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Abstract

Mutational processes and their exposures in particular genomes are key to our understand-

ing of how these genomes are shaped. However, current analyses assume that these pro-

cesses are uniformly active across the genome without accounting for potential covariates

such as strand or genomic region that could impact such activities. Here we suggest the first

mutation-covariate models that explicitly model the effect of different covariates on the expo-

sures of mutational processes. We apply these models to test the impact of replication

strand on these processes and compare them to strand-oblivious models across a range of

data sets. Our models capture replication strand specificity, point to signatures affected by

it, and score better on held-out data compared to standard models that do not account for

mutation-level covariate information.

Author summary

Somatic mutations, caused by processes such as DNA damage and faulty DNA repair,

may lead to cancer. Studying the mutational signatures those processes leave behind, pro-

vides insights on their activities and can be utilized for personalized therapy. Previous

methods for analyzing mutational signatures did not account for the fact that some signa-

tures tend to occur in varying frequencies along the genome, depending on positional fac-

tors such as strand identity or genomic region. In this work, we develop new models that

account for these factors, and show that exploiting such information improves the infer-

ence of mutational signatures and their activities with applications to both basic science

and personalized medicine.

1 Introduction

Cancers are caused by somatic mutations accumulated during the organism’s life [1, 2]. Those

mutations, are the result of mutational processes varying from exogenous and endogenous

DNA damage to faulty DNA repair and replication [3, 4], and leaving unique mutational sig-

natures [1, 2, 5]. Deciphering these signatures and the genome’s exposure to them are key to

understanding how it is shaped by the disease. Such mapping was initially done by non-
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negative matrix factorization (NMF) and its generalizations [1, 6–9], or refitting methods that

infer the exposures given the signatures [10–14]. More recent work built on topic models that

allow to rigorously attribute likelihood to the data and solve the models’ parameters by maxi-

mizing it [15–19]. One of the advantages of the topic model framework, is that it allows to

exploit additional information on the data for improved predictions. For instance, [17] used a

generalization of Dirichlet multinomial regression [20] to introduce tumor-level covariates in

the context of mutational signature modeling.

The aforementioned methods assume that mutational processes work uniformly across the

genome. However, it was previously reported that some mutational processes have strand [21–

23] and region [24] biases. In particular, signatures 2, 13 and 26 (following COSMIC v2 cata-

logue [25]) were found to have strong replication strand biases [22].

Here we suggest the first mutation-covariate models that explicitly model the effect of dif-

ferent covariates on the exposures of mutational processes. We apply these models to test the

impact of genomic and replication strands on these processes and compare them to strand-

oblivious models across a range of data sets.

2 Results

We designed novel models for mutational signature analysis that account for mutation-level

features. The basic model, MCSM, is a generalization of the standard LDA that learns two dif-

ferent Dirichlet priors for the case of a binary feature, each corresponding to a different value

of the feature. A refined model, JMCSM, accounts also for tumor-level covariates in the form

of a vector exposures that ties together the two Dirichlet priors (with an LDA-like benchmark

termed gLDA). To test our models we focused on the richest features that we could extract,

namely the genomic and replication strand information across different data sets. We applied

the models in a refitting setting where signatures are given as input and their exposures have

to be inferred, and compared each feature-sensitive model with its feature-oblivious analogue,

i.e MCSM with LDA and JMCSM with gLDA. While Watson/Crick data did not seem to

improve learning (see Conclusions and Table A In S1 Text), notable differences were observed

with respect to the lagging/leading strand data (Table 1).

As evident from the table, the refined JMCSM and gLDA models yield better held-out log-

likelihood than their basic versions thanks to their usage of covariate information of inherent
exposures. While MCSM does not consistently improve upon LDA, JMCSM dominates the

other models when tested on the larger datasets, BRCA and MALY.

Next, focusing on JMCSM, we wished to pinpoint the signatures with replication strand

bias. To this end, we calculated for each signature the log-ratio magnitude of its normalized

modification parameters ak/∑i ai and bk/∑i bi. As a and b indicate the relative bias of a signature

given a feature, the normalized ratio indicates its intensity. The results are given in Fig 1 for

the two larger datasets.

It can be seen that although Signatures 2, 13, 26 are known to have a strong replication

strand bias [22], some other signatures seem to have stronger bias in our framework, most

notably Signature 6 which has the highest log-ratio among all tested signatures.

Table 1. A comparison between MCSM and LDA, and between JMCSM and gLDA using replication strand as a mutation-level feature. The percentage difference

sign indicates whether the strand sensitive model has a better likelihood (negative), and vice versa.

dataset MCSM LDA diff % JMCSM gLDA diff %

BRCA -2,216,362 -2,215,837 0.024 -1,995,494 -1,996,589 -0.055

MALY -717,961 -718,491 -0.074 -694,699 -694,937 -0.034

CLLE -112,664 -112,703 -0.035 -111,869 -111,866 0.002

https://doi.org/10.1371/journal.pcbi.1011195.t001
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A major disadvantage of this method is that it does not take into account the signature fre-

quency in the dataset. A rare signature would have a relatively small effect on the held-out like-

lihood, and its respective a and b bias parameters are more prone to overfitting. Also, since the

normalized parameter vector represents compositional data, signature-specific results are hard

to interpret. To tackle those problems, we used a second evaluation of strand bias by calculat-

ing the contribution of each signature seperately to the held-out log likelihood. To do so, we

compared the likelihood obtained when imposing no bias on the signatures to the likelihood

obtained when allowing only a single signature to be biased. Once the modification parameters

a and b are estimated, we do it by flattening the parameters respective to the unbiased signa-

tures to their average such that ak! (∑i ai − aq)/(K − 1) and bk! (∑i bi − bq)/(K − 1), where q
is the biased signature. More intuitively, since the modification parameters are very high (� 1,

000 − 10, 000), the probability vector drawn from the Dirichlet distribution is very close to the

distribution parameters, resulting in an exposure ratio determined only by the inherent expo-
sures. The results are given for BRCA and MALY in Fig 2.

The results indicate that for BRCA the main sources for the improvement in likelihood are

signatures 6, 8, 13 and 26 (the last two are known to have a strong replication strand bias, as

stated earlier). Signature 20 (which is also the rarest in BRCA, in terms of exposure averaged

over all samples), however, does not seem to display a positive effect on the likelihood contrary

to its high bias using the first evaluation. Considering MALY, signatures 2, 5 and 17 are the

major likelihood contributors. Signature 13, despite its strong replication strand bias and its

impressive contribution in the BRCA case, yields smaller contribution due to the fact that

most of the mutations in the database are assigned more likely to other signatures.

3 Discussion

We have developed new topic models to account for mutation-level covariates, focusing on a

refitting scenario where signatures are known and their exposures are to be learned. The mod-

els allowed us to pinpoint signatures that display replication strand bias. Notably, we also

applied our models with the Watson/Crick strand of the pyrimidine base in the reference

sequence as a feature but could not detect any advantage of the strand-sensitive models over

their strand-oblivious counterparts, and indeed such biases are not reported in the literature.

While we applied our framework in the context of strand information, the models described

Fig 1. Log-ratio magnitude of a and b for each signatures in BRCA (I) and MALY (II).

https://doi.org/10.1371/journal.pcbi.1011195.g001

PLOS COMPUTATIONAL BIOLOGY A mutation-level covariate model for mutational signatures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011195 June 5, 2023 3 / 10

https://doi.org/10.1371/journal.pcbi.1011195.g001
https://doi.org/10.1371/journal.pcbi.1011195


here can be easily adapted to other binary or categorial features, and could perhaps be used to

reveal other biological differences between mutations, for example when considering coding

vs. non-coding regions.

4 Methods

4.1 Preliminaries

We follow the common convention and assume that there are M = 96 mutation categories

(denoting a base substitution and its flanking bases), drawn from K known signatures. Our

data consists of T samples, each of which is a set of somatic mutations along with category and

feature information per mutation. We assume that the mutational signatures that are active in

the given dataset are known. For simplicity, we focus on a single binary feature or covariate

per mutation such as the genomic strand on which it occurred. The mutation category count

of the two possible feature values for each sample t are denoted by It,m and Jt,m, respectively.

The basic model we consider, which can be thought of as the probabilistic analog of NMF,

is the multinomial mixture model (MMM) [18]. In MMM, the signatures are modeled as mul-

tinomial distributions, such that the probability to draw a mutation m from signature k is

notated by γk,m. Further, each signature has sample-specific probabilities, aka exposures. The

model specifies a generative process for mutations, where at first a signature is drawn from an

exposure vector. Then, a mutation category is drawn from the signature vector (see Fig 3 for a

plate notation). A shortcoming of this model is the fact that exposure vectors of different sam-

ples are assumed to be independent.

To mitigate the latter drawback and generalize to unseen samples, Latent

Dirichlet allocation (LDA) assumes that the samples share an exposure Dirichlet prior, rather

than the exposure vector itself [26]. First, an exposure vector θ is drawn per-sample from a

Dirichlet prior. Then, as in MMM, a signature z is drawn from the multinomial distribution

Fig 2. Held-out log-likelihood contribution of each signature for BRCA (I) and MALY (II). The y-axis shows the difference between the log-

likelihood of an unbiased model and a single signature bias model. The number under the bars indicates the signature whose bias is maintained.

https://doi.org/10.1371/journal.pcbi.1011195.g002
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specified by the exposure vector and a mutation category m is drawn from the multinomial

distribution specified by z. Let a0k � Normð0;s2Þ and denote ak ¼ expða0kÞ, A ¼
PK

k¼1
ak. Fur-

ther denote by Nt,k the number of times signature k occur in sample t and Nt ¼
PK

k¼1
Nt;k.

Then the likelihood of the model when marginalizing over all exposure vectors and omitting

the mutation category emissions is given by:

LLDAðaÞ ¼

YT

t¼1

GðAÞ
GðAþ NtÞ

YK

k¼1

Gðak þ Nt;kÞ

GðakÞ

 !" #
YK

k¼1

1

s
ffiffiffiffiffiffi
2p
p expð�

a02k
2s2
Þ

 !
ð1Þ

4.2 Mutation-level covariate signature model (MCSM)

Similar to Dirichlet multinomial regression, we can generalize the above scheme to model

mutation-level features such as strand identity assuming each sample has two exposure vectors

(one for each strand), and that each mutation’s signature assignment is drawn from the respec-

tive exposure vector, given its strand feature (see Fig 4 for a plate notation). In this model, the

binary feature denoted by x determines the parameters of the Dirichlet distribution from

which the exposures are drawn. Using similar notation as before, with b in addition to a for

the second feature and I and J instead of N for the feature-divided data, the likelihood of the

signature part of the model is given by:

LMCSMða; bÞ ¼

YT

t¼1

GðAÞ
GðAþ ItÞ

YK

k¼1

Gðak þ It;kÞ

GðakÞ

 !" #
YK

k¼1

1

s
ffiffiffiffiffiffi
2p
p expð�

a02k
2s2
Þ

 !

YT

t¼1

GðBÞ
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YK

k¼1

Gðbk þ Jt;kÞ
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 !" #
YK

k¼1

1

s
ffiffiffiffiffiffi
2p
p expð�

b02k
2s2
Þ

 !
ð2Þ

Fig 3. A plate notation of LDA. The conditional distributions of each node are given by: a0k � Normð0; s2Þ; θ� Dir
(a); z�Multi(θ); and m�Multi(γz).

https://doi.org/10.1371/journal.pcbi.1011195.g003

Fig 4. A plate notation of MCSM. The conditional distributions of each node are given by: a0k; b
0
k � Normð0;s2Þ; θI�

Dir(a); θJ� Dir(b); z�Multi(θI)|x = 0, z�Multi(θJ)|x = 1; and m�Multi(γz).

https://doi.org/10.1371/journal.pcbi.1011195.g004
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4.3 Joint MCSM (JMCSM)

Although the previous MCSM model allows us to integrate mutation level features, it assumes

that every tumor has two independent exposure vectors. In reality, since signature exposures

are the consequences of genetics and lifestyle, it is reasonable to assume that the two exposures

vectors are related rather than independent. To capture this dependency, we assume that a

tumor t has an inherent exposure vector denoted by et = (et,1, . . ., et,K) which can be thought of

as a tumor level covariate [17, 20] (see Fig 5 for a plate notation). In order to impose that the

strand-specific exposure vector θI or θJ is drawn in the proximity of the inherent exposures, we

modify the Dirichlet parameters and define them as (et,1a1, . . ., et,KaK) and (et,1b1, . . ., et,KbK).

The likelihood of the signature part of the model is now given by:

LJMCSMða; bÞ ¼

YT

t¼1

Gð
P

kektakÞ

Gð
P

kektak þ ItÞ

YK

k¼1

Gðektak þ It;kÞ

GðektakÞ

 !" #
YK

k¼1

1

s
ffiffiffiffiffiffi
2p
p expð�

a02k
2s2
Þ

 !

YT

t¼1

Gð
P
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Gð
P
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k¼1

Gðektbk þ Jt;kÞ

GðektbkÞ

 !" #
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1

s
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Þ
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ð3Þ

To tease apart the contribution of the joint modeling of strands on model performance, we

also define a guided LDA (gLDA) model variant which is fed with external information on the

exposures as in JMCSM (see Fig 6 for a plate notation). Its likelihood is given by:

LgLDAðaÞ ¼

YT

t¼1

Gð
P

kektakÞ

Gð
P

kektak þ ItÞ

YK

k¼1

Gðektak þ It;kÞ

GðektakÞ

 !" #
YK

k¼1

1

s
ffiffiffiffiffiffi
2p
p expð�

a02k
2s2
Þ

 !
ð4Þ

The main characteristics of the four presented models are summarized in Table 2.

4.4 Model learning

The above topic models (LDA, MCSM, gLDA and JMCSM) can be optimized using stochastic

EM (SEM). In SEM, we alternately draw random signature assignment based on the current

parameter estimation and then a new set of parameters is estimated given those assignments.

As it is infeasible to directly calculate the signature assignment probability conditioned on the

mutation categories, we use Gibbs sampling to randomly draw the assignments [27]. For

Fig 5. A plate notation of JMCSM. The conditional distributions of each node are given by: a0k; b
0
k � Normð0; s2Þ; θI

� Dir(e� a); θJ� Dir(e� b); z�Multi(θI)|x = 0, z�Multi(θJ)|x = 1; and m�Multi(γz).

https://doi.org/10.1371/journal.pcbi.1011195.g005
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instance, we execute Gibbs sampling for JMCSM by iteratively drawing assignments from the

conditional probability (for the nth mutation of sample t):

pðzn ¼ kjwn ¼ mÞ /
fIk;tgnn þ ektak

It � 1þ
P

kektak
gk;m ð5Þ

where {Ik,t}nn is the number of mutations drawn with assignment k, without counting the cur-

rent mutation assignment. Given the sampled signature assignments, the model parameters are

estimated using the L-BFGS-B optimzer. The process is stopped after a large number of itera-

tions (3,000), tested for suffiency on generated data. Notably, when learning JMCSM we first

extract et by ignoring the mutation feature and applying the MMM model, optimized via EM.

4.5 Model evaluation

We evaluate the models by a held-out log-likelihood comparison with a feature oblivious ana-

log: MCSM vs. LDA and JMCSM vs. gLDA. Since the likelihood of LDA and its derivatives is

not directly computable, we follow previous works [28], and use the method of empirical likeli-

hood (EL). In EL we draw a large number of tumor exposures using the estimated parameters,

and then calculate the mean log-likelihood of the test set, marginalizing over all possible signa-

ture assignments per mutation. Specifically, we use S = 10, 000 randomizations leading to S
pairs of exposure vectors for both feature values ðaðsÞ1 ; . . . ; aðsÞK Þ and ðbðsÞ1 ; . . . ; bðsÞK Þ. The empiri-

cal log-likelihood of MCSM is given by (omitting a constant term that depends on σ):

‘MCSM ¼
1

S

XS

s¼1

XT

t¼1

XM

m¼1

It;m ln
XK

k¼1

aðsÞk gkm

 !

þ Jt;m ln
XK

k¼1

bðsÞk gkm

 !" #

ð6Þ

For robustness, we run SEM for 50 iterations and report below the mean held-out EL calcu-

lated over the 25 last SEM iterations. Those numbers were chosen after examining generated

data, observing that the held-out EL reaches a local maximum before the 25th iteration and then

stays around it. Those results are summarized in Table C In S1 Text and Table D In S1 Text.

4.6 Data description

To test our novel models we work with Breast Cancer (BRCA), Malignant Lymphoma

(MALY) and Chronic Lymphocytic Leukemia (CLLE) from International Cancer Genome

Consortium as in [13] (see Table 3).

Table 2. Main characteristics of the proposed probabilistic models.

Characteristic LDA MCSM gLDA JMCSM

Models mutation-level covariates X V X V

Utilizes inherent exposures X X V V

https://doi.org/10.1371/journal.pcbi.1011195.t002

Fig 6. A plate notation of gLDA. The conditional distributions of each node are given by: a0k � Normð0;s2Þ; θ� Dir
(e� a); z�Multi(θI); and m�Multi(γz).

https://doi.org/10.1371/journal.pcbi.1011195.g006
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We executed 2-fold cross validation by dividing each sample into two equally-sized subsets.

We learned the model parameters using one subset, and calculated the EL using the other one.

To extract the inherent exposures, we used MMM on each sample of the train set separately.

When using JMCSM and gLDA, we used the inherent exposures as observable variable to

learn the model parameters. We also used the pre estimated inherent exposures to calculate

the EL. We repeated this scheme twice to evaluate both MCSM and JMCSM compared with

their strand-oblivious analogs. Data set sizes, restricted to mutations with replication strand

information, are given in Table 4.

Supporting information

S1 Text. Fig A. Radar plots showing reconstruction of MCSM model parameters using gener-

ated data. The angular axis is the signature number and the radial axis is its respective parame-

ter value. We show that our method is able to recover the parameters in five different tests, and

provide also the parameters estimated by LDA. Fig B. Radar plots showing reconstruction of

JMCSM model parameters using generated data. Since we learn the strand bias per signature,

we won’t necessarily reconstruct the exact parameters. However, the ratio between the normal-

ized parameters that indicates the bias of the signatures and was used in Fig 5, should be pre-

served instead. The radial axis indicates the ratio between the normalized parameters and the

angular axis indicates the signature. We show that our method is able to reconstruct the bias

trends in most cases, across five different tests. Table A. A comparison between the held-out

log-likelihoods achieved by JMCSM and gLDA on generated data based on BRCA across five

different tests. In all cases, JMCSM yields better results. Table B. A comparison between

strand-sensitive and strand-oblivious models using genomic strand as a mutation-level feature.

It is evident that in all instances that JMCSM and MCSM yield lower likelihoods than their

strand indifferent variants. Table C. A summary of the number of iterations the algorithms

ran on generated data before convergence, across five different tests. In all cases, the held-out

log-likelihood achieved convergence before the 25th iteration. Table D. A summary of the

number of iterations the algorithms ran on real data before convergence in all but one instance

(when gLDA was executed on BRCA with the replication strand as a feature, it took 29 itera-

tions). Although we report the mean of the held-out likelihood of the last 25 iterations, it

doesn’t have any effect on the results or the conclusions of the paper since the variations in the

held-out loglikelihood are negligible relatively to the difference between the held-out loglikeli-

hood achieved by JMCSM and gLDA.

(DOCX)

Table 3. Databases analyzed in this work.

Cancer Type No. Samples No. Mutations Cosmic Signatures

BRCA 560 3,472,652 1, 2, 3, 5, 6, 8, 13, 17, 18, 20, 26, 30

MALY 100 1,220,526 1, 2, 5, 9, 13, 17

CLLE 100 270,870 1, 2, 5, 9, 13

https://doi.org/10.1371/journal.pcbi.1011195.t003

Table 4. Number of mutations on each strand in the data sets we used.

Cancer Type Lagging Leading

BRCA 313,219 209,488

MALY 96,177 68,365

CLLE 13,315 12,534

https://doi.org/10.1371/journal.pcbi.1011195.t004
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