
CLICK: A Clustering Algorithm with Applications to
Gene Expression Analysis

Roded Sharan and Ron Shamir
Department of Computer Science, Tel-Aviv University

Tel-Aviv 69978, Israel
froded,shamirg@math.tau.ac.il

Abstract

Novel DNA microarray technologies enable the mon-
itoring of expression levels of thousands of genes si-
multaneously. This allows a global view on the tran-
scription levels of many (or all) genes when the cell
undergoes speci�c conditions or processes. Analyzing
gene expression data requires the clustering of genes
into groups with similar expression patterns. We have
developed a novel clustering algorithm, called CLICK,
which is applicable to gene expression analysis as well
as to other biological applications. No prior assump-
tions are made on the structure or the number of the
clusters. The algorithm utilizes graph-theoretic and
statistical techniques to identify tight groups of highly
similar elements (kernels), which are likely to belong to
the same true cluster. Several heuristic procedures are
then used to expand the kernels into the full clustering.

CLICK has been implemented and tested on a variety
of biological datasets, ranging from gene expression,
cDNA oligo-�ngerprinting to protein sequence similar-
ity. In all those applications it outperformed extant al-
gorithms according to several common �gures of merit.
CLICK is also very fast, allowing clustering of thou-
sands of elements in minutes, and over 100,000 ele-
ments in a couple of hours on a regular workstation.

Keywords: Clustering, Gene Expression, Graph Al-
gorithms, Minimum Cut.

Introduction

Novel DNA microarray technologies (Eisen & Brown
1999) enable the monitoring of expression levels of thou-
sands of genes simultaneously. This allows for the �rst
time a global view on the transcription levels of many
(or all) genes when the cell undergoes speci�c condi-
tions or processes. The potential of such technologies
for functional genomics is tremendous: Measuring gene
expression levels in di�erent developmental stages, dif-
ferent body tissues, di�erent clinical conditions and dif-
ferent organisms is instrumental in understanding genes
function, gene networks, biological processes and e�ects
of medical treatments.
A key step in the analysis of gene expression data is

the identi�cation of groups of genes that manifest sim-
ilar expression patterns over several conditions. The

corresponding algorithmic problem is to cluster multi-
condition gene expression patterns. The grouping of
genes with similar expression patterns into clusters
helps in unraveling relations between genes, deducing
the function of genes and revealing the underlying gene
regulatory network.

A clustering problem consists of n elements and a
characteristic vector for each element. In gene expres-
sion data, elements are genes, and the vector of each
gene contains its expression levels under some condi-
tions. These levels are obtained by measuring the in-
tensity of hybridization of gene-speci�c oligonucleotides
(or cDNA molecules), which are immobilized to a sur-
face, to a labeled target RNA mixture (cf. (Eisen &
Brown 1999)). A measure of pairwise similarity is then
de�ned between such vectors. For example, similarity
can be measured by the correlation coeÆcient between
vectors. The goal is to partition the elements into sub-
sets, which are called clusters, so that two criteria are
satis�ed: Homogeneity - elements in the same cluster
are highly similar to each other; and separation - ele-
ments from di�erent clusters have low similarity to each
other. The problem has numerous applications in biol-
ogy as well as in other disciplines.

There is a very rich literature on cluster analysis go-
ing back over three decades (cf. (Hartigan 1975; Everitt
1993; Mirkin 1996; Hansen & Jaumard 1997)). Several
algorithmic techniques were previously used in cluster-
ing gene expression data, including hierarchical cluster-
ing (Eisen et al. 1998), self organizing maps (Tamayo
et al. 1999), simulated annealing (Alon et al. 1999),
and graph theoretic approaches (Hartuv et al. 1999;
Ben-Dor, Shamir, & Yakhini 1999).

We have developed a novel clustering algorithm that
we call CLICK - CLuster Identi�cation via Connectiv-
ity Kernels. Our work builds on a recent clustering ap-
proach of Hartuv and Shamir (Hartuv et al. 1999). The
algorithm does not make any prior assumptions on the
number or the structure of the clusters. At the heart
of the algorithm is a process of recursively partitioning
a weighted graph into components using minimum cut
computations. The edge weights and the stopping crite-
rion of the recursion are assigned probabilistic meaning,
which gives the algorithm high accuracy. The speed of

the algorithm is achieved by a variety of experimentally
tested heuristic procedures that shortcut, prepend and
append the main process.

CLICK was implemented and tested on a variety of
biological datasets. On two large-scale gene expression
datasets, the algorithm outperformed previously pub-
lished results, which utilized hierarchical clustering and
self organizing maps. Substantial improvements over
two extant algorithms were also demonstrated in clus-
tering of cDNA oligo-�ngerprinting data. As an ad-
ditional test, we applied CLICK to two large protein
similarity datasets, and obtained similar or better re-
sults than leading ad-hoc algorithms for this applica-
tion. CLICK is also very fast, allowing clustering of
thousands of elements in minutes, and over 100,000 el-
ements in a couple of hours on a regular workstation.

Preliminaries

Let G = (V;E) be a connected weighted graph. We
denote the vertex set of G also by V (G). For a vertex
v 2 V , de�ne the weight of v to be the sum of weights
of the edges incident on v. A cut C in G is a subset of
its edges, whose removal disconnects G. The weight of
C is the sum of the weights of its edges. A minimum

weight cut is a cut in G with minimumweight. In case
of non-negative edge weights, a minimumweight cut C
partitions the vertices of G into two disjoint non-empty
subsets A;B � V , A [B = V , such that E \ f(u; v) :
u 2 A; v 2 Bg = C. An s-t cut, for s; t 2 V , is a
cut whose removal disconnects s from t. For a pair of
vertices u; v 2 V , the distance between u and v is the
length of the shortest path which connects them. The
diameter of G is the maximum distance between a pair
of vertices in G.

Let N = fe1; : : : ; eng be a set of n elements, and let
C = (C1; : : : ; Cl) be a partition of N into subsets. Each
of these subsets is called a cluster, and C is called a clus-
tering solution, or simply a clustering. Two elements ei
and ej are called mates with respect to C if they are
both members of the same cluster in C. When C is the
true clustering of N (with respect to some prede�ned
criterion) we simply call ei and ej mates.

The input data for a clustering problem is typically
given in one of two forms: (1) Fingerprint data - each
element is associated with a real-valued �ngerprint vec-
tor, which contains p measurements on the element,
e.g., expression levels of an mRNA at di�erent condi-
tions (cf. (Eisen & Brown 1999)), or hybridization in-
tensities of a cDNA with di�erent oligos (cf. (Lennon &
Lehrach 1991)). (2) Similarity data - pairwise similarity
values between elements, e.g., an E-value for the simi-
larity between two protein sequences (cf. (Yona, Linial,
& Linial 1999)).

Naturally, �ngerprint data is more informative than
similarity data: Given the data, one can compute any
chosen pairwise similarity function between elements.
Moreover, many other computations are possible, e.g.,
computing the mean vector for a group of elements.

The goal in a clustering problem is to partition the
set of elements N into homogeneous and well-separated
clusters. That is, we require that elements from the
same cluster will be highly similar to each other, while
elements from di�erent clusters will have low similarity
to each other.
Our algorithm can be applied to both �ngerprint data

and similarity data. In the next section we describe our
algorithm for clustering �ngerprint data. In the Appli-
cations Section we mention ad-hoc modi�cations of the
algorithm to handle protein similarity data. A detailed
description of our algorithm for handling similaritydata
will appear elsewhere, for lack of space.

The Clustering Algorithm
Let N = fe1; : : : ; eng be a set of elements. Let M be
an input real-valued matrix of order n � p, where Mij

is the j-th attribute of ei. The i-th row-vector in M is
the �ngerprint of ei. For a set of elements K � N , we
de�ne the �ngerprint of K to be the mean vector of the
�ngerprints of the members of K.
The analysis of the raw data involves three main

steps: (1) Preprocessing - normalization of the data
and calculation of pairwise similarity values between
elements; (2) Clustering; and (3) Assessment of the re-
sults. We describe each of the three steps below.

Preprocessing of Fingerprint Data

Our goal in the preprocessing step is to normalize the
data, de�ne a similarity measure between elements and
characterize mates and non-mates in terms of their pair-
wise similarity values.
Common procedures for normalizing �ngerprint data

include transforming each �ngerprint to have mean zero
and variance one, a �xed norm, a �xed maximumentry,
etc. Choosing an appropriate procedure depends on the
kind of data dealt with, and on the biological context
of the study. Examples for di�erent data normalization
procedures are given in the Applications Section.
Often, each �ngerprint in the normalized data has

the same norm. If �xed-norm �ngerprints are viewed
as points in the Euclidean space, then these points lie
on a p-dimensional sphere, and the dot-product of two
vectors is proportional to the cosine of the angle be-
tween them. We therefore use the vector dot-product as
the default similarity measure. In case all �ngerprints
have mean zero and variance one, the dot-product of
two vectors equals their correlation coeÆcient.
A key probabilistic assumption in developing CLICK

is that pairwise similarity values between elements are
normally distributed: Similarity values between mates
are normally distributed with mean �T and variance
�
2
T
, and similarity values between non-mates are nor-

mally distributed with mean �F and variance �2
F
, where

�T > �F . This situation was observed on real data
(for example, see Figure 5 in the Applications Section),
and can be theoretically justi�ed as follows: Suppose
that for each �ngerprint, its attribute values are in-
dependent and drawn from some random distribution.

Let u = (u1; : : : ; up) and v = (v1; : : : ; vp) be two �n-
gerprints, and let Suv =

P
p

i=1 uivi be their similarity
value. The distribution of uivi depends on whether u
and v are mates. Suppose that u and v are mates,
and let the mean and the variance of this distribution
be �T =p and �

2
T
=p, respectively. Then by the Cen-

tral Limit Theorem, provided that p is large enough,
Suv � N (�T ; �

2
T
). We denote by f(xj�T ; �T) the mates

probability density function. Similarly, if u and v are
non-mates, and the distribution of uivi has mean �F=p
and variance �2

F
=p, then Suv � N (�F ; �

2
F
). We de-

note by f(xj�F ; �F) the non-mates probability density

function.

We remark, that when similarity values are not nor-
mally distributed, then their distribution can be ap-
proximated, and the same ideas presented below can
be applied. In practice, the normality assumption often
holds, as demonstrated by the results in the Applica-
tions Section.

An initial step of the algorithm is estimating the dis-
tribution parameters �T ; �F ; �T and �F , and the prob-
ability pmates that two randomly chosen elements are
mates. There are two possible methods to compute
these parameters: (1) In many cases the true parti-
tion for a subset of the elements is known. This is the
case, for example, if the clustering of some of the genes
in a cDNA chip experiment is found experimentally
(cf. (Hartuv et al. 1999)), or more generally, if a subset
of the elements has been analyzed using prior biolog-
ical knowledge. Based on this partition one can com-
pute the sample mean and sample variance for similar-
ity values between mates and between non-mates, and
use these as maximum likelihood estimates for the dis-
tribution parameters. The proportion of mates among
all pairs can serve as an estimate for pmates, if the sub-
set was randomly chosen. (2) In case no additional in-
formation is given, these parameters can be estimated
using the EM algorithm (see, e.g., the probabilistic clus-
tering section in (Mirkin 1996)).

The Basic CLICK Algorithm

Let S be a pairwise similarity matrix for M , where Sij
is the dot-product between the �ngerprint vectors of ei
and ej , i.e., Sij =

Pp

k=1MikMjk. The algorithm rep-
resents the input data as a weighted similarity graph

G = (V;E). In this graph vertices correspond to ele-
ments and edge weights are derived from the similarity
values. The weight wij of an edge (i; j) reects the
probability that i and j are mates, and is set to be

wij = log
pmatesf(Sij ji; j are mates)

(1� pmates)f(Sij ji; j are non-mates)

Here f(Sij ji; j are mates) = f(Sij j�T ; �T) is the value
of the mates probability density function at Sij:

f(Sij ji; j are mates) =
1p
2��T

e
�

(Sij��T)2

2�2
T

Similarly, f(Sij ji; j are non-mates) is the value of the
non-mates probability density function at Sij :

f(Sij ji; j are non-mates) =
1p
2��F

e
�

(Sij��F)2

2�2
F

Hence,

wij = log
pmates�F

(1� pmates)�T +
(Sij � �F)2

2�2
F

� (Sij � �T)2
2�2

T

(All logarithms in this paper are natural-base loga-
rithms.)
For eÆciency, low weight edges are omitted from the

graph, so that there is an edge between two elements i�
their pairwise similarity value is above some prede�ned
non-negative threshold tS .
The basic CLICK algorithm can be described recur-

sively as follows: In each step the algorithm handles
some connected component of the subgraph induced by
the yet-unclustered elements. If the component con-
tains a single vertex, then this vertex is considered a
singleton and is handled separately. Otherwise, a stop-
ping criterion (which will be described later) is checked.
If the component satis�es the criterion, it is declared a
kernel. Otherwise, the component is split according to
a minimumweight cut. The algorithm outputs a list of
kernels which serve as a basis for the eventual clusters.
It is detailed in Figure 1. We assume that procedure
MinWeightCut(G) computes a minimum weight cut of
G and returns a partition of G into two subgraphs H
and �H according to this cut.

Basic-CLICK(G):
If V (G) = fvg then move v to the singleton set R.
Else if G is a kernel then

Output V (G).
Else

(H; �H) MinWeightCut(G).
Basic-CLICK(H).
Basic-CLICK(�H).

Figure 1: The basic CLICK algorithm.

The idea behind the algorithm is the following. Given
a connected graph G, we would like to decide whether
V (G) is a subset of some true cluster, or V (G) contains
elements from at least two true clusters. In the �rst case
we say that G is pure. In order to make this decision we
test for each cut C in G the following two hypotheses:

� HC

0 : C contains only edges between non-mates.

� HC
1 : C contains only edges between mates.

If G is pure then H
C
1 is true for every cut C of G.

If on the other hand G is not pure, then there exists
at least one cut C for which H

C
0 holds. We therefore

determine that G is pure i� HC
1 is accepted for each cut

C in G. In case we decide that G is pure, we declare it
to be a kernel. Otherwise, we partition V (G) into two

disjoint subsets, according to a cut C in G for which
the posterior probability ratio Pr(HC

1 jC)=Pr(HC
0 jC)

is minimum. Here, Pr(HC

i
jC) denotes the posterior

probability for HC

i
, i = 0; 1, given a cut C (along with

its edge weights). We call such a partition a weakest

bipartition of G.
We �rst show how to �nd a weakest bipartition of

G. To this end, we make a simplifying probabilistic
assumption that for a cut C in G the random variables
fSijg(i;j)2C are mutually independent. We denote the

weight of a cut C by W (C). We denote by f(CjHC

0)
the likelihood that the edges of C connect only non-
mates, and by f(CjHC

1) the likelihood that the edges
of C connect only mates. We let Pr(HC

i
) denote the

prior probability for HC

i
, i = 0; 1.

Lemma 1 Let G be a complete graph. Then for any

cut C in G

W (C) = log
Pr(HC

1 jC)
Pr(HC

0 jC)
Proof: Using Bayes Theorem (cf. (DeGroot 1989))
we �nd that

Pr(HC
1 jC)

Pr(HC
0 jC)

=
Pr(HC

1)f(CjHC
1)

Pr(HC
0)f(CjHC

0)

The joint probability density function of the weights of
the edges in C, given that they are normally distributed
with mean �T and variance �2

T
, is

f(CjHC

1) =
Y

(i;j)2C

1p
2��T

e
�

(Sij��T)2

2�2
T

Similarly,

f(CjHC

0) =
Y

(i;j)2C

1p
2��F

e
�

(Sij��F)2

2�2
F

The prior probability for HC
1 is p

jCj

mates and for HC
0 is

(1� pmates)jCj.
Therefore,

log
Pr(HC

1 jC)
Pr(HC

0 jC)
= log

Pr(HC

1)f(CjHC

1)

Pr(HC
0)f(CjHC

0)

= jCj log pmates�F

(1� pmates)�T
+
X

(i;j)2C

(Sij � �F)2
2�2

F

�
X

(i;j)2C

(Sij � �T)2
2�2

T

= W (C)

Suppose at �rst that G is a complete graph and no
threshold was used to �lter edges. FromLemma 1 it fol-
lows that a minimumweight cut of G induces a weakest
bipartition of G.

It remains to show how to decide if G is pure, or
equivalently, which stopping criterion to use. For a cut
C, we accept HC

1 i� Pr(HC
1 jC) > Pr(HC

0 jC). That is,
we accept the hypothesis with higher posterior proba-
bility.
Let C be a minimum weight cut of G, which parti-

tions it into two subgraphs H and �H. By Lemma 1, for
every other cut C0 of G

log
Pr(HC

1 jC)
Pr(HC

0 jC)
= W (C) � W (C0) = log

Pr(HC
0

1 jC0)

Pr(HC0

0 jC0)

Therefore, HC

1 will be accepted for C i� H
C
0

1 will be
accepted for every cut C0 in G. Thus, we accept HC

1

and declare that G is a kernel i� W (C) > 0.
We now extend these ideas to the case that G is in-

complete. Consider �rst the decision whether G is pure
or not. It is now possible that HC

1 will be accepted for
C but rejected for some other cut of G. Nevertheless, a
test based on W (C) approximates the desired test. In
order to apply our test criterion, we have to approxi-
mate the contribution of the edges missing from C to
the posterior probability ratio Pr(HC

1 jC)=Pr(HC
0 jC).

This is done as follows: Let F = (H � �H) n C and let
r = jHjj �Hj. Denote by �(�) the cumulative standard
normal distribution function. De�ne

W
�(C) � log

Q
(i;j)2F pmatesPr(Sij � tS jHC

1)Q
(i;j)2F (1 � pmates)Pr(Sij � tS jHC

0)

= (r � jCj) log pmates�((tS � �T)=�T)
(1� pmates)�((tS � �F)=�F)

We decide that G is pure and declare it to be a kernel
i� W (C) +W

�(C) > 0.
In case we decide that G is not pure, we use C in

order to partition G into two components. This yields
an approximation of a weakest bipartition of G.
We remark, that since we are interested in testing

H
C
0 and H

C
1 on a speci�c minimum weight cut C, we

can accurately calculate the contribution of the missing
edges to the posterior probability ratio by computing
their real weights from the raw data. This of course
increases the running time of the algorithm.

The Full Algorithm

The Basic-CLICK algorithm produces kernels of clus-
ters, which should be expanded to yield the full clusters.
The expansion is done by considering the singletons
which were found during the execution of Basic-CLICK.
We denote by L and R the current lists of kernels and
singletons, respectively. An adoption step repeatedly
searches for a singleton v and a kernel K whose pair-
wise �ngerprint similarity is maximum among all pairs
of singletons and kernels (in practice we consider only
kernels with at least �ve members). If the value of this
similarity exceeds some prede�ned threshold, then v is
adopted toK, that is, v is added toK and removed from
R, and the �ngerprint of K is updated. Otherwise, the
iterative process ends. We note, that the adoption step

has a theoretical justi�cation (see (Ben-Dor, Shamir, &
Yakhini 1999)).
The main advantage of this approach is that adoption

is decided based on the full raw data M , in contrast to
other approaches in which adoption is decided based on
the similarity graph (see, e.g., (Hartuv et al. 1999)).
After the adoption step takes place, we start a recur-

sive clustering process on the set R of remaining single-
tons. This is done by discarding all other vertices from
the initial graph. We iterate that way until no change
occurs.
At the end of the algorithm a merging step merges

clusters whose �ngerprints are similar. The merging is
done iteratively, each time merging two kernels whose
�ngerprint similarity is the highest, provided that this
similarity exceeds a prede�ned threshold. When two
kernels are merged, they are removed from L, the newly
merged kernel is added to L, and its �ngerprint is cal-
culated. Finally, a last singleton adoption step is per-
formed.
The full algorithm is detailed in Figure 2. GR is the

subgraph of G induced by the vertex set R. Procedure
Adoption(L; R) performs the singleton adoption step.
Procedure Merge(L) performs the merging step.

R N .
While some change occurs do:

Execute Basic-CLICK(GR).
Let L be the list of kernels produced.
Let R be the set of singletons produced.
Adoption(L; R).

Merge(L).
Adoption(L; R).

Figure 2: The CLICK algorithm.

Speedup Re�nements

Several ad-hoc re�nements were developed in order to
reduce the running time of CLICK on very big in-
stances. We describe those heuristics below.

Screening: When handling very large connected
components (say, of size 100,000), computing a mini-
mumweight cut is very costly. Moreover, in the graphs
that we encountered, large connected components are
rather sparse (see Table 7) and hence contain lowweight
vertices. Removing a minimum cut from such a com-
ponent will generally separate a low weight vertex, or
a few such vertices, from the rest of the graph. This is
computationally very expensive and not informative at
an early stage of the clustering.
To overcome this problem, we screen low weight ver-

tices from large components, prior to their clustering.
The screening is done as follows: We �rst compute the
average vertex weight W in the component, and multi-
ply it by a factor which is proportional to the logarithm

of the size of the component. We denote the result-
ing threshold by W

�. We then remove vertices whose
weight is below W

�, and continue to do so updating
the weight of the remaining vertices, until the updated
weight of every (remaining) vertex is greater than W �.
The removed vertices are marked as singletons and han-
dled at a later stage.

Minimum s-t Cuts: CLICK uses our implementa-
tion of Hao-Orlin algorithm for computing a minimum
weight cut (Hao & Orlin 1994). This algorithm was
shown to outperform other minimum cut algorithms in
practice (cf. (Chekuri et al. 1997)). Its running time
using highest label selection (cf. (Chekuri et al. 1997))
is O(n2

p
m). For large components this is computa-

tionally quite expensive. Thus, for components of size
greater than 1,000 we apply a di�erent strategy, which
we found to work in practice almost as good as com-
puting a minimum cut.
The idea is to compute a minimum s-t cut in the

underlying unweighted graph (where the weight of each
edge is one), instead of a minimum weight cut. The
complexity of this computation using Dinic's algorithm
(cf. (Even 1979)) is onlyO(nm2=3) time. In order to use
this approach we have to show how to properly choose
the vertices that should be separated. s and t are chosen
so that their distance equals the diameter of the graph.
More accurately, we �rst compute the diameter d of the
graph, using breadth �rst search. If d � 4 we choose
two vertices s and t whose distance is d, and partition
the graph according to a minimum s-t cut.

Assessing the Results

We present in this section �gures of merit for mea-
suring the quality of a clustering solution. Di�erent
measures are applicable in di�erent situations, depend-
ing on whether a partial true solution is known or not,
and whether the input is �ngerprint or similarity data.
Those measures will be used for assessing the results in
the Applications Section.
Suppose at �rst that the true solution is known, and

we wish to compare it to a suggested solution. Any clus-
tering solution can be represented by a binary n � n

matrix C, in which Cij = 1 i� i and j belong to the
same cluster in that solution. Let T and C be the ma-
trices for the true solution and the suggested solution,
respectively. Let nkl, k; l = 0; 1, denote the number
of pairs (i; j) (i 6= j) for which Tij = k and Cij = l.
Thus, n11 is the number of mates which are detected by
the suggested solution, n00 is the number of non-mates
identi�ed, while n01 and n10 count the disagreements
between the true solution and the suggested one.
The Minkowski measure (see, e.g., (Sokal 1977)) is

de�ned as r
n01 + n10

n11 + n10

Hence, it measures the proportion of disagreements to
the total number of mates in the true solution. A per-

fect solution has score zero, and the lower the score -
the better the solution. The Jaccard coeÆcient (see,
e.g., (Everitt 1993)) is the ratio

n11

n11 + n10 + n01

It is the proportion of correctly identi�ed mates to the
sum of the correctly identi�ed mates plus the total num-
ber of disagreements. Hence, a perfect solution has
score one, and the higher the score - the better the
solution. Note, that both measures do not (directly)
involve the term n00, since solution matrices tend to be
sparse and this term would dominate the other three in
good and bad solutions alike. When the true solution
is known only for a subset N� � N , the Minkowski and
Jaccard measures can be computed on the submatri-
ces corresponding to N�. In some cases, e.g., for cDNA
oligo-�ngerprint data (see the Applications Section), we
have the additional information that no element of N�

has a mate in N n N�. In such a case, the Minkowski
and Jaccard measures are evaluated using all the pairs
f(i; j) : i 2 N�

; j 2 N [N�
; i 6= jg.

When the true solution is not known, we evaluate
the quality of the solution by computing two �gures of
merit to measure the homogeneity and separation of the
produced clusters. For �ngerprint data, homogeneity
is evaluated by the average and minimum correlation
coeÆcient between the �ngerprint of an element and
the �ngerprint of its corresponding cluster. Precisely,
if cl(u) is the cluster of u, F (X) and F (u) are the �n-
gerprints of a cluster X and an element u, respectively,
and S(x; y) is the correlation coeÆcient (or any other
similarity measure) of �ngerprints x and y, then

HAve =
1

jN j
X
u2N

S(F (u); F (cl(u)))

HMin = min
u2N

S(F (u); F (cl(u)))

Separation is evaluated by the weighted average and the
maximumcorrelation coeÆcient between cluster �nger-
prints. That is, if the clusters are X1; : : :Xt, then

SAve =
1P

i6=j jXijjXjj
X
i 6=j

jXijjXjjS(F (Xi); F (Xj))

SMax = max
i6=j

S(F (Xi); F (Xj))

Hence, a solution improves if HAve increases and HMin

increases, and if SAve decreases and SMax decreases.
For similarity data, we use a measure suggested by

Z. Yakhini (private communication): Suppose that the
input is a similarity graph G = (V;E) with edges repre-
senting high similarity (exceeding some threshold). Ho-
mogeneity is evaluated by the fraction of edges inside
clusters, and separation is evaluated by the percentage
of edges between di�erent clusters. That is,

H =
jf(i; j)jcl(i) = cl(j) and (i; j) 2 Egj

jf(i; j)jcl(i) = cl(j)gj
S =

jf(i; j)jcl(i) 6= cl(j) and (i; j) 2 Egj
jf(i; j)jcl(i) 6= cl(j)gj

Applications

In the following we describe CLICK's results on sev-
eral biological datasets. The architecture used for the
execution of CLICK is described after the speci�c ap-
plications.

Gene Expression

CLICK was �rst tested on the yeast cell cycle dataset
of (Cho et al. 1998). That study monitored the ex-
pression levels of 6,218 S. cerevisiae putative gene tran-
scripts (identi�ed as ORFs) measured at 10-minutes in-
tervals over two cell cycles (160 minutes). We compared
CLICK's results to those of the program GENECLUS-
TER (Tamayo et al. 1999) that uses Self-Organizing
Maps. To this end, we applied the same �ltering and
data normalization procedures of (Tamayo et al. 1999).
The �ltering removes genes which do not change signif-
icantly across samples, resulting in a set of 826 genes.
The data preprocessing includes the removal of the 90-
minutes time-point and normalizing the expression lev-
els of each gene to have mean zero and variance one
within each of the two cell-cycles.
CLICK clustered the genes into 30 clusters in 14 sec-

onds. These clusters are shown in Figure 3. A summary
of the homogeneity and separation parameters for the
solutions produced by CLICK and GENECLUSTER
is shown in Table 1. CLICK obtained results supe-
rior in all the measured parameters. Two putative true
clusters are the sets of late G1-peaking genes and M-
peaking genes, reported in (Cho et al. 1998). Out of the
late G1-peaking genes that passed the �ltering, CLICK
placed 91% in a single cluster (see Figure 3, cluster
3). In contrast, (Tamayo et al. 1999) report that
in their solution 87% of these genes were contained in
three clusters. Out of the M-peaking genes that passed
the �ltering, CLICK placed 95% in a single cluster (see
Figure 3, cluster 1).

Program #Clus- Homogeneity Separation

ters HAve HMin SAve SMax

CLICK 30 0.8 -0.19 -0.07 0.65

GENE-

CLUSTER

30 0.74 -0.88 -0.02 0.97

Table 1: A comparison between CLICK and
GENECLUSTER on the yeast cell-cycle dataset (Cho
et al. 1998).

As another test, we analyzed the dataset of (Iyer et
al. 1999) which studied the response of human �brob-
lasts to serum. It contains expression levels of 8,613
human genes obtained as follows: Human �broblasts
were deprived of serum for 48 hours and then stimulated
by addition of serum. Expression levels of genes were
measured at 12 time-points after the stimulation. An
additional data-point was obtained from a separate un-
synchronized sample. A subset of 517 genes whose ex-
pression levels changed substantially across samples was

−2

0

2
Cluster 1, Size=95

−2

0

2
Cluster 2, Size=60

−2

0

2
Cluster 3, Size=170

−2

0

2
Cluster 4, Size=7

−2

0

2
Cluster 5, Size=21

−2

0

2
Cluster 6, Size=2

−2

0

2
Cluster 7, Size=12

−2

0

2
Cluster 8, Size=25

−2

0

2
Cluster 9, Size=13

−2

0

2
Cluster 10, Size=34

−2

0

2
Cluster 11, Size=58

−2

0

2
Cluster 12, Size=32

−2

0

2
Cluster 13, Size=12

−2

0

2
Cluster 14, Size=20

−2

0

2
Cluster 15, Size=24

−2

0

2
Cluster 16, Size=3

−2

0

2
Cluster 17, Size=11

−2

0

2
Cluster 18, Size=17

−2

0

2
Cluster 19, Size=2

−2

0

2
Cluster 20, Size=6

−2

0

2
Cluster 21, Size=21

−2

0

2
Cluster 22, Size=38

−2

0

2
Cluster 23, Size=14

−2

0

2
Cluster 24, Size=15

−2

0

2
Cluster 25, Size=16

−2

0

2
Cluster 26, Size=8

−2

0

2
Cluster 27, Size=19

−2

0

2
Cluster 28, Size=11

−2

0

2
Cluster 29, Size=3

−2

0

2
Cluster 30, Size=2

Figure 3: CLICK's clustering of the yeast cell cycle data (Cho et al. 1998). x axis: time points 0-80,100-160 at
10-minutes intervals. y axis: normalized expression levels. The solid line in each sub-�gure plots the average pattern
for that cluster. Error bars display the measured standard deviation. The cluster size is printed above each plot.

analyzed by the hierarchical clustering method of (Eisen
et al. 1998). The data was normalized by dividing each
entry by the expression level at time zero, and taking
a logarithm of the result. For ease of manipulation, we
also transformed each �ngerprint to have a �xed norm.
The similarity function used was dot-product, giving
values identical to those used by (Eisen et al. 1998).
CLICK clustered the genes into 10 clusters in 32 sec-
onds. These clusters are shown in Figure 4. Table 2
presents a comparison between the clustering quality of
CLICK and the hierarchical clustering of (Eisen et al.

1998) on this dataset. Again, CLICK performs better
in all parameters.

Program #Clus- Homogeneity Separation

ters HAve HMin SAve SMax

CLICK 10 0.88 0.13 -0.34 0.65

Hierarchical 10 0.87 -0.75 -0.13 0.9

Table 2: A Comparison between CLICK and the hier-
archical clustering of (Eisen et al. 1998) on the dataset
of response of human �broblasts to serum (Iyer et al.
1999).

cDNA oligo-�ngerprints

We studied two datasets of oligonucleotide �ngerprints
of cDNAs obtained fromMax Planck Institute of Molec-
ular Genetics in Berlin. In oligo-�ngerprinting (Lennon
& Lehrach 1991), poly-dT primed cDNAs are extracted
from a tissue, cloned and spotted on high density �lters.

The �lter is then hybridized with a short oligonucleotide
(oligo) and the hybridization levels for each spot are
recorded. The experiment is repeated with 100-300
oligos, and the vector of hybridization levels of each
spot with all oligos form its oligo-�ngerprint. Cluster-
ing can be used to identify cDNAs that originated from
the same gene, and consequently, pinpoint gene abun-
dance levels and save on sequencing. The technique is
used, for example, when sequences of all the genes of
an organism are not known.

The �rst dataset we analyzed contains 2,329 cDNAs
�ngerprinted using 139 oligos. This dataset was part
of a library of some 100,000 cDNAs prepared from
puri�ed peripheral blood monocytes by the Novartis
Forschungsinstitut in Vienna, Austria (see (Hartuv et

al. 1999)). The true clustering of these 2,329 cDNAs is
known from back hybridization experiments performed
with long, gene-speci�c oligonucleotides. It contains 18
gene clusters varying in size from 709 to 1. The sec-
ond dataset contains 20,275 cDNAs originating from sea
urchin egg, �ngerprinted using 217 oligos (see (Poustka
et al. 1999)). For this dataset the true solution is known
on a subset of 1,811 cDNAs. Fingerprint normalization
was done as explained in (Meier-Ewert et al. 1998).

Similarity values (dot-products) between pairs of
cDNA �ngerprints from the blood monocytes dataset
are plotted in Figure 5. To test our hypotheses
that the distributions of the similarity values between
mates and between non-mates are normal, we applied
a Kolmogorov-Smirnov test (see, e.g., (DeGroot 1989))
with a signi�cance level of 0.05. The hypotheses were

1 4 7 10 13

−2

−1

0

1

2

Cluster 1, Size=232

1 4 7 10 13

−2

−1

0

1

2

Cluster 2, Size=118

1 4 7 10 13

−2

−1

0

1

2

Cluster 3, Size=27

1 4 7 10 13

−2

−1

0

1

2

Cluster 4, Size=40

1 4 7 10 13

−2

−1

0

1

2

Cluster 5, Size=31

1 4 7 10 13

−2

−1

0

1

2

Cluster 6, Size=13

1 4 7 10 13

−2

−1

0

1

2

Cluster 7, Size=3

1 4 7 10 13

−2

−1

0

1

2

Cluster 8, Size=4

1 4 7 10 13

−2

−1

0

1

2

Cluster 9, Size=2

1 4 7 10 13

−2

−1

0

1

2

Cluster 10, Size=21

Figure 4: CLICK's clustering of the �broblasts serum response data (Iyer et al. 1999). x axis: 1-12: synchronized
time points. 13: unsynchronized point. y axis: normalized expression levels. The solid line in each sub-�gure plots
the average pattern for that cluster. Error bars display the measured standard deviation. The cluster size is printed
above each plot.

accepted for both distributions, with the hypothesis re-
garding the non-mates distribution being accepted with
higher con�dence.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100 120 140

fr
eq

ue
nc

y

similarity value

"non-mates"
"mates"

Figure 5: Similarity values between mates and between
non-mates in the peripheral blood monocytes cDNA
dataset of (Hartuv et al. 1999).

Table 3 shows a comparison of CLICK's results on
the blood monocytes dataset with those of the HCS
algorithm (Hartuv et al. 1999). Table 4 shows a com-
parison of CLICK's results on the sea urchin dataset
with those of the K-means algorithm of (Herwig et al.

1999). CLICK outperforms the other algorithms in all
�gures of merit, and also obtains solutions with fewer
unclustered singletons.

Protein classes

CLICK was also applied to two protein similarity
datasets. The �rst dataset contains 72,623 proteins
from the ProtoMap project (Yona, Linial, & Linial
1999). The second originated from the SYSTERS
project (Krause, Stoye, & Vingron 2000) and contains
117,835 proteins. Both datasets contain for each pair
of proteins an E-value of their similarity as computed
by BLAST.

Protein classi�cation is inherently hierarchical, so the
assumption of normal distribution of mate similarity
values does not seem to hold. In order to apply CLICK
to the data, we made the following modi�cations:

1. The weight of an edge (i; j) was set to be wij =

log
pmates(1�pij)

(1�pmates)pij
, where pij is the E-value, and hence,

also practically the p-value, of the similarity between
i and j. We used a similarity threshold which corre-
sponds to an E-value of 10�20.

2. For a minimumweight cut C which partitions G into
H and �H, we used W

�(C) = (r � jCj) log pmates

1�pmates
,

where r = jHjj �Hj.
3. For the adoption step we used a variant of the ap-

proach of (Ben-Dor, Shamir, & Yakhini 1999): We
calculated for each singleton r and each kernel K

Program #Clusters #Singletons Minkowski Jaccard Time(min)

CLICK 31 46 0.57 0.7 0.8
HCS 16 206 0.71 0.55 43

Table 3: A comparison between CLICK and HCS on the blood monocytes cDNA dataset.

Program #Clusters #Singletons Minkowski Jaccard Time(min)

CLICK 2,952 1,295 0.59 0.69 32.5
K-Means 3,486 2,473 0.79 0.4 {

Table 4: A comparison between CLICK and K-means on the sea urchin cDNA dataset.

(considering the set of singletons R as an additional
kernel) the ratio P

k2K
wrk

jKj
We then chose the pair r;K with the highest ratio
and r was adopted to K if this ratio exceeded some
prede�ned threshold w

�.

4. For the merging step we calculated for each pair of
kernels K1 and K2 the ratioP

k12K1;k22K2
wk1k2

jK1jjK2j
We then chose the pair K1;K2 with the highest ratio
and merged K1 and K2 if this ratio exceeded w

�.

For the evaluation of the ProtoMap dataset we used
a Pfam classi�cation for a subset of the data consisting
of 17,244 single-domain proteins, which is assumed to
be the true solution for this subset. We compared our
results to the results of ProtoMap with a con�dence
level of 10�20 on this dataset. The comparison is shown
in Table 5. The results are very similar, with a slight
advantage to CLICK.
For the SYSTERS dataset, no \true solution" was

assumed, so we evaluated the solutions of CLICK and
SYSTERS using the �gures of merit described in the
previous section. Table 6 presents the results of the
comparison. The results show a signi�cant advantage
to CLICK.

Implementation and Running Times

The CLICK program was written in C and executed on
an SGI ORIGIN200 machine utilizing one IP27 proces-
sor. The implementation uses linear space and stores
the similarity graph in a compact form by using linked
adjacency lists. Table 7 summarizes the time perfor-
mance of CLICK on the datasets described above.

Concluding Remarks

We presented in this paper a novel clustering al-
gorithm which utilizes graph-theoretic and statistical
techniques. The algorithmwas tested on several biolog-
ical datasets, originating from a variety of applications,

#Elements #Edges Density Time(min)

517 22,084 0.17 0.5
826 10,978 0.03 0.2
2,329 134,352 0.05 0.8
20,275 303,492 0.001 32.5
72,623 1,043,937 0.0004 53
117,835 4,614,038 0.0007 126.3

Table 7: A summary of the time performance of CLICK
on the above mentioned datasets. The second column
speci�es the number of edges in the similarity graph for
each instance. The third column speci�es the fraction
of edges with respect to the total number of element
pairs.

and was shown to outperform extant clustering algo-
rithms according to several common �gures of merit.
It is also very fast, allowing high-accuracy clustering of
large datasets of size over 100,000 in a couple of hours.
The speed of CLICK enables re-analyzing a dataset sev-
eral times, with di�erent thresholds. This allows using
prior biological understanding to evaluate the clustering
results and �ne-tune the parameters accordingly.

Acknowledgments

We thank Ralf Herwig for the results of the K-means
algorithm on the sea urchin cDNA data, Antje Krause
for the data and results from the SYSTERS project,
Golan Yona for providing the data and results from the
ProtoMap project and for the Pfam subset, and Pablo
Tamayo for the GENECLUSTER results on the yeast
cell cycle data. We would like to thank Erez Hartuv,
Ralf Herwig, Rani Elkon and Zohar Yakhini for fruitful
discussions.
R. Sharan was supported by an Eshkol fellowship

from the Ministry of Science, Israel. R. Shamir was
supported by a grant from the Ministry of Science, Is-
rael, and by the Israel Science Foundation formed by
the Israel Academy of Sciences and Humanities.

References

Alon, U.; Barkai, N.; Notterman, D. A.; Gish, G.;
Ybarra, S.; Mack, D.; and Levine, A. J. 1999. Broad

Program #Clusters #Singletons Minkowski Jaccard Time(min)

CLICK 7,747 16,612 0.88 0.39 53
ProtoMap 7,445 16,408 0.89 0.39 {

Table 5: A comparison between CLICK and ProtoMap on a dataset of 72,623 proteins.

Program #Clusters #Singletons Homogeneity Separation Time(min)

CLICK 9,429 17,119 0.24 0.03 126.3
SYSTERS 10,891 28,300 0.14 0.03 {

Table 6: A comparison between CLICK and SYSTERS on a dataset of 117,835 proteins.

patterns of gene expression revealed by clustering anal-
ysis of tumor and normal colon tissues probed by
oligonucleotide arrays. PNAS 96:6745{6750.

Ben-Dor, A.; Shamir, R.; and Yakhini, Z. 1999. Clus-
tering gene expression patterns. Journal of Computa-
tional Biology 6(3/4):281{297.

Chekuri, C.; Goldberg, A.; Karger, D.; Levine, M.;
and Stein, C. 1997. Experimental study of minimum
cut algorithms. In Proceedings of the Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms, 324{
333.

Cho, R.; Campbell, M.; Winzeler, E.; Steinmetz, L.;
Conway, A.; Wodicka, L.; Wolfsberg, T.; Gabrielian,
A.; Landsman, D.; Lockhart, D.; and Davis, R. 1998.
A genome-wide transcirptional analysis of the mitotic
cell cycle. Mol Cell 2:65{73.

DeGroot, M. 1989. Probability and Statistics.
Addison-Wesley.

Eisen, M. B., and Brown, P. O. 1999. DNA arrays for
analysis of gene expression. InMethods in Enzymology,

Vol. 303. 179{205.

Eisen, M. B.; Spellman, P. T.; Brown, P. O.; and Bot-
stein, D. 1998. Cluster analysis and display of genome-
wide expression patterns. PNAS 95:14863{14868.

Even, S. 1979. Graph Algorithms. Rockville, Mary-
land: Computer Science Press.

Everitt, B. 1993. Cluster analysis. London: Edward
Arnold, third edition.

Hansen, P., and Jaumard, B. 1997. Cluster analysis
and mathematical programming. Mathematical Pro-

gramming 79:191{215.

Hao, J., and Orlin, J. 1994. A faster algorithm for
�nding the minimum cut in a directed graph. Journal
of Algorithms 17(3):424{446.

Hartigan, J. 1975. Clustering Algorithms. John Wiley
and Sons.

Hartuv, E.; Schmitt, A.; Lange, J.; Meier-Ewert,
S.; Lehrach, H.; and Shamir, R. 1999. An algo-
rithm for clustering cDNAs for gene expression anal-
ysis using short oligonucleotide �ngerprints. In Pro-

ceedings Third International Symposium on Compu-

tational Molecular Biology (RECOMB 99), 188{197.
ACM Press. To appear in Genomics.

Herwig, R.; Poustka, A.; Muller, C.; Bull, C.; Lehrach,
H.; and O'Brien, J. 1999. Large-scale clustering of
cDNA-�ngerprinting data. Genome Research 9:1093{
1105.

Iyer, V.; Eisen, M.; Ross, D.; Schuler, G.; Moore, T.;
Lee, J.; Trent, J.; Staudt, L.; Jr., J. H.; Boguski, M.;
Lashkari, D.; Shalon, D.; Botstein, D.; and Brown, P.
1999. The transcriptional program in the response of
human �broblasts to serum. Science 283 (1).

Krause, A.; Stoye, J.; and Vingron, M. 2000. The
SYSTERS protein sequence cluster set. Nucleic Acid

Research 28 (1).

Lennon, G., and Lehrach, H. 1991. Hybridization
analysis of arrayed cDNA libraries. Trends Genet 7:60{
75.

Meier-Ewert, S.; Lange, J.; Gerst, H.; Herwig, R.;
Schmitt, A.; Freund, J.; Elge, T.; Mott, R.; Herrmann,
B.; and Lehrach, H. 1998. Comparative gene expres-
sion pro�ling by oligonucleotide �ngerprinting. Nu-

cleic Acids Research 26(9):2216{2223.

Mirkin, B. 1996. Mathematical Classi�cation and

Clustering. Kluwer.

Poustka, A.; Herwig, R.; Krause, A.; Hennig, S.;
Meier-Ewert, S.; and Lehrach, H. 1999. Toward the
gene catalogue of sea urchin development: The con-
struction and analysis of an unfertilized egg cDNA li-
brary highly normalized by oligonucleotide �ngerprint-
ing. Genomics 59:122{133.

Sokal, R. R. 1977. Clustering and classi�cation: Back-
ground and current directions. In Van Ryzin, J., ed.,
Classi�cation and Clustering, 1{15. Academic Press.

Tamayo, P.; Slonim, D.; Mesirov, J.; Zhu, Q.; Kita-
reewan, S.; Dmitrovsky, E.; Lander, E. S.; and Golub,
T. 1999. Interpreting patterns of gene expression
with self-organizing maps: Methods and application
to hematopoietic di�erentiation. PNAS 96:2907{2912.

Yona, G.; Linial, N.; and Linial, M. 1999. Protomap:
Automatic classi�cation of protein sequences, a hierar-
chy of protein families, and local maps of the protein
space. Proteins: Structure, Function, and Genetics

37:360{378.

