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A holy grail of genetics is to decipher the mapping from

genotype to phenotype. Recent advances in sequencing

technologies allow the efficient genotyping of thousands of

individuals carrying a particular phenotype in an effort to

reveal its genetic determinants. However, the interpretation

of these data entails tackling significant statistical and

computational problems that stem from the complexity of

human phenotypes and the huge genotypic search space.

Recently, an alternative pathway-level analysis has been

employed to combat these problems. In this review we

discuss these developments, describe the challenges

involved and outline possible solutions and future directions

for improvement.
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Introduction
Recent technological leaps in sequencing are generating

genomic variation data at an ever growing scale. In a

typical genome-wide association study (GWAS), the

genomes of individuals carrying a certain phenotype

are compared to genomes of individuals that do not carry

this phenotype [1]. The observed differences include

single nucleotide polymorphisms (SNPs), copy number

variations (CNVs) and more; their associations to the

phenotypic data are then assessed. The sheer size of

the data makes its interpretation a formidable task,

challenged by statistical and computational obstacles.

Some fundamental challenges include the significance

scoring of SNPs while accounting for multiple hypothesis

testing issues, the association of SNPs and CNVs to genes

or other functional entities and the identification of

subsets of SNPs/genes that underlie the phenotype of

interest [2].
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The failure of finding, for most complex diseases, robust

statistical associations for individual SNPs, or individual

genes, and the increased interest in understanding genetic
heterogeneity (hundreds of rare and personalized mutations

in many genes with small effect individually in explain-

ing the disease phenotype, but all possibly affecting the

‘pathway’ of disease) [3], led to the quest for finding

associations at a higher level of gene organization —

namely, protein pathways. With ‘pathway’ having a

number of definitions — in one extreme being just as

a set of genes, and, at the other extreme, as a set of genes

with a specific interaction pattern — there is significant

interest in modeling, at some informative level,

the concept of ‘biological disease pathway’, that is,

a set of genes ‘involved’ in a disease, together with the

overarching mechanism the set describes. The arising

pathway association paradigm [4] allows pinpointing sub-

sets of related SNPs while avoiding the multiple hypoth-

esis testing problem that is associated with enumerating

all possible subsets.

A key resource in the systematic identification of pathway

associations is a protein–protein interaction network; by

projecting associated SNPs onto this network one can

zoom in on specific regions of the network that harbor

significantly many associations. Such inference tech-

niques were originally employed for interpreting gene

expression data [5] and recently applied to analyze geno-

mic variation data.

In this review we survey current approaches for pathway

association, highlighting the technical difficulties of this

domain and how they are being tackled: first, the SNP to

gene mapping, while accounting for linkage disequili-

brium (LD) patterns; second, the exponential number of

subsets of genes at ‘pathway’ size that need to be con-

sidered; and third, the graph theoretic methods of con-

structing disease focused protein networks from

associated SNPs that coherently capture the underlying

molecular mechanisms. While the discussion below

focuses on common genomic variation, the concepts

and methods generalize to other types of variation such

as somatic and rare variation.

Pathway association
Pathway association methods can be broadly categorized

to: first, canonical pathway based analyses; and second, de
novo pathway discovery methods (see Figure 1). Works in

the first category exploit current knowledge in curated

pathway databases such as KEGG or GO to directly

associate known pathways with a disease of interest.

Common methodologies for this association task start
www.sciencedirect.com
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Figure 1
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An outline of pathway-based analyses for SNP data. (1) SNPs

associated with a phenotype of interest (red) are identified among all

SNPs (yellow). The statistical test for SNP association should correct for

the linkage disequilibrium with neighboring SNPs and the large number

of SNPs being tested. (2) Significantly associated genes (blue bars) are

identified on the basis of the SNP associations. The mapping may

account for SNPs that are in some genomic window containing each of

the genes, taking into account gene length and the distance from

neighboring genes. (3) Canonical pathway association is performed by,

for example, testing sets of genes from known pathways for enrichment

with associated genes. (4) De novo pathway discovery can be aided by

projecting the identified genes onto a protein–protein interaction

network, zooming in on regions that contain significantly many

associated genes.
by mapping SNPs to genes and then employing standard

enrichment tests to score pathways, viewed here as gene

sets [6–9]. These associations often reveal significant

signals that are missed by SNP-based or even gene-based

methods. For example, Li et al. performed a meta-analysis

of SNP data of pancreatic cancer against a list of curated

pathways that are relevant to the disease [10�]. They

identified a pancreatic development pathway as signifi-

cantly associated with the disease even after discarding

four genes that were previously known to be associated

with it. In a comparison of several pathway association

methods on lung cancer GWAS data sets [11], the authors

point at a variant of SUMSTAT [12] as the best perform-

ing method. It is on the basis of computing a chi-square

statistic for every gene and averaging these scores over

the genes in a pathway.

As pathway knowledge is incomplete [13], works in the

second category use the SNP or mutation data to zoom in

on specific regions of a physical or functional interaction

network. Most studies in this domain try to associate

dense regions of a protein–protein interaction network

with a phenotype of interest [14–15]. As an example,

NETBAG is an approach that was used to identify rare
www.sciencedirect.com 
de novo CNVs in autism [16��]. The approach is on the

basis of identifying genes in CNV regions of the genome,

projecting them onto a phenotypic-similarity network and

finding connected clusters of such genes with dense

interactions. A refinement of this method that integrates

multiple types of variation data was applied to a schizo-

phrenia dataset, pinpointing several cohesive gene net-

works related to axon guidance, neuronal cell mobility,

synaptic function and chromosomal remodeling

(Figure 2a) [17].

Other works in this category are tailored for specific

diseases and are on the basis of particular hypothesized

relations between the genomic and network data. For

example, Vandin et al. [18��] exploit mutation data on

cancer patients to reveal cancer-specific driver pathways.

Their method is on the basis of the empirical observation

that the disease targets specific gene sets, termed path-

ways, where each pathway is mutated in many patients

(high coverage) but most patients have at most one

mutation in a given pathway (high exclusivity). The

identified gene sets included members of well-known

cancer pathways including Rb, p53 and mTOR

(Figure 2b).

Computational and statistical challenges
Pathway-based associations are emerging as a powerful

alternative to SNP-based and gene-based associations.

However, current pathway association methodologies

suffer from several problems including SNP to gene

mapping and the aggregation of SNP or gene scores to

pathway p-values. The problem of associating genomic

variation to particular genes is often handled in an ad-hoc

manner such as using a cutoff on SNP significance in a

predetermined window around the gene [19]. A more

principled approach is to directly test for the association of

a gene with a trait by considering all ‘relevant’ SNPs

simultaneously, accounting for gene length and the link-

age disequilibrium between adjacent markers [20]. The

resulting association scores need to be aggregated to

produce pathway-level p-values, appropriately calibrated

to adjust for LD patterns and co-location of functionally

related genes. A recent study handles these challenges by

performing random circular permutations of the genome

[21]. Such circular permutations offset the associations

between SNPs and p-values while maintaining their

relative genomic order, thereby preserving gene neigh-

borhoods and LD patterns; they are used to estimate

pathway score distribution under the null hypothesis of

no association.

When aiming for de novo pathway discovery a further

challenge has to be met — the combinatorial search over

exponentially many pathways for high-scoring ones. A

general technique that has proven useful for tackling this

problem is the formulation of the search as an integer

linear program (ILP, see Box 1). As an example, this
Current Opinion in Genetics & Development 2013, 23:622–626
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Figure 2
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Example applications of de novo pathway inference methods. (a) The highest scoring cluster found by NETBAG+ (NETwork Based Analysis of Genetic

associations) when analyzing genomic variations related to schizophrenia. The main cluster is composed of two subclusters exhibiting enrichment

profiles and developmental gene-expression patterns that differ between the two subclusters and, additionally, from the patterns in the entire brain. De

novo CNVs are denoted in blue, non-synonymous single nucleotide variants in light green; and GWAS implicated genes in red. Node size reflects the

contribution to cluster score. Edge width is proportional to the prior likelihood that the two genes contribute to similar phenotypes. Adapted from [17].

(b) Analysis of Lung adenocarcinoma data. (1) Mutation in genes uncovered by the analysis (EGFR, RAS, STK11, ATM, TP53) exhibit mutual exclusion

patterns in most patients. (2) The five mutated genes that were predicted to be relevant to the disease (out of 356 reported genes) are shown in the

context of known pathways. EGFR, RAS and STK11 (light gray) are part of the mTOR pathway; ATM and TP53 (dark gray) are part of the cell-cycle

pathway. Adapted from [18��].
approach was successfully used by Leiserson et al. [22] to

discover multiple pathways that are mutated in cancer,

optimizing the coverage and exclusivity of those path-

ways. Their method recovers sets of interacting genes

that overlap known pathways, as well as gene sets contain-

ing subtype-specific mutations.
Current Opinion in Genetics & Development 2013, 23:622–626 
Finally, when searching for pathway associations over a

network of protein–protein interactions, one has to stat-

istically assess the network proximity of the associated

genes or, more generally, identify sets of associated genes

that are significantly close or connected in the network.

The former problem can be tackled via standard
www.sciencedirect.com
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Box 1 Integer linear programming (ILP)

Linear programming is a powerful mathamtical framework for

representing (and solving) optimization problems. The optimization

problem is modeled using a set of real-valued variables. Linear

combinations of these variables are used to express an optimization

objective and a set of constraints that must be satisfied. Such

programs can express many natural problems and solved in an

efficient manner.

In integer linear programming, a subset of the variables are

constrained to take only integral values. Introducing such integrality

constraints makes the problem computationally hard to solve;

nevertheless, many instances of these problems originating in real-

world data are quickly solved to optimality using dedicated solvers

such as CPLEX.
measures like average distance in the network [23]. The

latter problem is more challenging and often solved via

greedy approaches (e.g. NETBAG described above) or

using network diffusion techniques (e.g. [24]). In case a

connected pathway is sought, the problem can be for-

mulated as a Steiner tree problem, where one seeks the

lowest cost pathway that connects the associated genes.

While this problem is known to be computationally hard,

standard approximation or ILP-based techniques work

well in practice (e.g. [25]).

The road ahead
Future developments in pathway association can benefit

from integrating additional data types into the association

process. In particular, gene expression data can inform the

pathway discovery by: first, revealing differentially

expressed genes that are correlated with the disease of

interest and can be integrated with the SNP-implicated

genes to improve pathway discovery [26]; and second,

pinpointing SNPs that are associated with the expression

of certain genes, thus overcoming the SNP to gene

mapping problem [27].

Another venue for improvement concerns the protein

network being used. Most current methods use a generic,

static view of the network, ignoring its dynamics across

different conditions or even individuals. Recent work has

demonstrated the benefits in using context-specific net-

works, for example, for prioritizing disease genes in a

tissue-specific manner [28]. Such networks can be

inferred with the aid of gene expression data [29] or using

direct experimentation [30].

A third venue for improvement concerns the refinement

of network data with structure-based information on the

interacting domains [31,32]. Specifically, Wang et al. [32]

have applied three-dimensional docking algorithms to

identify the interfaces between interacting proteins.

Their findings suggest that disease-causing mutations

are more likely to occur in binding domains so their

ability to physically interact is impeded. Consequently,
www.sciencedirect.com 
the association of genomic variants to binding domains

may directly highlight interactions, rather than genes, as

affected by the disease. This in turn, combined with

growing experimental information on the structure of

interacting proteins, can improve both the association

of known pathways and the discovery of novel ones.

In this scientific renaissance of population genomics,

computational and experimental methods play an essen-

tial role in interpreting the data being produced and

deriving novel biological and medical insights. Key to

this effort is the move from gene-level to pathway-level

and network-level analyses. With increasing data on

molecular pathways and condition-specific networks,

pathway association is expected to become more powerful

than ever before.
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