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ABSTRACT
Motivation: Many signals in biological sequences are based
on the presence or absence of base signals and their spatial
combinations. One of the best known examples of this is the
signal identifying a core promoter—the site at which the basal
transcription machinery starts the transcription of a gene. Our
goal is a fully automatic pattern recognition system for a family
of sequences, which simultaneously discovers the base sig-
nals, their spatial relationships and a classifier based upon
them.
Results: In this paper we present a general method for
characterizing a set of sequences by their recurrent motifs.
Our approach relies on novel probabilistic models for DNA
binding sites and modules of binding sites, on algorithms to
study them from the data and on a support vector machine
that uses the models studied to classify a set of sequences.
We demonstrate the applicability of our approach to diverse
instances, ranging from families of promoter sequences to
a dataset of intronic sequences flanking alternatively spliced
exons. On a core promoter dataset our results are comparable
with the state-of-the-art McPromoter. On a dataset of altern-
atively spliced exons we outperform a previous approach.
We also achieve high success rates in recognizing cell cycle
regulated genes. These results demonstrate that a fully auto-
matic pattern recognition algorithm can meet or exceed the
performance of hand-crafted approaches.
Availability: The software and datasets are available from the
authors upon request.
Contact: roded@tau.ac.il

1 INTRODUCTION
We initially began this work with the problem of trying to
identify core promoters—the sites at which the basal tran-
scription machinery starts the transcription of a gene. This is
one of the earliest sequence signals studied in computational
biology dating back to Gary Stormo’s PhD thesis on using
perceptrons in 1981. It remains one of the hardest signals to
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find, harder even than the now trendycis-regulatory signals,
also known as distal and proximal promoters, which serve as
the binding sites of complexes that interact with and modulate
the activity of core promoters. Solving the problem of finding
core promoters is very important as most gene prediction pro-
grams routinely miss the 5′ exon because they are geared to
recognize coding sequence. Among other implications, this
has great impact on the accuracy of the upstream region in
which one looks forcis-regulatory control.

We wished to study a classifier of the signal by the exam-
ination of a collection of positive and negative examples. The
basic idea is to first recognize potentially distinguishing attrib-
utes or patterns and then study which combinations of these
attributes discriminate positive from negative examples. The
idea is quite natural and there have been several other attempts
along these lines (Pavlidiset al., 2001; Ben-Hur and Brutlag,
2003), mainly focusing on the classification task. The specific
problem of recognizing eukaryotic core promoters has been
studied by several authors and various approaches have been
reported for it, including neural networks (Reese, 2001), lin-
ear discriminant analysis (Hannenhalli and Levy, 2001) and
hidden Markov models (Ohleret al., 2002). The last method,
called McPromoter, is the best in-class and hand-crafted clas-
sifier for Drosophila core promoters based on a great deal of
human analysis and insight.

Here, we present a unified framework for the task of recog-
nizing sequence families. The framework consists of two
components: (1) algorithms that recognize unusual patterns or
attributes of a number of types within the training dataset and
(2) a support vector machine (SVM) that uses the attributes
studied for the classification. Specifically, we study sequence
motifs that discriminate positive from negative examples. We
also study discriminative sequence modules, consist of spa-
tial combinations of motifs. The studying relies on novel
probabilistic models for these signals. In addition, we made
our system extensible by permitting the introduction of hand-
crafted attributes if desired. These particular choices of base
attribute classes to search over the result in a classifier whose
performance on the core promoter problem is comparable
with the state-of-the-art McPromoter (Ohleret al., 2002) and
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exceeds that of NNPP (Reese, 2001). Moreover, we came
to realize that the method extends well beyond our original
goal and to illustrate this we apply it here to the problems of
classifying alternatively spliced exons, in human, and recog-
nizing genes that are under cell-cycle control in yeast. In
comparison with a previous approach for detecting alternat-
ively spliced exons, we are able to show increased sensitivity
of the predictions.

2 METHODS
We tackle the following classification problem: the input
consists of a training set of sequences with positive and
negative examples, and a test set; the goal is to devise a
classifier for the positive examples that will best discrim-
inate between positives and negatives on the test set. We
devise a two-phase scheme for this problem: in the first
phase we use the training data to study attributes (features)
that are prevalent in the positive sequences compared with
background (negative) sequences. The attribute vector of
each sequence consists of three types of attributes: (1) dis-
criminative motifs, (2) discriminative modules of motifs
and (3) external attributes that are unique to the specific
application. In the second phase we train a SVM for the clas-
sification problem using the attributes studied as sequence
features. The two phases are described in detail in the
following sections.

2.1 Studying discriminative motifs
We model each motif using the standard position weight mat-
rix (PWM) representation (Bailey and Elkan, 1994; Rothet al.,
1998), which assumes independence between positions in a
binding site. This model assigns a weight to each position in
the motif and each nucleotiden ∈ {A,C,G,T }, representing
the extent to which the nucleotide’s presence in this position
is associated with the motif.

For studying PWMs we adapt the discriminative motif
model by Segalet al. (2002). This model is specified using a
logistic function withp position-specific weightswi[n], one
for each positioni and each nucleotiden ∈ {A,C,G,T }, and
a thresholdw0. For a sequence examples, denote its nucle-
otide sequence bys.S = s.S1, . . . , s.SL. For a motifm, denote
by s.m the location of occurrence ofm in s, with the conven-
tion that ifm does not occur ins thens.m = −1. The model
assumes that a positive sequence contains exactly one occur-
rence of the motif (we extend and refine this model below) and
a negative sequence does not contain the motif. The location
distribution of a motif’s occurrence within a positive sequence
is assumed to be uniform, i.e. the motif occurs with equal
probability at each of theL − p + 1 possible positions in the
sequence. Positions in which the motif does not occur (within
positive and negative sequences alike) are modeled using a
0-order Markov model. Under this model, the probability of

a motif occurrence given the sequence is:

P(s.m ≥ 0 | s.S1, . . . , s.SL, θm)

= logit


w0 + log


L−p+1∑

j=1

pm(j) exp

{
p∑

i=1

wi[s.Si+j−1]
}




whereθm is the set of parameters for the motif,pm(j) =
1/(L − p + 1) and logit(x) = 1/(1 + e−x) is the logistic
function. [The reader is referred to Segalet al. (2002) for
more details on the model and the likelihood derivation.]

We extend the above model to take into account the pos-
sible bias in the location of certain motifs along the input
sequences. Such bias was observed previously for promoter
regions [see e.g. Tanay and Shamir (2003) and Beer and
Tavazoie (2004)]. We use a simple model for the location
preference, in which the sequence is equally partitioned tok

parts (k = 10), each having a certain probability of containing
the motif, and within each part the probability of occurrence
is assumed to be uniform. For a given motif, we empirically
estimate the distribution of the locations of its occurrences
along the positive sequences (see below). We redefinepm(j)

based on the estimated distribution.
A complicating factor in applying this model to study the

motif parameters from the data is that we do not expect the
motif m to occur in every core promoter sequence, but only in
a fraction of the sequences. Thus, we treat the positive training
data as noisy. Precisely, letT be a set of labels for the train-
ing sequences, specifying for each sequences whether it is a
positive or a negative example. We further denote,T + as the
set of positive examples,T − as the set of negative examples
and S as the set of all nucleotide sequences{s.S|s ∈ T }.
Defineqm ≡ P(s ∈ T +|s.m = −1) to be the probability that
a sequence is a core promoter given that motifm does not
occur in it. This probability reflects the fractionrm of posit-

ive sequences containing the motifm: qm =
(
1 + a

1− rm

)−1
,

wherea is the ratio of negative to positive examples. The
likelihood of the data under this extended model is:

P(T |S, θm,qm) =
∏

s∈T +
{P(s.m ≥ 0|s.S, θm)

+ qm(1 − P(s.m ≥ 0|s.S, θm))}
×

∏
s∈T −

{(1−qm)(1−P(s.m ≥ 0|s.S, θm))}

The model parameters that need to be studied are the
fraction of positive sequences containing the motif and the
position specific weights for the motif. We seek parameters
that optimize the likelihood of the data. Since this optimiza-
tion problem has no closed form solution, we use a conjugate
gradient ascent to find a local optimum in the parameter
space. The starting point for the gradient ascent process
has a large impact on the quality of the result; it is found
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using a method similar to Barashet al. (2001), which we
describe next.

2.2 Initialization of the motif model
The initialization of PWMs that correspond to putative bind-
ing sites is done using a three-stage process: First, discrim-
inative ‘consensus’ sequence patterns are identified; second,
these consensus sequences are scored to quantify their enrich-
ment in the positive sequences versus the negative ones; third,
occurrences of these patterns along the positive sequences
are used to compute an initial PWM for the corresponding
motifs.

The pattern search is done in an exhaustive manner, scoring
all sequences of length 6–8 bp, which are called seeds. To
score a seed we count the number of its occurrences up to one
mismatch in the positive and negative examples. We com-
pute a hypergeometricP -value for these counts, and retain
only seeds that have an adjustedP -value <0.01 (we use
a Bonferroni correction to adjust theP -values for multiple
testing). We also compute an enrichmentP -value against a
first-order Markov model of the positive sequences, and filter
seeds that do not pass the 0.01 significance level. The surviv-
ing seeds are further filtered in a greedy fashion to ensure that
no two seeds are similar in sequence or significantly overlap
in their occurrences.

For each remaining seed, the initial position specific weights
are computed by averaging over all occurrences (up to one
mismatch) of this seed. We use the seed occurrences also to
possibly extend the PWM at each end by positions whose
information content exceeds a threshold. Once the initial
weights are determined, the parameters of the location dis-
tribution are estimated by considering, for each positive
sequence, only the highest-scoring match of the pattern to
the sequence.

2.3 Studying discriminative modules
In addition to the motif-based features, we also study more
complex patterns, namely, spatial combinations of motifs, or
modules. We seek modules that are abundant in the positive
sequences relative to the negative ones. Studying modules
allows us to identify signals that are too weak at the motif
level, and also to associate motifs whose co-occurrence has a
functional significance.

To this end, we generalized the above motif model to
ordered combinations of two or more motifs. For simpli-
city, we describe the model for the case in which the module
consists of two ordered motifs. The assumption is that two
factors (e.g. transcription factors) can interact if and only if
the occurrences of their motifs are at leastdL and at mostdU

bases apart. We further assume a prior uniform distribution
on the distance between the two motifs, although more com-
plex distributions can be incorporated into the model. The
probability that a moduleM, consisting of a pair of motifs
(m1,m2), occurs at a given positioni of a sequences is

therefore:

P(s.M = i|s.S)

= 1

dU − dL + 1
P(s.m1 = i|s.S)

i+dU∑
j=i+dL

P (s.m2 = j |s.S)

where

P(s.mk = l|s.S) = logit

(
w

(mk)
0 +

p∑
t=1

w
(mk)
t [s.St+l−1]

)

One can study this model using the same gradient ascent
approach used for the single motif model. The initialization
of the model is done by enumerating pairs of seeds (consensus
sequences) that occur up to one mismatch within a window
of sizew(w = 50). These putative modules are scored by
computing their enrichment in the positive set, using a hyper-
geometric test. Significant pairs are then initialized in a way
similar to the initialization of seeds for the motif model.

2.4 Adding external attributes
Up till now we have described a general framework for study-
ing discriminative attributes from sequence data. However,
depending on the specific problem, there may be properties
that are important for the classification task and cannot be
expressed as sequence motifs. For instance, Soreket al. (2004)
show that exons whose length is divisible by three are less
likely to be constitutive. Thus, in each of the applications
described below we also add to our attribute vectors those
attributes that were found to be discriminative for that specific
classification problem.

In addition, we add one more features to the attribute vec-
tors, representing the fit of a sequence to a probabilistic
model of the positive sequences versus the negative sequences.
Specifically, we compute a first-order Markov model for the
positive and negative sequences and define this feature to
be the log odds of being a positive versus being a negative
example.

2.5 Training the SVM
SVM is a classification method based on finding a sep-
arating hyperplane between positive and negative samples
that maximizes the distance (margin) between the samples
and the hyperplane (in case the samples are not separable,
mis-classification errors are combined into the optimization
criterion).

SVMs allow an implicit mapping of the sample vectors
(sequences in our case) into a high-dimensional, non-linear
feature space, in which the samples may be better separ-
ated through the use of a similarity function between pairs of
samples, called kernel. In our framework the sequence vec-
tors are mapped onto attribute vectors and a linear SVM is
applied to those. To optimize internal parameters of the SVM
we use a cross-validation approach. The trained SVM is used
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Table 1. Motifs and modules in Drosophila core promoters

Motif/module Name Consensus Length P -value MEME-short MEME-long

1 DRE ATCGATAG 8 1E−33 + +
2 — GGTCACACT 9 3E−23 + +
3 DPE CGGTCG 6 2E−19 + −
4 — CAGCACTG 8 4E−14 + −
5 — CAGCTGGT 8 4E−13 + −
6 — CCGATAAC 8 8E−13 − −
7 — CGACGACG 8 1E−12 − −
8 — TCGCCGCG 8 4E−11 − −
9 TATA CTATAAAA 8 6E−9 + −

10 — CGAGCGGC 8 7E−9 + −
11 INR CTCAGTCG 8 3E−7 + −
12 — GGTATTTT 8 5E−5 + −
13 — TCGGCAGC 8 6E−5 − −
1 12+ 2 GGTATTTT:GGTCACAC ≤50 9E−16 − −
2 DRE+ 6 ATCGATAG:CCGATAAC ≤50 6E−11 − −
3 INR+DPE CTCAGTCG:CGGTCG ≤50 7E−4 − −

Top: the thirteen top-scoring motifs. For each motif, indicated are its common name (if such is known), its consensus sequence, itsP -value (Bonferroni corrected) and whether it
was identified by MEME, as reported in Ohleret al. (2002). MEME was applied both to the original 300 bp sequences (long) and to shorter segments from−60 to+40 bp (short).
We consider a motif to match a MEME motif if their consensus sequences are identical up to one mismatch. Bottom: the three significant modules. The name of each module refers
to the motifs that comprise it.

to classify new sequences. In order to measure our confidence
in each prediction, we compute a confidence score based on
the approach by Platt (1999). This is done by fitting a logistic
function to the output of the SVM.

2.6 Evaluation measures
Given a test set, denote by TP, FP, TN and FN the num-
bers of true positive, false positive, true negative and false
negative predictions. The sensitivity of a set of predictions
is defined as the percentage of positives that are correctly
predicted, i.e. sens= TP/(TP + FN). The specificity is
defined as the percentage of negatives that are correctly pre-
dicted, i.e. spec= TN/(TN + FP). The FP rate equals
1 − spec= FP/(TN + FP). For some applications (e.g. core
promoter identification—see below) the number of TN in the
test set far exceeds the number of TPs. In such cases, we
replace the specificity measure with an adjusted specificity,
defined as aspec= TP/(TP+ FP).

It is convenient to visualize a range of sensitivities and spe-
cificities obtained by an algorithm using a receiver operating
characteristic (ROC) curve, which depicts the sensitivity of
the predictions as a function of the FP rate, or a ROC-like
curve that depicts the sensitivity as a function of(1− aspec).

3 RESULTS
3.1 Drosophila core promoters
As a first test, we applied our method to predict core promoters
in the Drosophila genome. A core promoter is a short sequence
region (about 100 bp), flanking the transcription start site,

that serves as a recognition site for the basal transcription
apparatus. Common core promoter elements include the TATA
box at−31 to−26 bp, its extension, BRE, at−37 to−32 bp,
the initiator, INR, at−2 to+4 bp and a downstream element,
DPE, at+28 to+32 bp. A fifth element, DRE, was implicated
to be abundant in core promoters in Ohleret al. (2002).

The training dataset that we used was prepared by Ohler
et al. (2002) and includes a set of 1842 core promoters,
1799 intronic sequences and 2859 coding sequences. These
sequences are 300 bp long, where for core promoters they
extend from−250 to+50 bp. In order to take advantage of this
partition of the sequences, we trained our model twice: first, to
discriminate between core promoters and intronic sequences;
and second, to discriminate between core promoters and cod-
ing sequences. Since coding sequences are very different from
core promoter sequences in their nucleotide content, we used
only external attributes for the second classification task. We
restricted the program to identify the 15 top-scoring motifs
or modules, and retained only significant motifs and modules
whose frequency in the positive set was estimated to be≥10%.
In total, the algorithm identified 13 significant motifs and three
significant modules, which are summarized in Table 1.

The 13 motifs that we have studied include four known
core promoter elements: TATA, INR, DRE and DPE. Five of
the other nine motifs that the algorithm studied match motifs
that were studied by MEME (Bailey and Elkan, 1994) on
the same dataset (Table 1). Specifically, Ohleret al. (2002)
applied MEME to the core promoter sequences, where in one
application MEME was applied to the entire 300 bp segments
and in the other MEME was applied to shorter segments from
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−60 to+40 bp. While the first application failed to recover
most of the known core promoter elements, the 10 top-scoring
motifs of the second application included nine of the motifs
that our algorithm identified. We note that both our method
and MEME did not recover the BRE motif, which could imply
that it is underrepresented in the data.

In addition, we studied three significant modules on this
dataset, which are shown in Table 1. The first module con-
sists of motifs 12 and 2. These two motifs were reported
to have a high frequency of co-occurrence in core promoter
sequences (Ohleret al., 2002). The second module consists
of the DRE element and motif 6. The third module consists
of the INR and DPE motifs. This module structure is one of
the most common core promoter structures reported in the
literature (Butler and Kadonaga, 2002).

Following Ohleret al. (2002) we also used 14 external attrib-
utes that capture the physical properties of DNA sequences,
and were shown to discriminate between core promoters
and other sequences. Specifically, the computation of these
properties uses experimentally derived tables on physical
properties of di- or tri-nucleotides, such as bendability,
GC-content, conformation, etc. Full details on these prop-
erties and their computation can be found in Ohleret al.
(2001). We used the average value of each property along
the core promoter segment from−60 to +40 bp as a fea-
ture. Note that more complex features can be computed based
on the external attributes, but this was not the focus of our
analysis.

To test the performance of our algorithm we applied it after
training to identify core promoters in the well annotated Adh
region (Ohleret al., 2002). This region is 2.9 Mb long and con-
tains 92 annotated open reading frames (not included in our
training data). The core promoter predictions were computed
by sliding a window across each of the strands, calculating its
confidence score, and choosing local maxima of these confid-
ence scores as the predictions. To evaluate the results we used
the same quality measures employed in Ohleret al. (2002):
sensitivity and adjusted specificity. ROC-like curves of the
results are presented in Figure 1; a comparison with exist-
ing methods is given in Table 2. These results (Fig. 1) also
demonstrate the utility of using both discriminative motifs and
modules for the classification task. We further examined the
utility of modeling the location preference of motifs by com-
paring our results with a variant of the algorithm that assumes
a uniform distribution for the location of motif occurrences.
The comparison shows a mild improvement in accuracy when
using the extended model (i.e. modeling location preference;
data not shown).

3.2 Alternative splicing in human
As a second test, we applied our method to classify alternative
and constitutive exons. Recently, Soreket al. (2004) have
reported on a method to identify alternatively spliced exons
based on their sequence characteristics rather than on EST
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Fig. 1. Performance on the Adh region, shown as ROC-like curves,
where thex-axis is(1 − aspec) and they-axis is the sensitivity of
the predictions. The solid, dotted and dashed curves describe the
performance of the algorithm when using both discriminative motifs
and modules, motifs only and no motifs or modules (i.e. using only
external attributes), respectively.

Table 2. Comparison of classification results on the Adh region

Sensitivity (%) Adjusted specificity
MotifBased (%) McPromoter (%) NNPP (%)

20 79 69 14
35 53 51 10
50 33 40 6
65 20 29 —

For each sensitivity level, the adjusted specificity of each method is indicated. The results
of McPromoter are adapted from Ohleret al. (2002). The results of NNPP are adapted
from Reese (2001), and were based on a smaller training set.

data. Specifically, they have shown that alternative exons tend
to have length divisible by three and tend to be conserved along
with their flanking sequence between human and mouse.

We tested our method on the training data reported by Sorek
et al. (2004), which consists of flanking sequences for 243
alternative exons and 1753 constitutive ones. Following Sorek
et al. (2004), we evaluated our results using 5-fold cross-
validation. The algorithm studied two to three significant
motifs in each cross-validation iteration, with two motifs con-
sistently studied in the majority of the iterations: TCCTTTTT
and TTGTCTGT. No modules were studied for this
dataset.

A ROC curve of the results is presented in Figure 2, where
the specificities and sensitivities represent averages over the
cross validation iterations. In particular, as highlighted in
Table 3, our method compares favorably with that reported
by Soreket al. (2004).

We note that a recent paper by Droret al. (2005) analyzed
this data using an SVM-based classification procedure and

i391



“bti1002” — 2005/6/10 — page 392 — #6

R.Sharan and E.W.Myers

0

 0.2

 0.4

 0.6

 0.8

1

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

S
en

si
tiv

ity

1 - Specificity

Fig. 2. ROC curve for the classification of alternatively spliced
exons.

Table 3. Classification results on the exon dataset of Soreket al. (2004)

Method Sensitivity (%) Specificity (%)

MotifBased 40.3 99.4
(Soreket al., 2004) 32.3 99.7

The specificity and sensitivity percentages represent averages over five cross-validation
iterations.

reported on a sensitivity rate of 50%. However, the results
here and in Soreket al. (2004) are not directly comparable with
those of Droret al. (2005), since the latter study used a differ-
ent validation method (the data was partitioned into a training
and a test set) and took advantage of additional external attrib-
utes that were not part of the original data of Soreket al.
(2004).

3.3 Cell-cycle regulation in yeast
As a third test of our method, we applied it to recognize
cell cycle regulated genes in yeast according to their pro-
moter sequences. The assumption underlying this experiment
was that cell cycle regulated genes carry in their promoter
sequences unique signals, corresponding to the binding sites
of cell cycle regulators. To compile a training dataset we
downloaded 500 bp promoter sequences for all yeast genes.
We classified a gene as cell cycle regulated if it was reported to
have a periodic expression pattern in Spellmanet al. (1998).
In total, we had 6323 genes with promoter information, 799 of
which were determined to be cell cycle regulated. As a neg-
ative set we arbitrarily selected 800 other genes. We tested
our success rate using 5-fold cross validation. A ROC curve
of the results is depicted in Figure 3. We further examined
the motifs that were studied by the algorithm. Throughout
the cross validation iterations the algorithm studied three to
four significant motifs, consistently identifying motifs whose
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Fig. 3. ROC curve for the classification of cell cycle regulated genes.

consensus sequences matched those of the known cell cycle
regulators MBP1, SWI4 and SWI6.

4 CONCLUSIONS
We have presented a general framework for the character-
ization and classification of a family of related sequences
based on recurrent sequence motifs and modules of motifs.
We demonstrated several applications of our framework to
identifying core promoters, alternatively spliced exons and
cell cycle regulated genes. There are many possible exten-
sions to our work, including (1) more refined modeling of
the position preference of a motif; (2) modeling the distance
distribution among motifs in a module; (3) design of kernel
functions for the classification task based on the approach
by Lanckrietet al. (2004) to provide explicit treatment of
the problem of combining features of different types; and
(4) application of our method to classify other sequence famil-
ies, such as core promoters in other species, promoter regions
of tissue-specific genes and promoter regions of genes with
specific expression patterns.
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