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Abstract
In vivo transposon mutagenesis, coupled with deep sequencing, enables large-scale genome-wide mutant screens for genes 
essential in different growth conditions. We analyzed six large-scale studies performed on haploid strains of three yeast 
species (Saccharomyces cerevisiae, Schizosaccaromyces pombe, and Candida albicans), each mutagenized with two of 
three different heterologous transposons (AcDs, Hermes, and PiggyBac). Using a machine-learning approach, we evaluated 
the ability of the data to predict gene essentiality. Important data features included sufficient numbers and distribution of 
independent insertion events. All transposons showed some bias in insertion site preference because of jackpot events, and 
preferences for specific insertion sequences and short-distance vs long-distance insertions. For PiggyBac, a stringent target 
sequence limited the ability to predict essentiality in genes with few or no target sequences. The machine learning approach 
also robustly predicted gene function in less well-studied species by leveraging cross-species orthologs. Finally, compari-
sons of isogenic diploid versus haploid S. cerevisiae isolates identified several genes that are haplo-insufficient, while most 
essential genes, as expected, were recessive. We provide recommendations for the choice of transposons and the inference 
of gene essentiality in genome-wide studies of eukaryotic haploid microbes such as yeasts, including species that have been 
less amenable to classical genetic studies.
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Introduction

Work with model yeasts such as Saccharomyces cerevisiae 
and Schizosaccharomyces pombe has pioneered the com-
bination of genotype/phenotype comparisons at a genomic 
scale. Work on these yeasts, which have had genome 
sequences available for more than 20 years (Goffeau et al. 
1996; Wood et al. 2002), along with facile gene replacement 
protocols, has relied heavily on comprehensive collections 
of deletion mutants (Giaever et al. 2002; Kim et al. 2010) 
for high-throughput dissection of specific genotypes, as well 
as for genetic interactions with drugs (reviewed in (Lehár 
et al. 2008) and gene–gene interactions through systematic 
analysis of double and triple mutant analysis (e.g., Reguly 
et al. 2006; Kuzmin et al. 2018). Whole genome-wide dele-
tion collections are very useful for systematic studies, some 
individual deletion mutants acquire additional mutations 
or copy number variations in genes, genome regions, chro-
mosomes or mitochondrial DNA, at least some of which 
improve the fitness of the original mutations (Hughes et al. 
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2000; Ben-Shitrit et al. 2012; Yona et al. 2012; Puddu et al. 
2019).

In animals and plants that are less amenable to such 
directed molecular manipulations, the use of heterologous 
transposons in vivo has facilitated genetic analysis, within 
the limitations imposed by the transposon excision/insertion 
process (Munoz-Lopez and Garcia-Perez 2010; Kawakami 
et al. 2017). With the advent of deep sequencing, such stud-
ies have become more facile and have been performed in 
the two model yeasts as well (Gangadharan et al. 2010; Guo 
et al. 2013; Michel et al. 2017). In vivo transposon mutagen-
esis generally involves the introduction of a heterologous 
DNA transposon, along with the genes (e.g., the relevant 
transposase) required to induce its active transposition into 
a clonal isolate of a species of interest. Upon induction, the 
transposase excises the transposon from its original location 
(excision site) and inserts it into a single new position in the 
genome. Because the frequency of transposon excision and 
reinsertion is quite low, each cell harbors, at most, a single 
transposition mutation. The transposon is usually engineered 
for facile selection of excision and/or reinsertion events, 
allowing detection and enrichment of these rare events.

In vivo transposon insertion provides several advantages, 
as it rapidly yields large numbers of mutants in a single step 
and easily can be performed in parallel strains with differ-
ent mutations or genetic backgrounds. Because it does not 
require much prior knowledge, it also can be performed in 
non-model species, where each experiment is likely to pro-
vide much new information. The only transformation steps 
required are those used to engineer the starting strain. This 
bypasses the problem of low transformation efficiency in 
many species. It also avoids the unintended genome altera-
tions (e.g., aneuploidies) that often accompany DNA trans-
formation (Bouchonville et al. 2009). The sites of transpo-
son insertion throughout the genome can be identified en 
masse using very large collections of independent insertion 
event clones, coupled with deep sequencing of the DNA 
immediately adjacent to the new transposon locus (Wu et al. 
2007; Rad et al. 2010; Yusa et al. 2011). For example, a 
high throughput genotype/phenotype analysis of 30 bacte-
rial species grown under > 170 different nutrient and stress 
conditions recently assigned functions to thousands of genes, 
including ~ 300–600 genes per bacterium that are essential 
for viability (Price et al. 2018).

Three different transposon systems have been used 
for in vivo mutagenesis in yeasts: AcDs from Zea mays, 
Hermes from Musca domestica, and PiggyBac from 
Trichoplusia ni. AcDs has been used primarily in plant 
species, but was also engineered for increased efficiency in 
the model yeast S. cerevisiae (Lazarow et al. 2012; Michel 
et al. 2017) and, later, in C. albicans (Mielich et al. 2018). 
AcDs does not display a strong insertion sequence prefer-
ence, although it has a higher frequency of insertions into 

intergenic regions than into coding regions and has a bias 
for reinsertion near the initial site of excision. Hermes has 
been used for mutagenesis in S. pombe and S. cerevisiae 
(Park et al. 2009; Gangadharan et al. 2010; Edskes et al. 
2018), it prefers to insert at genomic positions with the 
target sequence TnnnnA. PiggyBac (PB) has been used 
in mammalian systems such as rat and mouse (Rad et al. 
2010; Yusa et al. 2011; Zhao et al. 2016), and also in S. 
pombe (Li et al. 2011). PB has a strong preference for 
insertion at TTAA sequences, which are generally more 
frequent in AT-rich intergenic regions than within coding 
sequences.

Transposon insertion within an ORF is generally 
assumed to cause a loss-of-function mutation. Identifying 
the phenotypes associated with loss-of-function mutations 
in specific genes allows the prediction of genetic func-
tions. Cells in which the transposon inserted into a gene 
essential for viability will fail to grow and thus be lost 
from the population. By contrast, cells with mutations in 
non-essential genes are expected to be well-represented 
in the cell population. Insertion of a transposon carrying 
a strong promoter into an ORF could activate expression 
inappropriately; this can be useful for the study of gain-
of-function mutations.

In vivo transposon mutagenesis studies of yeasts 
include analysis of S. cerevisiae with Hermes [this study 
and (Park et al. 2009; Gangadharan et al. 2010; Edskes 
et al. 2018)] or with the mini-Ds derivative of the AcDs 
system (Michel et al. 2017), in S. pombe with Hermes 
(Guo et al. 2013) and PB (Li et al. 2011), and in C. albi-
cans with AcDs (Segal et al. 2018) and with PB (Gao et al. 
2018) (Fig. 1a). In earlier work, we applied a machine 
learning (ML) approach to infer gene essentiality from 
the C. albicans AcDs data. Here, we modified that ML 
approach to predict the likelihood of essentiality for the 
complete set of predicted open reading frames for these 
six in vivo transposon datasets. We compared the strengths 
and challenges of the different transposons in each species, 
looking for insights into the number of insertion events 
required for accurate predictions, the distribution of muta-
tions, and the degree to which different transposons, with 
different sequence dependencies, provided similar or dif-
ferent conclusions. The goals of this study were to provide 
metrics that could assist in determining the advantages and 
disadvantages of different transposon systems, so as to 
optimize the data produced in a given in vivo transposon 
system, and to suggest approaches for generating whole-
genome data in understudied yeast species.
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Fig. 1   Overview of data acquisition and analysis: transposition events 
to gene essentiality. a Three yeast species analyzed (Sp, S. pombe; 
Sc, S. cerevisiae; and Ca, C. albicans) by in vivo transposition in this 
study and two out of the three transposons (PB, PiggyBac; AcDs and 
Hermes) were to mutagenize each species. Note that each species 
was analyzed with two different transposon systems. b Comparison 
of genome insertion sites for transposition events that initiate from 
an extrachromosomal plasmid (left, red region of plasmid circle) or a 
specific chromosomal locus (right, red bar on a given chromosome). 
Horizontal lines represent multiple copies of the same genome, 
each of which underwent a single insertion event (green arrow) per 
genome. While transposition is generally random, a bias for loci in 
close proximity to the initial transposon insertion site demands nor-

malization of the final data. c Mapped Tnseq analysis of the pool of 
transposition events yields the chromosomal insertion sites (brown 
vertical lines) in the reference chromosomes relative to the ORFs 
(purple regions). A close up of a small region of a single chromo-
some (olive horizontal line) including 5 ORFs is illustrated. d A 
training set is constructed using known or inferred labels (non-essen-
tial, blue; essential, red) together with extracted features calculated 
from the data and its position relative to ORFs. Features are defined 
in Table 1. e The training set features, as well as features for all ORFs 
are used as input for Random Forest classification (black rectangle); 
output is a prediction of essentiality (red or blue as in d), for which an 
optimal threshold is determined and applied to designate all genes in 
one of the two categories



	 Current Genetics

1 3

Materials and methods

Data acquisition

Experimental

Sc Hermes data were obtained as follows: haploid and dip-
loid strains of S. cerevisiae were transformed with plasmid 
pSG36 (Gangadharan et al. 2010). A single colony was 
suspended in 100 mL synthetic complete (SC) medium 
lacking uracil and containing 2% galactose, divided into 
twenty 16 × 150 mm glass culture tubes, and shaken for 
3 days at 30 °C. This protocol yielded ~ 5 × 106 cells bear-
ing transposon insertions per mL (~ 3% of all cells). To 
enrich for cells bearing transposon insertions, the twenty 
cultures were pooled and centrifuged, and the cell pellet 
was resuspended in 600 mL SC medium containing 2% 
glucose, 0.1 mg/mL nourseothricin, and 1 mg/mL 5-fluo-
roorotic acid, and then shaken overnight at 30 °C. The 
cells were pelleted, resuspended in 600 mL of the same 
medium, and cultured as before. Finally, 60 mL of these 
enriched cells were pelleted, resuspended in 600 mL of 
the same medium, and cultured as before. These highly 
enriched cells were pelleted, resuspended in 15% glyc-
erol, and frozen in aliquots at − 80 °C. To extract genomic 
DNA, 100 mg of thawed cell pellets were washed three 
times in 1 mL deionized water and extracted using Quick-
DNA Fungal/Bacterial Miniprep kit (Zymo Research). A 
total of 2.4 µg of purified gDNA was fragmented by soni-
cation in four separate tubes using a Diagenode Picoruptor. 
The fragmented DNA was then end repaired, ligated to 
splinkerette adapters, size selected with AMPure xp beads, 
and PCR amplified in separate reactions using transpo-
son-specific and adapter-specific primers, as detailed pre-
viously (Bronner et al. 2016). Samples were then PCR 
amplified to attach Illumina P5 and P7 (indexed) adapters, 
purified with AMPure xp beads, mixed with phiX-174, 
and loaded into the MiSeq instrument (Illumina); 75 bp 
of each end was then sequenced using primers specific 
for Hermes right inverted repeat and P7. Detailed proto-
cols and primer sequences are available upon request. De-
multiplexed reads were mapped to the S. cerevisiae S288C 
reference genome using Bowtie2 (Langmead and Salzberg 
2012), and any mapped reads with a quality score < 20 
or a mismatch at nucleotide + 1 were removed. This pro-
cess has repeated a total of three times in diploid strain 
BY4743, two times in haploid strain BY4741, and one 
time in haploid strain BY4742. The diploid and haploid 
datasets were combined prior to analyses. The S.cerevisiae 
Hermes data (mapped reads and counts) are available at 
https​://genom​e-euro.ucsc.edu/s/Cunni​ngham​Lab/Herme​
s%20Vs%20AcD​s.

Publicly available databases

The rest of the datasets analyzed here were obtained from 
previously published studies. ScAcDs, from which both WT1 
& WT2 were combined for the analysis, was published by 
(Michel et al. 2017). The data was downloaded from https​
://www.ebi.ac.uk/array​expre​ss/exper​iment​s/E-MTAB-4885/
sampl​es/. SpPB was published by (Li et al. 2011) and the 
data was obtained from the SRA database (Leinonen et al. 
2011): SRR089408. Sc Hermes was also published by (Park 
et al. 2009; Gangadharan et al. 2010; Edskes et al. 2018), and 
this data was added to the analysis and is found in Table S4b. 
Sp Hermes was published by (Guo et al. 2013) and the data 
was obtained from the SRA database: SRR327340. CaAcDs 
was published by (Segal et  al. 2018) and the data was 
obtained from the SRA database, where the SRR7824843, 
SRR7824841, and SRR7824838 files were combined for the 
analysis. CaPB was published by (Gao et al. 2018) and the 
data was obtained from the SRA database, where all follow-
ing files were used for the analysis: DMSO (untreatment): 
SRR7704188, SRR7704193, SRR7704196; 5-FOA (untreat-
ment: SRR7704189, SRR7704194, SRR7704200; No drug 
screen: SRR7704195). All SRR files were obtained using 
fastq-dump (SRA database, fastq-dump software), without 
the technical reads and by splitting the forward and reverse 
reads into individual files, as follows: fastq-dump –gzip 
–skip-technical –readids –dumpbase –split-files –clip < SRR 
filename> 

Data processing

The fastq files, downloaded with fastq-dump, were pro-
cessed further using cutadapt (Martin 2011) to filter out 
reads not containing partial transposon sequences. Reads 
with transposon sequences were trimmed to remove the 
transposon sequences for alignment purposes, as follows: 
cutadapt –cores = 8-m2 g < primer sequence >  < input fastq 
filename > -o < output fastq filename > –discard-untrimmed 
–overlap < overlap length > . In the analysis of the Sc Hermes 
study, all the sequencing reads contained the transposon and 
the reads start at the first genomic base, thus requiring no 
filtering (similarly, for the S. cerevisiae Hermes data from 
(Edskes et al. 2018)). In the analysis of the Sp PiggyBac, we 
filtered the reads containing the transposons from the rest by 
identifying the ACG​CAG​ACT​ATC​TTT​CTA​GGG sequence, 
cutting it out, and aligning only the remaining part of the 
relevant reads. In the analysis of the Ca AcDs, we filtered 
the reads containing the transposons from the rest by identi-
fying the GTA​TTT​TAC​CGA​CCG​TTA​CCG​ACC​ sequence, 
cutting it out, and aligning only the remaining part of the 
relevant reads (Segal et al. 2018). In the analysis of the Ca 
PiggyBac, we filtered the reads containing the transposons 
from the rest by identifying the TGC​ATG​CGT​CAA​TTT​

https://genome-euro.ucsc.edu/s/CunninghamLab/Hermes%20Vs%20AcDs
https://genome-euro.ucsc.edu/s/CunninghamLab/Hermes%20Vs%20AcDs
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4885/samples/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4885/samples/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4885/samples/
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TAC​GCA​GAC​TAT​CTT​TCTA sequence, cutting it out, and 
aligning only the remaining part of the relevant reads, start-
ing 3 bp downstream. In the analysis of the Sc AcDs study, 
we used the published transposon insertion maps of WT1 
and WT2. In the analysis of the Sp Hermes study, we used 
the published transposon insertion maps (Segal et al. 2018).

Alignment of reads and mapping the transposon 
insertions

Bowtie2 (Langmead and Salzberg 2012) indices were cre-
ated for each organism and gffutils databases were created 
for each organism’s genetic features, using the latest ver-
sions of the reference genomes (fasta) and the genomic fea-
ture files (gff), which were downloaded from the respec-
tive official sources for the three organisms: S. cerevisiae 
from https​://downl​oads.yeast​genom​e.org, S. pombe from 
ftp://ftp.pomba​se.org/pombe​/ and C. albicans https​://www.
candi​dagen​ome.org/downl​oad/. Sequencing reads were 
aligned using Bowtie2 with the default settings. The result-
ing sam files were converted to bam using samtools (Li et al. 
2009). bam files were sorted using samtools and indexed via 
pysam(pysam: a Python library for SAM accessing files). 
Transposon insertions and their corresponding reads were 
mapped to the respective genomes and counted in each 
genomic feature. Transposon target sites were found in every 
genome using Biopython (Cock et al. 2009) and counted in 
each genetic feature.

Gene essentiality classification

Table 1 summarizes the features for machine learning clas-
sification that were engineered from the mapped transpo-
son insertions and reads and from the transposon target 
sequences in the genomes. Random Forest (Breiman 2001) 
classification was performed, using Python’s scikit-learn 
library (Hao and Ho 2019), with the default parameters, 
except the n_estimators parameter was increased to 200 and 
the random_state parameter was fixed at 0, for reproduc-
ibility purposes. The results were validated using fivefold 

cross-validation. Essentiality labels for the training set of 
each organism were obtained previously (Segal et al. 2018) 
and are provided in Table S1.

Thresholds for the essentiality predictions in each classi-
fication were chosen as follows: Two metrics were evaluated 
(Fig. 2): (1) Minimum of the Euclidean distance between (0, 
1) and the receiver operating characteristic (ROC) curve. (2) 
Maximum of the vertical distance between the line describ-
ing a random choice [a straight line from (0, 0) to (1, 1)] and 
the ROC curve (Youden 1950; Fluss et al. 2005). The second 
method [Youden Index (Youden 1950)] was chosen, and we 
verified that the first metric is reasonably close, to eliminate 
any possible artifacts. We predicted the essentiality of all the 
available genes for each organism based on their respective 
features and used the aforementioned method to choose the 
threshold for each binary classification.

Manual curation of genes

First, we removed the genes that suffer technical limita-
tions, which were primarily duplicated or repeated regions 
of the genome (Fig. 3) (Segal et al. 2018). Briefly, this is 
because when the aligner encounters more than one region 

Table 1   Features used in the Random Forest model for the inference of gene essentiality

Feature Description

Insertions Number of transposon insertions within the ORF
Reads Number of reads associated with the transposon insertions within the ORF
Neighborhood Index (NI) Number of transposon insertions within the ORF, normalized by the length of the ORF and the surrounding 10kbp
Freedom Index (FI) Length of the largest insertion-free region in the ORF, divided by the ORF’s length
Insertions 100 upstream Number of transposon insertions within the upstream region of the ORF
Insertions per target Seqs Number of transposon insertions divided by the number of transposon target sequences within an ORF
Reads per length Number of transposon insertions divided by the length of the ORF
Insertions per length Number of reads associated with the transposon insertions divided by the length of the ORF

Fig. 2   Threshold optimization. Two metrics were evaluated (Youden 
1950): (1) Minimum of the Euclidean distance between (0, 1) and 
the receiver operating characteristic (ROC) curve. (2) Maximum of 
the vertical distance between the line describing a random choice (a 
straight line from (0, 0) to (1, 1)) and the ROC curve (Youden Index)

https://downloads.yeastgenome.org
ftp://ftp.pombase.org/pombe/
https://www.candidagenome.org/download/
https://www.candidagenome.org/download/
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for a possible successful alignment, it assigns a low score 
to this alignment and eliminates those sequences in the 
quality assurance phase. Thus, genes within duplicated 
regions appear to have few if any insertion sites (hits) 
and are falsely predicted to be essential by the classi-
fier (Table S10). Second, we removed genes shorter than 
300 bp from the analysis, as they have a lower probability 
of insertions and are more likely to be falsely predicted 
to be essential (Table S11). Finally, we removed genes 

that had been deleted in the starting strains used for the 
mutagenesis, as no insertions in them would be detected.

Figures were generated using Python’s matplotlib and 
seaborn libraries (Bisong 2019). The schematics were 
drawn using Inkscape (Bah 2011). Mann–Whitney U p 
values and Pearson’s correlation coefficients and p val-
ues were calculated using Python’s Scipy (Millman and 
Aivazis 2011).

Fig. 3   Comparison with known essentials genes. a Comparison of 
the essentiality verdicts in S. cerevisiae, based on the known essen-
tial genes from the literature (SGD), ScAcDs (Ac/Ds) and ScHermes 
(Hermes) studies. b Comparison of the essentiality verdicts in S. 
pombe, based on the known essential genes from the literature (Pom-
Base), SpPB (PiggyBac) and SpHermes (Hermes) studies. c Compari-
son of the essentiality verdicts in C. albicans, based on the known 

essential S. pombe and S. cerevisiae orthologs from the literature 
(Essential Orthologs), CaAcDs (Ac/Ds) and CaPB (PiggyBac) clas-
sifiers. Classification thresholds differ slightly from the previously 
published analyses (Segal et  al. 2018) based on threshold selection 
applied systematically to all 6 studies (described in detail in “Meth-
ods”)
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Results and discussion

A comparative analysis of the transposon 
mutagenesis studies

We compared six in vivo transposon insertion mutagenesis 
experiments, produced using three different heterologous 
transposons (AcDs, Hermes and PiggyBac) in three differ-
ent species (S. cerevisiae, S. pombe and C. albicans). Details 
of the datasets are provided in the methods section, and rel-
evant parameters are highlighted in Table 2. The number 
of transposition events detected in the different studies var-
ied considerably, from over 500,000 unique insertion sites 
(hits) and 84 million total reads for the C. albicans AcDs 
(CaAcDs), to as few as 37,500 unique insertions and 6.1 
million reads in the S. pombe PiggyBac (SpPB) data set 
(Table 2). The number of reads per insertion also varied 
considerably, from 41 to 170.

Overview of ML approach for gene essentiality 
prediction

We first mapped the insertion and read frequency of the 
transposons in each of the three reference genomes (Fig. 1c). 
We identified sites of transposon insertion based upon tar-
geted sequencing of regions adjacent to the inserted transpo-
son. Slightly different sequencing protocols were used in the 
different studies, but all six essentially amplified Tn-adjacent 
sequences and mapped them.

Theoretically, essential genes have no insertions and 
non-essential genes have many insertions; distinguishing 
essential and non-essential genes from the data, however, 
is not entirely straightforward (e.g., Fig. 1c, Gene Xn). To 
address this ambiguity, we extended a previous approach 
for gene essentiality prediction (Segal et al. 2018). Briefly, 
we utilized a supervised learning approach (classification), 
designed to distinguish between different classes in the data 
(essential vs non-essential) by learning the features of a pre-
viously labeled set of data points (training set; labeled as 
essential and non-essential genes, based on findings from 
deletion studies), and generalizing the predictions on the 
rest of the data (test set; genes unlabeled for essentiality). 
We chose Random Forest as the classifier, as its robustness 

Table 2   Summary of in vivo transposon mutagenesis libraries

a Segal et al. (2018)
b Michel et al. (2017)
c Data from (Edskes et al. 2018) was included in Table S4b, and compared to the other S. cerevisiae data in Fig. S17
d Guo et al. (2013)
e Gao et al. (2018)
f Li et al. (2011)

Ca AcDsa Sc AcDsb Sc Hermesc Sp Hermed Ca PiggyBace Sp PiggyBacf

Transposon target sequence – – TnnnnA TnnnnA TTAA​ TTAA​
Initial transposon insertion Genome Plasmid Plasmid Plasmid Genome Genome
Number of target sequences (103) – – 1154.84 1302.41 120.27 111.37
Total number of unique insertions (103) 588.97 514.89 444.41 382.82 191.49 37.50
Target Sequences without an insertion (103) – – 924.56 1,110.20 10.69 79.09
Percent of target sequences without an insertion – – 80.06% 85.24% 8.89% 71.02%
Percent of insertions in target sequences – – 87.54% 94.03% 64.45% 96.56%
Total number of reads (106) 84.16 47.10 18.22 23.92 32.58 6.14
Average number of reads per insertion 143 91 41 62 170 164
Standard deviation reads per insertion 9250 4357 137 5069 4584 481
Highest reads per insertion (103) 3254.83 2210.55 11.72 2355.61 1301.82 48.31
Highest reads per insertion/average reads per insertion 22,761 24,292 286 37,994 7658 295
Number of insertions with more than 106 reads 10 2 – 2 1 –
Average number of insertions per gene 29 44 30 25 12 1
Number of genes with 0 insertions 300 261 332 99 397 2580
Average number of target sequences per gene – – 123.64 131.44 10.62 8.39
Number of genes with 0 target sequences – – – – 228 186
ROC AUC​ 0.99 0.99 0.97 0.96 0.94 0.79
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is well established in genomic applications (Breiman 2001; 
Chen and Ishwaran 2012; Brieuc et al. 2018), and used the 
AUC [area under the receiver operating characteristic curve 
(Fig. 1d)] to analyze the specificity and sensitivity of the 
approach. Receiver operating characteristic is a graphical 
plot that illustrates the diagnostic ability of a binary classi-
fier by plotting the true positive rate versus the false posi-
tive rate at various thresholds of classification (Hajian-Tilaki 
2013). The integral of this curve (area under the curve, 
AUC) is equal to the probability that the classifier will rank 
a randomly chosen positive instance (essential gene) higher 
than a randomly chosen negative instance (non-essential 
gene) or, in other words, the probability of a correct clas-
sification (Wray et al. 2010).

We first chose input features from transposon data that 
were likely to be informative in the essential/nonessential 
decision: the number of unique insertion sites (hits) per 
ORF, the degree to which those insertion sites were enriched 
in the population (reads), and the normalization factors that 
consider the insertion frequency as a function of chromo-
some position. We built the training sets (Table S1) using 
information from the two model species with gene essenti-
ality data available from classical genetic approaches (e.g., 
comprehensive ORF deletion analysis) [reviewed in (Giaever 
and Nislow 2014) and (Spirek et al. 2010)]. For C. albicans, 
which did not have extensive prior knowledge of gene essen-
tiality, we constructed a training set from a core set of genes 

whose orthologs were known to be essential in both model 
yeasts. This approach is likely to be useful for other species 
that lack sufficient prior knowledge of gene essentiality to 
construct a within-species training set.

We assessed the performance of each classifier by produc-
ing training sets using genes known or inferred to be essen-
tial and non-essential, as described in the Methods. Briefly, 
the classifiers were trained and their performance assessed 
using the AUC measure with fivefold cross-validation (train-
ing on 80% of the data and testing the performance on the 
remaining 20%, and averaging the five results). The AUCs 
were high across most examined studies (> 0.94). The one 
exception was the SpPB study, which had far fewer unique 
insertion sites (Table 2) and an AUC of 0.785. The highest 
AUC levels were seen with the AcDs in both C. albicans 
and S. cerevisiae. Of note, these two studies also had the 
largest number of total insertions and reads. The considered 
ML features for each ORF in every study and the predicted 
verdicts of essentiality are provided in Tables S2–S7. Below, 
we describe the main insights gained from this comparison.

Optimize the number of independent insertion 
sites (hits) for highest quality predictions of gene 
essentiality

The total number of unique insertion sites (hits) and the 
performance (AUC) values were highly correlated, and 

Fig. 4   Contribution of unique insertions and total number of reads to 
the quality of ML predictions for gene essentiality/non-essentiality. 
The performance of the models (estimated in AUC) vs (a) the total 
number of unique insertion sites (hits) and (b) the total number of 
sequencing reads in each study (organism abbreviations as in Fig. 1; 

Ca, C. albicans; Sp, S. pombe; Sc, S. cerevisiae). Performance in 
each study was estimated using AUC (y-axis) and plotted against the 
total number of unique transposon insertion sites (103), and the total 
number of sequencing reads (106) obtained in each respective study
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this correlation was statistically significant (Fig. 4a; Pear-
son’s r = 0.892; p value = 0.0169). By contrast, the total 
number of sequencing reads showed a weaker correlation 
with the AUC that was not statistically significant (Fig. 4b; 
Pearson’s r = 0.636; p value = 0.1741). If we disregard the 
worst-performing SpPB, the correlation of the AUCs with 
the total number of insertions rises dramatically to Pearson’s 
r = 0.995; p value = 0.0003, and the correlation with the 
total number of sequencing reads remains similarly weak: 
Pearson’s r = 0.652; p value = 0.2327. A library with many 
independent insertions will thus improve performance, and 
simply increasing the number of sequencing reads will not 
likely be sufficient to obtain optimal results. Increasing the 
number of independent insertions requires the collection of 
sufficient numbers of independent colonies soon after trans-
posase induction and the resulting transposon excision and 
reinsertion. An advantage of Hermes is that most insertions 
occur during the stationary phase, so transposase-inducing 
conditions can be tolerated throughout the growth period. 
Experimental designs that optimize the isolation of inde-
pendent events are critical.

Avoid libraries with high levels of jackpot events

A jackpot event is the appearance of extraordinarily high 
numbers of reads in a very small number of insertion sites. 
When the number of reads greatly exceeds the theoretical 
number of cell divisions in the experiment, it is likely due 
to a transposition event happening prior to the induction of 
transposon excision in the experiment. Jackpot events are 
a major pitfall, with much sequencing capacity wasted on 
detection of a single insertion site. Jackpot events with > 1 M 
sequencing reads were present in four of the six data sets; 
SpPB and both ScHermes studies had no major jackpot 
events (no insertion sites with ≥ 1000-fold more reads than 
the average read/insertion) (Table 2). Both of these librar-
ies also had far fewer total sequencing reads than the other 
studies (6 M and 18 M vs 24–84 M for the other libraries).

Of note, within a data set, some individual experiments 
had far more jackpot events than others (Table 2), which 
would be expected if jackpot events occur stochastically. 
Importantly, these events were not clearly associated with 
one of the three species or with the transposon type. This 
suggests that jackpots arise from technical rather than bio-
logical issues.

It is important to avoid jackpot events because they 
reduce data quality considerably: the higher the number of 
reads at a few jackpot sites, the lower the number of inform-
ative insertions sites and reads. Avoiding the selection of 
cells in which a transposon was already mobilized is key to 
ensuring that the number of insertions and reads provides 
good genome coverage. Dividing the cultures into dozens 
of small cultures and then re-pooling these subcultures after 

transposase induction can effectively dilute out most jackpot 
events. Preparing several independent libraries and sampling 
a few sequences in each may also be worthwhile. If a tested 
library shows one sequence twice in one hundred colonies, 
for example, it is likely to be a > 1 M jackpot event.

Consider which features are most important 
in the analysis of a given transposon

In decision-tree-based algorithms, such as Random For-
est (Breiman 2001), every node is a condition of a split of 
the data by a single feature. The splitting process continues 
until reaching a stop condition, such as all the features being 
used, a very small obtained subset, or essentiality labels that 
are the same for the obtained subset. The goal is to reduce 
entropy (uncertainty) in the data. Entropy is zero when all 
labels in the obtained subset are the same; and is maximum 
when half of the labels in the obtained subset are the same 
(in a binary classification). Each split of the data by a given 
feature (node in the tree) reduces the entropy. The impor-
tance of a given feature in the Random Forest classifier is the 
calculated decrease in entropy contributed by that feature. 
Here we describe the features of the classifiers, and discuss 
their relative importance.

For each ORF, we catalogued predictive features includ-
ing the number of independent insertion sites, number 
of reads, and the length of each ORF. We also calculated 
engineered features including a neighborhood index, which 
normalizes for insertion bias due to genomic position (e.g., 
proximity to the initial excision site in the genome), and a 
freedom index, which reports the proportion of an ORF that 
is insertion-free (see Methods and Table 1). The neighbor-
hood index is more important in studies where the trans-
poson was originally placed in the chromosomal loci, but 
it also normalizes for any other insertional biases such as 
chromatin accessibility and 3D chromosome organization. 
The freedom index is especially useful for identifying genes 
with essential domains that are able to tolerate insertions 
outside of those domains. We used the number of transposon 
insertions per transposon target sequence in an ORF as an 
additional feature in the analysis (Fig. 5), where applicable 
(in PB and Hermes studies). We also calculated the num-
ber of insertions and the number of reads normalized by 
the length of each ORF, and compared the ‘feature impor-
tance’ for each library to ask whether specific features var-
ied in importance for the inference of gene essentiality and 
whether feature importance was characteristic for a given 
transposon or yeast species.

The number of insertions per ORF played an important 
role in determining essentiality, with essential genes hav-
ing far fewer insertions than non-essential ORFs (~ seven 
times less, on average, across the six datasets), consistent 
with the strong correlation between a number of insertions 
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and the AUC (Fig. 4a). The number of reads per ORF 
played a lesser role in these classifications, also consist-
ent with the correlation above (Fig. 4b). Gene length also 
affected the probability of transposon insertion in a gene, 
and thus was a crucial normalization parameter for the 
numbers of insertions and reads for every ORF.

The Neighborhood Index (NI) feature made important 
contributions in most of the classifications (except SpPB, 
which had far less data). Importantly, this feature did not 
differ considerably between the transposons induced from 
a plasmid and those inserted in the chromosomal loci (19.3 
vs 19.6, respectively; Fig. 5). This result is consistent with 
the idea that chromatin accessibility, 3D chromosome 
organization, and other factors that may bias the insertion 
site frequency in a given organism can affect the frequency 
of insertion of different transposons in a similar manner. 
We attribute this phenomenon to the fact that while inser-
tion of the transposon in a chromosomal loci creates a bias 
for nearby re-insertions, induction from a plasmid intro-
duces other biases, such as preference for pericentromeric 
regions, as previously reported by (Michel et al. 2017).

The Freedom Index (FI) was a major contributor to both 
ScAcDs and CaAcDs predictions, while results with the PB 
and Hermes datasets were mixed (Fig. 5). This result is 
consistent with the idea that AcDs does not have a strongly 
specific target sequence and thus inserts throughout ORFs, 
and that Hermes have fewer target sequences within ORFs 
(on average, 123.65 per ORF in S. cerevisiae and 131.44 
in S. pombe; Table 2), while PB has even fewer target 
sequences (on average, 10.62 per ORF in C. albicans and 
8.39 in S. pombe; Table 2). Thus, the FI appears to be more 

important in AcDs experiments because insertions occur 
more randomly throughout an ORF.

The importance of the number of insertions in the proxi-
mal regulatory sequences (100 bp upstream to the start 
codon) to the essential/non-essential predictions was only 
minor but highly variable. For example, the impact of both 
ScHermes studies was nearly twice that of ScAcDs for this 
feature. As described in more detail below, we posit that this 
difference is due to cryptic enhancer/promoter activity in the 
miniDs transposon in S. cerevisiae not seen with either one 
of the Hermes transposon (Fig. 6). Surprisingly, this cryptic 
promoter does not seem to negatively affect the inference of 
gene essentiality, as seen in the higher performance of the 
models in Ac/Ds studies (AUCs, Table 2; Fig. 2) relative 
to studies with different transposons, CaAcDs, however, is 
slightly better in this regard than ScAcDs.

Consider the effect of transposon‑specific target 
sequence specificity

Most transposons have preferred sites of insertion: Hermes 
prefers TnnnnA (Supplementary Figures S13 and 14) and 
PiggyBac inserts primarily at TTAA sequences (Supple-
mentary Figures S15 and 16); AcDs, in contrast, does not 
have a strong insertion site preference (Supplementary Fig-
ures S11 and 12). Theoretically, the length of the insertion 
site sequence necessarily scales inversely with the number 
of potential unique insertion sites. It was not clear, however, 
at what insertion sequence length the resolution of studies 
of gene essentiality becomes limiting.

Fig. 5   Feature importances in 
the different models of gene 
essentiality inference. Impor-
tance of each feature used in 
the Random Forest classifier 
of essentiality for each dataset. 
Features are described in 
Table 1; Neighborhood index 
generally normalizes for non-
random insertion frequencies 
across the genome; Freedom 
index reports on the largest 
proportion of an ORF that 
has no insertions, which is a 
measure of domains that may be 
essential (Segal et al. 2018)
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The feature importance of the number of insertions per 
transposon target sequence in an ORF, which should be a 
measure of library saturation, showed a varying degree of 
importance in the PB and Hermes studies (Fig. 5). It was 
much more important in PB than Hermes studies, especially 
if we disregard the lower quality classification of SpBP (0.29 
vs 0.17 and 0.23, respectively). It should be noted that the 
target sequences are preferred sites of insertion, yet are not 
exclusive or absolute (logo analysis; Supplementary Fig-
ures S11–16). For example, PiggyBac in C. albicans had 
1.6-fold more unique insertion sites than the theoretical 
number of target sequences in the C. albicans genome. By 
contrast, for both ScHermes and SpHermes, the number 
of target sequences available far outnumbered the number 
of unique insertions. The proportion of target sequences 
without insertions ranged from 8.9% for CaPB to 85% for 
SpHermes (Table 2) and the proportion of insertions not 
in target sequences ranged from 3.3% in SpPB to 36.6% in 
CaPB, and from 12.5% in ScHermes to 6.0% in SpHermes. 
We thus surmise that there are sufficient numbers of tar-
get sequences for Ac/Ds and Hermes as to not be a limiting 
factor for these transposons. This is not the case in Piggy-
Bac, which does not seem to have enough target sequences 
throughout the yeasts’ genomes.

Another critical issue is the number of genes that lack 
any preferred target sequences within the ORF; there are 
228 and 185 ORFs without a single TTAA sequence in C. 
albicans and S. pombe, respectively. These ORFS have a 
lower probability of acquiring insertions and, if the genes 
are non-essential, are much more likely to give false positive 
information (be predicted essential for lack of insertions). 

Indeed, 155 ORFs without TTAA sequences were predicted 
essential in the CaPB data and yet predicted non-essential 
in the CaAcDs study. Similarly, 118 of the 185 ORFs lack-
ing TTAA sequences were predicted essential from the 
SpPB study but were non-essential in the SpHermes study. 
We assume that many of these genes are false positives, 

Fig. 6   Hermes and AcDs transposon insertion distribution in S. cer-
evisiae ORFs. Transposon insertions surrounding the start codons 
of S. cerevisiae ORFs were plotted for non-essential (a) and essen-
tial genes (b). Hermes in a haploid strain (blue), Hermes in a diploid 
strain (black) and AcDs (miniDS, red). X-axis- coordinates (bp) rela-
tive to the start codon; Y-axis- number of insertions per site per gene 

(108). In non-essential genes (a), the insertion distribution patterns 
appear to be indistinguishable in the three studies. In contrast, essen-
tial genes (b) are more tolerant to insertions in the diploid strain than 
in haploids. Furthermore, haploid strains tolerated AcDs insertions 
up to 35 bp upstream to the start codon, while they did not tolerate 
Hermes insertions within 200 bp upstream to the start codon

Fig. 7   Analysis of the ability of the CaPB classifier to infer gene 
essentiality in genes with increasing number of target sequences. 
When only ORFs with a specific number of target sites are consid-
ered (> = x-axis), AUC rises accordingly (blue dots), but the number 
of ORFs that can be analyzed necessarily decreases (numbers above 
blue dots). This demonstrates the importance of the prevalence of the 
transposon target sequences in ORFs, for the quality of gene essenti-
ality inference, using in-vivo transposon mutagenesis studies. X-axis: 
Minimum number of target sequences per ORF needed for inclusion 
in the classification. Y-axis: CaPB classifier AUC​
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especially given that 127 of the 185 ORFs lacking TTAA, 
including 95 of the 118 aforementioned ORFs, were non-
essential in classical genetics studies of S. pombe.

Next, we asked if the number of target sequences within 
an ORF affected the CaPB classification performance for 
that ORF. To address this, we compared the performance 
(AUC) to sets of ORFs filtered to exclude ORFs with dif-
ferent numbers of target sequences (from 0 to 10) from the 
training set used to train the classifier (Fig. 7). The AUC 
increased from ~ 0.94 for the entire training set to > 0.98 for 
the training set containing only genes with 10 or more target 
sites (~ 50% of the genes in the training set). This suggests 
that studies using the PiggyBac transposon may struggle to 
correctly infer gene essentiality for ORFs with low numbers 
of target sites.

Consider whether the transposon can activate 
as well as disrupt gene expression

Predictions of gene essentiality were based upon the assump-
tion that transposon insertion into an ORF disrupted gene 
expression and produced loss-of-function allele. However, 
this is not necessarily the case for all genes. If an inser-
tion allele removes a regulatory domain from a protein, for 
example, the protein may become hyperactive, resulting 
in a gain-of-function allele. Additionally, some transpo-
sons may introduce enhancer and promoter activities that 
could increase gene expression in some species. The miniDs 
transposon used in the ScAcDs data is likely to contain such 
activities (Michel et al. 2017). Consistent with this idea, 
the ScAcDs dataset contains an average of 4.71 insertions 
within the first 100 bp of essential genes (divided by the total 
number of insertions and multiplied by 106), whereas the 
other datasets—including CaAcDs, which has a transposon 
modified from the miniDs—contain significantly fewer (1.98 
insertions in the first 100 bp of essential genes). SpHermes 
and ScHermes contain 2.68 and 3.53 insertions (2.56 from 
(Edskes et al. 2018)), respectively, within the first 100 bp of 
essential genes. Additionally, while many essential genes of 
S. cerevisiae appeared to tolerate miniDs insertions, this is 
not true for Hermes insertions at sites in the 5′ UTR that are 
very close to the start codon (Fig. 6). The miniDs transposon 
in S. cerevisiae may thus facilitate inappropriate activation 
of gene expression when inserted upstream or within certain 
genes, as previously reported by (Michel et al. 2017).

Cross‑study analysis

Knowing the full set of essential and non-essential genes in 
eukaryotic microbes, including pathogens of humans, ani-
mals, and plants, will improve the understanding of com-
mon and species-specific properties of these understudied 
organisms. Furthermore, once a transposon library has been 

collected, it can be screened under many other growth con-
ditions to reveal genotype/phenotype relationships. In vivo 
transposon analysis of gene essentiality is a practical and 
feasible approach because the cost in time and resources for 
obtaining libraries is far lower than that for producing engi-
neered deletion mutants, especially given that the amount 
of baseline information (other than the genome sequence) 
about the organisms may be minimal. The only technical 
hurdle is to introduce the heterologous transposon of inter-
est, either on a plasmid (where feasible) or into a useful 
locus within the genome of the relevant organism.

An additional challenge is that ML approaches require a 
high-quality training dataset of gold-standard essential and 
non-essential genes. For many non-model organisms, such 
training data is too sparse to build a robust training set. For 
C. albicans, we circumvented the low numbers of genes 
already known to be essential by relying upon genes that 
had been determined to be essential from comprehensive 
classical genetic deletion studies in both model yeasts (S. 
cerevisiae and S. pombe) and those with orthologs in C. albi-
cans. Training on S. cerevisiae or S. pombe orthologs with 
consistently essential orthologs yielded good performance 
predictions for C. albicans (AUC: 0.940–0.993, Table 2). 
CaAcDs performance was lower when training only on the 
66 genes known to be essential plus the set of presumed 
non-essential genes (those that had been successfully deleted 
in C. albicans studies, AUC of ~ 0.92) (Segal et al. 2018).

Next, we considered the quality of the learning perfor-
mance for each dataset if we trained on orthologs from 
one species and predicted essentiality of genes in a dif-
ferent organism (Fig. 8). The orthologous training set was 
designed to have a high overlap of essential genes between 
the S. cerevisiae and S. pombe training sets; out of the 721 
S. cerevisiae essential genes, 621 were also essential in S. 
pombe and all of the S. pombe essential genes were essen-
tial in S. cerevisiae. For each cross-study examination, we 
trained a model on 80% of the training set of the organism in 
the training study and tested the performance on 20% of the 
labeled genes of the organism in the target study (Fig. 8a). 
The transfer learning performance of the classifications was 
of a comparable quality to the single study classifiers for 
most AcDs and Hermes cases (Figs. 4, 8a). Furthermore, it 
displayed a somewhat symmetrical property: in most cases, 
there were minor differences in performance between train/
test and test/train pairs (reducing the quality by ~ 0.5–5.7%) 
when the tests were between or among AcDs and Hermes 
experiments. Conversely, when testing for predictions from 
PB data that were trained on either AcDs or Hermes, the 
AUCs dropped more dramatically (up to ~ 21.9%). PB data 
was thus less transferable than Hermes and AcDs data.

The low PB transferability between SpPB and CaPB is 
likely due to the sparser target sequence distribution relative 
to either Hermes or AcDs, which causes PB studies to produce 
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false positives, as noted above, and thus might contribute to 
reduced performance in cross-study analyses. The lower per-
formance of the classifiers in the original PB single studies 
(Table 2) also may have contributed to the reduced ability to 
predict essentiality in pools of PB mutants using cross-species 
models.

Reduced differences in cross-study performance could 
also be due to similarities between the importance of differ-
ent features in the classifiers for the different datasets. To test 
this possibility, we correlated the vector of the relative fea-
ture importance for each study with the feature importance 
in all the other studies (Fig. 8b). The analysis distinguished 
three groups within the six studies, based on the correlation 
coefficient values for feature importance between members 
of the group: CaAcDs and ScAcDs (Pearson’s r = 0.902); Sp 
Hermes and CaPB (Pearson’s r = 0.898); and SpPB and ScH-
ermes (Pearson’s r = 0.929). Notably, with the exception of the 
AcDs studies, the quality of the transfer learning predictions 
appears to be independent of both the transposon type and the 
organism studied. We presume that this is due to the lack of a 
specific target sequence for the AcDs transposon system.

As necessary, construct training sets using genes 
with orthologs in models where essentiality 
is known and then validate the training set 
manually

We suggest that an initial training set of orthologous genes 
known to be essential and non-essential in related model 

organisms can be used to facilitate analysis of a transposon 
insertion study in a non-model organism with sparse essen-
tiality information (Table S8). An important caveat is that 
differences between gene function in different species can 
alter gene essentiality of a small number of these orthologs; 
it is thus important to visually inspect this orthologous train-
ing set before applying it. The goal is to remove any genes 
with insertion patterns that are highly contradictory to the 
‘essentiality label’ that the orthologs provided. For example, 
for C. albicans, three independent inspectors reviewed the 
entire orthologous training set in an unprejudiced fashion, 
visually examining the insertion patterns in the CaAcDs data 
and manually labeling each gene as essential, non-essential, 
or ambiguous. When all three inspectors classified a gene 
as non-essential (e.g., many insertions throughout an ORF 
within a genome region that had many insertions outside of 
that ORF) and the orthologs were labeled ‘essential’ in the 
two model yeasts, we removed that gene from the training 
set.

Once a training set has been established, and the features 
for the ORFs have been calculated, the Random Forest clas-
sifier can be run in a cross-validation scheme and the AUC 
can be calculated using the essentiality labels. This provides 
an efficient approach to obtaining information about all the 
genes in a species that has been sequenced but not subjected 
to much molecular manipulation. Clearly the same approach 
can be used to compare the essentiality of the same sets of 
genes grown in different conditions as well, potentially pro-
viding large amounts of phenotypic data across an entire set 

Fig. 8   Analysis of model performance, trained on data from a differ-
ent organism and/or transposon in all possible combinations. a For 
each ROC AUC value in the table, training was performed on 80% 
of the original training set used in the training species/transposon 
described in the rows. This training data was then used to predict the 
essentiality of the remaining 20% of the training set in the species/

transposon described in the columns. The train/test split ratio was 
similar to the fivefold cross-validation performed in the single study 
analyses. b For each study, the vector of the relative feature impor-
tance was correlated with the feature importance in all the other stud-
ies. Pearson’s correlation coefficient values are presented
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of ORFs. If applied to a species that has not been the subject 
of many genetic studies, such data would represent a treas-
ure-trove of information about the genes themselves and the 
phenotypes associated with loss-of-function of those genes.

A comparative analysis of gene essentiality 
predictions

One important issue is whether different transposon inser-
tion studies in the same organism have similar or different 
predictions from one another and from the known essential-
ity status of deletion mutants, which are by definition ‘loss-
of-function’ null alleles. After removing genes that were 
repeated or < 300 nt in length (see Methods), 74 genes were 
predicted to be essential by both S. cerevisiae transposon 
studies and were listed as non-essential by SGD (Fig. 3a). A 
recent study of the S. cerevisiae deletion (YKO) collection 
used whole-genome sequencing to identify genome changes 
that may improve the growth of different deletion mutants 
(Puddu et al. 2019). Indeed, 29 of the 74 genes that were 
essential in both Tn studies and non-essential in SGD, car-
ried at least one genomic aberration (e.g. aneuploidy, copy 
number variation of rDNA, telomeric length, copy number 
variation of mDNA, etc.) (Table S9). Such genomic aber-
rations may compensate for reduced competitive fitness of 
the specific deletion mutants, and it is presumed that such 
aberrations were selected in the course of conventional strain 
construction steps (Puddu et al. 2019). Because random 
in vivo transposon mutagenesis involves far less selective 
pressure than the construction and selection of specific dele-
tion mutants, Tn insertion mutant strains are less likely to 
have accumulated such putative compensatory mutations. 
Accordingly, the isolates carrying insertions in these genes 
may have had lower competitive fitness that was interpreted 
as essentiality. The fact that insertions in these genes were 
rare in both S. cerevisiae transposon studies supports this 
hypothesis. Of the remaining 45 genes, 34 were not in TKO 
collection sequenced by (Puddu et al. 2019), presumably 
because of their poor growth and low fitness. Consistent 
with this, most of these genes are annotated in SGD as hav-
ing reduced competitive fitness, making them more likely 
to be at low frequency in the population of strains carrying 
transposon insertions. Furthermore, strains tested for essen-
tiality in the YKO collection were tested on medium buff-
ered to neutral pH, while the Tn selection conditions were on 
media that are considerably more acidic (pH4.5–5). Neutral 
pH likely facilitates the growth of some mutants, such as 
several vacuolar membrane atpase (VMA) genes that were 
essential in the Tn studies but not in the YKO collection. 
It is also important to note that gene essentiality, although 
treated as a binary or discrete function (essential or not), is 
actually a common quantitative trait not only in S. cerevisiae 
(Liu et al. 2015) but also in S. pombe (Li et al. 2019). We 

posit that many of the genes determined to be essential in 
both transposon studies but not in the YKO collection are 
likely to be genes with traits that exhibit quantitative essen-
tiality and/or are suppressible by genome aberrations that 
accumulated in the YKO collection (Puddu et al. 2019) but 
not in the Tn insertion mutants.

For S. cerevisiae, the classifiers displayed a high degree 
of agreement on the final verdicts of gene essentiality 
(Fig. 3a), while more discrepancies were evident for the C. 
albicans and S. pombe studies. Both PiggyBac studies pre-
dicted a much higher number of essential genes than the 
AcDs or Hermes studies (Figs. 3b, 7c), as expected from the 
paucity of target sequences and the lower number of total 
unique insertions which, as discussed above, make false-
positive predictions more likely. For example, the CaPB 
study had an average 5.84 target sites per kb in genes likely 
to be false positives vs 10.62 target sites per kb in all the 
genes (Mann Whitney U: p value < 2.38*e−78). Importantly, 
when compared to the set of essential genes for each species 
that were determined by deletion analyses, the transposon 
studies also did quite well, with only 20–35% of the genes in 
disagreement. In some cases, such discrepancies were found 
to be due to issues with the deletion collection isolates. For 
example, ~ 8% of the original S. cerevisiae deletion collec-
tion carried aneuploidies or gene amplifications (Hughes 
et al. 2000), and ~ 10% of S. pombe deletion strains retained 
a wild-type copy of the ORF that had been targeted for dele-
tion. Extra copies of the ‘deleted’ gene reduce the appar-
ent number of essential genes. Furthermore, differences in 
culturing conditions and experimental protocols introduce 
another source for misdiagnosis, as mutations that reduce 
fitness or are conditionally essential, might be called as 
essential. Due to the aforementioned discrepancies, we sug-
gest carefully evaluating the essentiality calls given by this 
method and relying on data from more than one independ-
ent study or source. In this case, we can only recommend 
genes that were considered essential from two independent 
transposon mutagenesis studies. Previously, we formulated 
a more stringent approach, which considered transposon 
mutagenesis results and several independent deletion stud-
ies (Segal et al. 2018).

Gene essentiality in haploid versus diploid strains 
of S. cerevisiae

S. cerevisiae is readily grown in both the diploid and hap-
loid states, allowing identification of the haplo-insufficient 
subset of genes among the set of essential genes. Based on 
gene knockout studies, we classified only two genes (NDC1, 
MLC1) as haplo-insufficient (Stevens and Davis 1998; Chial 
et al. 1999), and all other essential genes as haplo-proficient 
(i.e. heterozygous knockouts in diploids were viable). To 
determine whether additional haplo-insufficient genes exist 
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in S. cerevisiae, we collected ScHermes insertions in dip-
loid strain BY4743 and compared them to haploid strains 
BY4741 and BY4742. We inferred gene essentiality in ScH-
ermes transposon mutagenesis libraries using the model that 
had been trained on the SpHermes haploid training set data, 
applying the same threshold for classification (Figs. 2, 9). 
The classifier identified 155 genes as ‘essential in both hap-
loid and diploid’, a number far higher than expected. Upon 
closer analysis, 98 contained regions of poor mapping due to 
duplications elsewhere in the genome, 50 were categorized 

as dubious in the Saccharomyces Genome Database (Sac-
charomyces Genome Database, no date), one (LEU2) had 
been deleted in the strains studied, and the two known hap-
loinsufficient genes (NDC1, MLC1) had been identified, pro-
viding support for this approach. Upon visual inspection of 
data of the remaining four genes, one essential gene (BCY1) 
appeared haploinsufficient, whereas another (RPC10) con-
tained numerous insertions in its 5′ UTR in diploids but not 
haploids, suggesting that it might not be essential (Fig. 10). 
Although there are ~ 50% more  insertions in the diploid 
study, the discrepancy in the number of insertions becomes 
clearly evident only in genes that were classified as essential 
in the haploid studies (Fig. 6). The other two ORFs pre-
dicted to be haploinsufficient are very small (165–225 bp) 
and within regions of sparse insertion density. We thus have 
lower confidence in the data for these two genes. Transpo-
son mutagenesis of a diploid strain successfully revealed the 
two known haploinsufficient genes and inferred a new one 
(BCY1), which is known to be essential in the conditions 
employed in the screen but not essential in other culture 
conditions (Matsumoto et al. 1982). The haploinsufficiency 
of BCY1 should be validated experimentally.

The classifier also identified 29 genes as ‘haploinsuffi-
cient’ in diploids and not essential in haploids. Of these, 
20 could be dismissed based on their annotation as dubious 
or the presence of duplicated (unmappable) segments. All 
of the remaining nine genes were small (87–528 bp) and 
found in regions of sparse insertion density. These genes are 
annotated in SGD as non-essential and are probably false 
positives.

These observations raise an important issue about 
data quality control. It is important to filter dubious and 

Fig. 9   Gene essentiality in haploid and diploid S. cerevisiae. Compar-
ison of essential genes in haploid and diploid S. cerevisiae analyzed 
with ScHermes. Random Forest classifier was trained on the haploid 
ScHermes study and predicted gene essentiality in a diploid strain, 
using the same threshold for the final verdict. Mitochondrial genes 
were not considered

Fig. 10   Suspected haploinsufficient genes in S. cerevisiae. Four 
genes suspected to be haploinsufficient in S. cerevisiae: NDC1, 
MLC1, RPC10 and BCY1, as they appear in the UCSD genome 
browser (‘UCSC Genome Browser on S. cerevisiae Apr. 2011 (Sac-
Cer_Apr2011/sacCer3) Assembly’, no date). NDC1 (a) and MLC1 

(b) were known to be haploinsufficient. BCY1 (d) appears to be a 
previously unknown haploinsufficient gene. RPC10 (c) might not be 
essential as it sustained insertions in the 5′ UTR in diploids but not 
haploids
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uninformative ORFs from the data set (as was done in the 
analysis of CaAcDs (Segal et al. 2018)). This includes genes 
with repeated domains or duplicate copies in the genome 
that prevent unambiguous mapping of short Illumina reads. 
Furthermore, predicting the essential/non-essential status 
for short ORFs, and especially those located in regions with 
sparse intergenic insertions, is more likely to be problematic.

Conclusions

In summary, we suggest a number of metrics for the infer-
ence of gene essentiality using in vivo transposon mutagen-
esis studies in yeasts, including those with little available 
genetic data. Maximizing the total number of unique trans-
poson insertions is the most critical factor in achieving opti-
mal performance of the classification. This can be attained 
by collecting many independent insertion clones, striving to 
reduce possible jackpot events in the study, maximizing the 
depth of coverage, and utilizing a transposon with a fairly 
permissive target sequence or no preferred target sequence. 
Furthermore, while transposons with relatively stringent tar-
get sequences have some advantages for screens that identify 
individual mutants, they are less robust for determining gene 
essentiality. The low number of potential target sequences, 
and especially the lack of any target sequences, in certain 
ORFs will increase the likelihood of falsely classifying 
non-essential genes as essential (Fig. 7). Additionally, we 
think that transposon mutagenesis is an ideal approach for 
gaining large amounts of useful genotype/phenotype data 
about understudied organisms; the cross-species learning 
methodology allows inference of gene essentiality based on 
conserved orthologs, especially when coupled with a visual 
screening of the data. Finally, in vivo transposon mutagen-
esis is an incredibly useful tool for high throughput genomic 
studies, not only of gene essentiality per se but also of genes 
required under specific selective conditions. We hope that 
the recommendations provided here will facilitate future 
work to understand genes in a wide range of yeast species.
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