighting of the attributes. In
such cases, we propose to use weights that maximize the

ability to discriminate between the clusters using the one-
dimensional data. Finding the weights will be done in the same
manner as in Linear Discriminant Analysis (LDA) (Huberty,
1994). The procedure for weight finding does not require
any assumptions on the distribution ofA. LDA creates such
a linear combination by maximizing the ratio of between-
groups-variance to within-groups-variance, as follows: letw

be somep-dimensional vector of weights. The statistic being
maximized is the ratio of MSH to MSE:

F(w) =
∑l

i=1 si(w · āi − a · ā)2/(l − 1)
∑l

i=1
∑si

j=1(w · aij − w · āi )2/(n − l)
(2)

where āi is the mean vector of clusteri, and ā is the total
mean vector. When introducing an additional constraint of a
unit denominator, the maximum value ofF(w) is proportional
to the greatest root of the equation|H − λE| = 0. Here,H is
ap × p matrix containing the between-groups sum of square
Hrs = ∑l

i=1 si(ā
r
i − ār )(ās

i − ās), andE is ap ×p matrix of
the sum of squared errorsErs = ∑l

i=1
∑si

j=1(a
r
ij − ār

i )(a
s
ij −

ās
i ), whereār

i is the mean of attributer in clusteri and ār

is the total mean of attributer. Thus, the desired combination
w is the eigenvector corresponding to the greatest root. This
result holds without assuming any prior distribution on the
attributes.

2. Projection. Apply the linear combinationw to the attrib-
ute vectors, thereby projecting these vectors onto the real line.
That is,zij = ∑

t at
ijw

t .

3.Computing CQS using the projected values. We now eval-
uate the clustering vis-á-vis the projected attributes using the
KW test. We define CQS as – logp, wherep = P KW(C,Z),
i.e. thep-value assigned to the clustering by the KW test.
Note thatp is not the probability of observing the original
attributes allocation randomly, since the vector data was first
projected to maximize the variance ratio. Rather, thep-value
is the probability that all values in this particular projection
have been taken from the same population. Hence, CQS favors
clustering solutions whose best discriminating weights enable
significant grouping.

4. Estimating confidence. In order to estimate the accuracy
of the scores and the significance of differences between the
scores of distinct solutions, we evaluate the sensitivity of CQS
to small modifications of the clustering solution. Intuitively,
the larger the influence of small perturbations in the clustering
on the CQS value, the smaller the confidence we have in the
CQS. Specifically, for a given original solution we generate
a group of alternative clustering solutions. Each alternative
solution is obtained by introducingk exchanges of random
pairs of elements from different clusters of the original solu-
tion (k is typically small, such as 2% of the elements). The
CQS confidence is the standard deviation of CQS for the group
of alternative clustering solutions.
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The overall procedure is as follows:

1. Find the eigenvectorw corresponding to the greatest root
of the system of equations|H − λE| = 0.

2. For each attribute vectoraij setzij = ∑
t at

ijw
t .

3. Computep = P KW(C,Z); let CQS(C,A) = −logp.

4. Estimate the statistical confidence of the result by
perturbations onC.

Our scoring scheme can be applied in several ways and for
several purposes. Our focus in this study is the evaluation of
clustering solutions given external biological attributes, that
were not used in the clustering process. Another application of
our score is internal validation of solutions based on the same
attributes that were used in generating the clustering. This
can help in choosing among different clustering algorithms,
as well as in optimizing the parameters of a specific algorithm
(for example, choosing the number of clusters forK-means).

RESULTS
The score calculation was implemented in Perl under linux,
using MATLAB. Running time for a data set of 750 clustered
elements and 80 attributes is about a minute, on a standard
800 MHz PC. Below we report on the performance of our
method on simulated and real data.

Simulations
We validate our method by conducting a series of tests on
simulated data. We tested the effect of the one-dimensional
projection of the attribute vector, the sensitivity of CQS to the
solution accuracy, and the ability of CQS to pinpoint the right
number of clusters and to detect fine clustering structures.

The data were generated as follows: profiles of 80 binary
attributes were generated for five groups ofn = 50 genes each.
(We use the term ‘genes’ for uniformity. The simulations test
the score irrespective of the nature of the clustered elements.)
For each attribute we randomly selected one group in which
its frequency will ber, and in the other four groups its fre-
quency was set tor0. The set ofr (r0) genes with that attribute
was randomly selected from the relevant groups.r0 = 5 was
used throughout. Since we randomly select for each attribute
the single group with frequencyr, the overall density of the
attribute vectors should be about the same for all elements,
and the distinction must be based on individual attributes.
Clearly, the larger the difference betweenr andr0, the easier
the distinction between the groups.

A. The effect of one-dimensional projection. First, we
wished to examine the effect of reducing the attribute dimen-
sion to 1. We simulated data sets withr = 6, 10, 15, 20 and 25.
For each data set we computed the ratio of separation to homo-
geneity of the true clustering on the original data (S/H ) and
on the projected data (S∗/H ∗). This procedure was repeated
10 times. The results are shown in Figure 1B. Clearly, the

Fig. 1. Clustering parameters on simulated data.Y -axis: scores of
five simulation setupsr = 6, 10, 15, 20, 25 in different gray scale
colors. (A) Scores are Homogeneity (H), separation (S) and their ratio
on the original data. (B) Scores are Homogeneity (H ∗), separation
(S∗), their ratio and CQS on the projected (reduced) data. Numbers
are average of 10 runs.

monotonicity of the homogeneity, separation and their ratio
as a function ofr, which is manifested on the original data,
is preserved on the reduced data. The same monotonicity was
observed in each of the 10 repetitions. Also, as expected, CQS
improves monotonically withr.

The projected data for two simulations withr = 6 and
r = 25 are visualized in Figure 2. Forr = 6, the clusters look
very similar, even though the data were reduced using the best
separating linear combination. On the other hand, forr = 25,
inter-cluster separation of most clusters is clearly visible.

B. The effect of solution accuracy on CQS. To test the sensit-
ivity of CQS to the clustering solution, we simulated data with
r = 25, and compared CQS of the true partition with that of
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Fig. 2. Box plots for the projection of five simulated clusters with
r = 6 (A) andr = 25 (B) after dimensionality reduction. They-axis
is the real-valued projection of the elements. Each box-plot depicts
the median of the distribution (dot), 0.1 and 0.9 distribution quantiles
(white box), and the maximum and minimum values.

Fig. 3. Effect of the solution accuracy on CQS. The accuracy of
different clustering solutions is measured by the number of inter-
cluster exchanges introduced in the original solution.X-axis: number
of exchanges.Y -axis: CQS (black bars, left scale) and Jaccard
coefficient (gray bars, right scale).

other, similar and remote partitions. Those were produced by
starting with the true solution and repeatedly exchanging a
randomly chosen pair of elements from different clusters. As
evident from the results in Figure 3, CQS is highest for the
true partition and decreases with the number of exchanges
applied (200 exchanges generate an essentially random parti-
tion, so further exchanges have no effect). We also computed
for each intermediate solution its Jaccard score. As expected,
the Jaccard coefficients of these solutions decrease with the
number of exchanges.

C.Sensitivity of CQS to the number of clusters. Our next goal
was to test the sensitivity of CQS with respect to the number
of clusters. A robust score is essential for comparing solu-
tions with different number of clusters. To this end we tested
how CQS changes when splitting or merging clusters. For the
splitting test we simulated data withr = 25. We compared
the true 5-cluster solution with a 25-cluster solution obtained
by randomly splitting each of the 5 clusters into 5 equal-size
sub-clusters. This test was repeated 10 times. The parameters
of the solutions before and after the splitting, averaged over
10 runs, are shown in Figure 4A. In all runs, as well as on
the average, we observe a decrease of the clustering quality
measures. The decrease ofS/H is maintained (and even made
more pronounced) in CQS and on the reduced data (S∗/H ∗).

Fig. 4. Comparison between clustering solutions on simulated data
after splitting clusters (A) or merging clusters (B). Each diagram
shows CQS,S∗/H ∗ andS/H (y-axis) of the true solution (gray) and
the modified solution (black). Numbers are average of 10 runs.

For the merging test, we simulated two 5-cluster data sets
with r = 25 andr = 6 as above, usingn = 25. We then
combined these data sets into a single data set whose true
solution consists of 10 equal size clusters with 25 genes each.
We next merged pairs of clusters, one from each original
data set, to form in total five clusters with 50 genes each.
These five clusters comprised the alternative (merged) solu-
tion. Figure 4B shows the parameters of the resulting partition
before and after the merging, averaged over 10 runs. As in the
splitting test, all the measures decrease due to the merging,
and this is observed in all runs, as well as on the average.
The decrease ofS/H is maintained and enlarged inS∗/H ∗
and CQS.

Next, we tested the agreement of CQS with Jaccard coef-
ficient: we simulated 5-cluster data withr = 25 and applied
K-means (MacQueen, 1965; Ball and Hall, 1967) to the data,
with K = 2, . . . , 15. SinceK-means seeks a clustering solu-
tion withK clusters, we expect the solution’s quality to decline
as the difference|K−5| increases. A good score should mani-
fest such trend. We computed CQS and Jaccard coefficient
for each clustering solution, as well asS/H . The results are
shown in Figure 5. CQS behaves as the Jaccard coefficient
andS/H , with a maximum atK = 5, the true number of
clusters. Moreover, the ranking of all 14 solutions according
to the Jaccard score (which is based on the true solution) and
according to CQS (which is based on the attributes only) are
virtually identical. The ratio score also does quite well, with
a maximum atK = 5. However, the ranking of solutions by
this score does not agree with the Jaccard score.

D. CQS ability to detect fine clustering structures. Our next
goal was to test the ability of CQS to identify fine structures
in the data. Profiles of 30 binary attributes were generated for
four clusters ofn = 50 genes each. For each attribute, its fre-
quencies in clusters 1, 2, 3 and 4 were set to 2,b, 50−b and 48,
respectively. We simulated data sets withb = 3, 5, 10, 15, 20.
For each data set, we scored two clustering solutions: the
original 4-cluster solution, and a 2-cluster solution obtained
by merging cluster 1 with 2 and merging cluster 3 with 4.
Thus, for large values ofb we expect the 4-cluster solution to
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Fig. 5. Comparison of quality measures on solutions of various
accuracies. Scores are plotted for differentK-means’ solutions.
X-axis:K-means’ solutions withK = 2, . . . , 15.Y -axis: CQS (light
gray), Jaccard (black) andS/H (gray) scores. The true number of
clusters is 5.

score higher than the 2-cluster solution. Note that unlike the
previous simulations, where distributions of individual attrib-
utes were designed to differ between clusters, here it is only
the overall attribute density which is directly controlled. This
design is the binary equivalent to the Gaussian clusters with
different means that appears, e.g. in Pollard and van der Laan
(2002). For each data set and each of the two solutions, we
computedS/H , CQS and the average silhouette score.

The ratios of the 4-cluster to 2-cluster scores, averaged over
10 runs, are presented in Figure 6. As expected, the ratios are
increasing withb in all scores. The silhouette for the 2-cluster
solution is always greater than for the corresponding 4-cluster
solution. Similarly, forb = 3, 5, 10, 15,S/H is greater for the
2-cluster solution. In all those cases, the scores would prefer
the incorrect, 2-cluster solution. In contrast, CQS is able to
identify the fine structure in the data: for allb values except
b = 3, CQS rates the 4-cluster solution above the 2-cluster
solution, as desired. Forb = 3, the 2-cluster CQS is higher
than the 4-cluster CQS, since there is almost no difference
between the clusters with 2 or 3 occurrences of attributes, and
between the clusters with 47 or 48 occurrences.

Yeast cell-cycle data
We also tested our approach on clustering solutions computed
on the yeast cell-cycle data set of Spellmanet al. (1998).
The data set contains 72 expression profiles from yeast cul-
tures synchronized by four independent methods:α factor
arrest, arrest of a cdc15 temperature sensitive mutant, arrest
of a cdc28 temperature sensitive mutant and elutriation. [As
in Tamayoet al. (1999), an additional 90 min data point in
the cdc15 experiment was not used.] Spellmanet al. (1998)

Fig. 6. Ability of the different scores to distinguish similar clusters.
We simulated 4-cluster data with attribute frequencies 2,b, 50−b, 48,
and used different values forb. We obtained a 2-cluster solution by
merging cluster 1 with 2 and 3 with 4.X axis: value ofb in the
simulation.Y -axis: the ratio of the scores for the 4-cluster and 2-
cluster solutions. The scores are silhouette (gray),S/H (dark gray)
and CQS (black).

identified in these data 800 genes that are cell-cycle regulated.
We used the expression levels of 698 out of those 800 genes,
which have up to three missing entries, over the 72 condi-
tions. The missing entries in each gene were completed with
the average of its present entries. Each row of the 698× 72
matrix was normalized to have mean 0 and variance 1.

Based on the analysis conducted by Spellmanet al. (1998),
we expect to find in the data five main clusters, each one
corresponding to genes peaking in one of the cell cycle
phases (G1, S, G2, M and M/G1). The 698× 72 data
set was clustered using four clustering methods:K-means
(MacQueen, 1965; Ball and Hall, 1967), SOM (Kohonen,
1997; Tamayoet al., 1999), CAST (Ben-Doret al., 1999)
and CLICK (Sharan and Shamir, 2000; Sharanet al., 2003).
The solutions ofK-means, SOM and CLICK were obtained
using the EXPANDER software (Sharanet al., 2003). CAST’s
solution was produced by the authors of the software and
is the same as reported in (Shamir and Sharan, 2002). The
K-means algorithm was executed withK = 5. The SOM
algorithm was executed on a 2× 3 grid and produced six
clusters. The CAST solution has five clusters. CLICK was
executed with default parameters and generated a solution
with six clusters and 23 singletons. Each singleton was sub-
sequently assigned to its closest cluster in order to produce a
solution with no singletons. The similarity measure used in
all cases was Pearson correlation coefficient. Another solution
that we included in the analysis is the one reported in Spellman
et al. (1998), which was generated by manually dividing the
genes into five groups using their peak of expression, in order
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to approximate the five cell-cycle phases. We shall refer to it
as the ‘true’ solution.

To evaluate the five solutions, we used as gene attributes the
GO classes (The Gene Ontology Consortium, 2000) at level
5 of the ontology, including process, function and component
attributes. In addition, we used the MIPS annotation (Mewes
et al., 2002) at level 4. We removed attributes indicating that
the functional class of the gene is still unknown and used only
attributes that occur in at least four of the genes. Overall we
used 51 GO process attributes, 37 GO function attributes, 27
GO component attributes and 59 MIPS attributes. We applied
the analysis to 370 genes that had at least one attribute. CQS
was computed three times, using the GO process attributes
only, all GO attributes, and the MIPS attributes only. The
results are depicted in Figure 7. For comparison purpose, we
also scored a random clustering of the data into five equal-size
clusters.

The random solution consistently obtained the lowest scores
in all annotation categories. Using the process GO annotation
(Fig. 7A), the CLICK, CAST and SOM solutions achieved
the highest scores. Notably, they are scored higher than the
‘true’, K-mean and random solutions. When using all GO
annotations (Fig. 7B), a similar pattern of scores is observed.
Qualitatively, we got the same results when using GO annota-
tions at level 4 of the hierarchy (data not shown). When
evaluating all solutions based on MIPS level 4 annotations
(Fig. 7C), CAST achieved the highest score. This exemplifies
the fact that different biological attributes lead to different
evaluations of clustering solutions.

In a different test, we ran SOM with 2, 3,. . . , 8 clusters on
the same data set and calculated CQS of each solution. Clear
best results were obtained for 5 and 6 clusters, as expected,
(28± 1, 29± 1 respectively, with all other cluster solutions
scored below 23).

Next, we present an analysis of CQS for the CLICK solu-
tion using all 115 GO attributes. Figure 8A is a scatter plot
of weight versus enrichment for each attribute, using this
solution. Theenrichment of a k-cluster solution for a given
attribute, is defined by−logp wherep is thep-value of the
G-test of independence (Sokal and Rohlf, 1995) with a 2× k

table. It tests independence between element attributes and
the partition into clusters. Note that theG-test enables us to
evaluate functional enrichment for more than a single cluster.
The frequently used hyper-geometric Fisher exact test of inde-
pendence (Sokal and Rohlf, 1995) tests functional enrichment
of a single cluster only.

As expected, the highest ranking attributes (both using the
weights and the enrichment) are related to cell cycle. Notably,
there is a correlation between the enrichment of an attrib-
ute and the absolute value of its assigned weight (Fig. 8B).
This correlation is expected, since more enriched attributes
can contribute more to our ability to discriminate between the
clusters and, thus, they are expected to have higher weights.
However, we do not expect a perfect correlation between the

A

B

C

Fig. 7. CQS of six clustering solutions for the yeast cell cycle data of
Spellmanet al. (1998). CQS is computed using GO level 5 process
attributes only (A), all GO level 5 attributes (B) and MIPS level 4
attributes (C). Y -axis: CQS.X-axis: clustering solutions. CQS for
each clustering solution is presented along with its confidence, by
computing the standard deviation of 10 other solutions achieved by
seven random pair exchanges in the original solution.
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A

B

C

Fig. 8. Attribute weights and enrichment values in the CLICK solu-
tion to the cell cycle data of Spellmanet al. (1998), using all GO
attributes. (A) A scatter plot of enrichment (y-axis) versus weight
(x-axis), for each GO attribute. Attributes with high absolute weights
(>0.15) are marked in black. Attributes with high enrichment (>3)
are circled. (B) The 22 most enriched attributes. High attribute
values in enrichment (>3) or weight (>0.15) are highlighted. Note
that the 14 top weighted attributes are contained in the 22 most
enriched attributes. (C) The distribution and co-occurrence of the
attributes ‘DNA metabolism’, ‘DNA replication’ and ‘Chromo-
some organization and biogenesis’ in the six clusters of the CLICK
solution.

two measures, since the goals of the attributes weighting and
the enrichment measure are different and, more importantly,
because theG-test takes into consideration each attribute
separately, while the weights are computed by considering all
attributes together and, thus, they reflect relations between
attributes. For example, consider the ‘DNA metabolism’
attribute, which deviates significantly from the correlation
(Fig. 8C). The enrichment of ‘DNA metabolism’ in clusters 1
and 2 overlaps to a large extent with that of ‘DNA replication’
and ‘Chromosome organization and biogenesis’, and this is
partially reflected in their weights. Therefore, the weight of
‘DNA metabolism’ is lower than expected.

DISCUSSION
Clustering is a central tool in gene expression analysis. Dif-
ferent clustering methods usually produce different solutions,
of which one has to pick one or few preferred solutions. We
propose here a method called CQS for evaluating a cluster-
ing solution based on its biological relevance. Our method
can be applied to compare the functional enrichment of many
biological attributes simultaneously in different clustering
solutions. In addition, it may be applied to optimize the para-
meters of a clustering algorithm (e.g. to determine the number
of clusters). The method is based on using attributes of the
clustered elements, which are available independently from
the data used to generate the clusters.

We empirically validated CQS using a variety of simula-
tions. Our scoring method was shown to outperform previous
numeric methods for clustering evaluation, including the
separation to homogeneity ratio and the average silhouette
measure. We also applied CQS to compare between differ-
ent clustering solutions of the cell cycle data set of Spellman
et al. (1998) using binary attributes from the GO and MIPS
annotation databases.

According to our results, CQS is sensitive to small modifica-
tion of the clustering solution and to changes in the simulation
setting. In order to evaluate the significance of the difference
in CQS between clustering solutions, we use a CQS confid-
ence measure. For example, the CAST, CLICK and SOM
solutions in Figure 7A and B, cannot be meaningfully ranked
by their scores. We may only conclude that CAST, CLICK
and SOM have higher scores than the ‘True’, Random and
K-means solutions. According to the results, although the
‘True’ solution was hand crafted in order to approximate the
cell cycle phases, the solutions produced by CAST, CLICK
and SOM are more aligned with the biological attributes.
We note that these results should be treated with caution
since the database annotations are incomplete and may be
biased.

The attribute weights were computed using information
about all the attributes together, without assuming that the
attributes are independent. Frequently, the functional enrich-
ment of each attribute in each cluster, is computed separately
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[e.g. Tavazoieet al. (1999)]. In such cases, since the attrib-
utes might be dependent (as we exemplify in Fig. 8B), the
real fraction of functionally enriched attributes might be over
estimated.

CQS can be applied to a wide range of other attribute types.
For example, one can use continuous attributes corresponding
to sequence motifs, that represent the likelihood of having that
motif. CQS has the advantage that it can use such continuous
data without any assumption on the data distribution.
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