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Abstract

The evolutionary origins of genetic robustness are still under debate: it may arise as a consequence of requirements
imposed by varying environmental conditions, due to intrinsic factors such as metabolic requirements, or directly due to an
adaptive selection in favor of genes that allow a species to endure genetic perturbations. Stratifying the individual effects of
each origin requires one to study the pertaining evolutionary forces across many species under diverse conditions. Here we
conduct the first large-scale computational study charting the level of robustness of metabolic networks of hundreds of
bacterial species across many simulated growth environments. We provide evidence that variations among species in their
level of robustness reflect ecological adaptations. We decouple metabolic robustness into two components and quantify
the extents of each: the first, environmental-dependent, is responsible for at least 20% of the non-essential reactions and its
extent is associated with the species’ lifestyle (specialized/generalist); the second, environmental-independent, is associated
(correlation = ,0.6) with the intrinsic metabolic capacities of a species—higher robustness is observed in fast growers or in
organisms with an extensive production of secondary metabolites. Finally, we identify reactions that are uniquely
susceptible to perturbations in human pathogens, potentially serving as novel drug-targets.
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Introduction

Systematic deletion studies have shown that under laboratory

conditions the large majority of genes in the genome are

dispensable, and that in many cases dispensability depends on

the experimental setting [1]. These studies have reinforced the

notion of robustness of biological systems, which denotes the

invariance of phenotypes in the face of perturbations [2]. Two

types of perturbations are encountered by biological systems:

genetic alterations and environmental variations. Genetic robust-

ness of a biological system is viewed as its ability to continue

functioning following mutations [3,4], while environmental

robustness refers to buffering against external changes (e.g.,

changes in temperature and salinity, or in the availability of

nutrients). Genetic robustness can be studied at various levels of

biological organization, from the molecular level to the organism

level, where a state is considered to be robust if a mutation has an

insignificant effect on the trait examined [2].

Environmental robustness differs greatly across bacterial species:

whereas some species exhibit an impressive ability to proliferate in

a wide spectrum of habitats, others demonstrate highly specialized

nutritional requirements. In free-living organisms, new pathways

have evolved by acquiring reactions that put external nutrients

into metabolic use allowing species a greater choice in their

metabolic requests [5]. The genetic implications of the selective

pressure to increase the nutritional repertoire make environmental

robustness and genetic robustness intertwined. The contribution of

environmental robustness to genetic robustness is demonstrated by

the following example: the evolution of a new metabolic pathway

allows a species to put a new external metabolite (metabolite A)

into metabolic use as an alternative to an existing pathway making

use of metabolite B, hence promoting environmental robustness.

Under such conditions where both A and B are available (nutrient-

rich conditions), the species will also gain genetic robustness in

front of mutations in one of the corresponding pathways (in case of

a mutation preventing the use of metabolite B the species can use

the alternative pathway utilizing A and vice versa). The effect of

environmental robustness on genetic robustness in metabolic

networks was studied in detail in yeast [6,7]: more than half of the

genes that were nonessential for growth under nutrient-rich

PLoS Computational Biology | www.ploscompbiol.org 1 February 2010 | Volume 6 | Issue 2 | e1000690



conditions were found to be active under eight restricting growth

conditions [7]. However, as environmental robustness cannot fully

explain the dispensability of genes, two other hypotheses have

been proposed for the evolution of genetic robustness [2]: First, an

adaptive origin – i.e., a direct, natural selection in favor of genes

which allow a species to endure genetic perturbations (initially

suggested by Fisher to explain the observed dominance of wild-

type alleles to the overwhelming majority of deleterious mutations

[8]). Second, an intrinsic origin– i.e., genetic robustness has evolved

as a byproduct of natural selection in favor of other, adaptive,

traits. In the context of dominance, selection for increased

metabolic flux is a widely accepted explanation for the recessive

nature of most mutations [9–11]. Since metabolic enzymes act as

part of large, multi-enzymes, networks, single-loci mutations

(resulting in 50% activity of the corresponding enzyme in the

heterozygote) are not expected to affect the overall behavior of the

system. Hence such mutations are not detectable at the phenotypic

level and mutants are considered to be recessive [12]. For genetic

robustness, one can similarly argue that robustness is intrinsic to

the optimization of some phenotypes, and has evolved as a

byproduct of a selective pressure for increasing steady-state

metabolic fluxes via the incorporation of alternative metabolic

pathways [2,13,14]. Notably, there is an essential difference

between man-made systems, where robustness is built in on

purpose, and biological systems that are shaped by natural

selection at the population level, in which non robust systems can

survive if reproduction rate compensates failure rate.

Few recently developed methods allow one to systematically

address the influence of the environment on metabolic network

structure. The network expansion method – a method for

generating the set of all possible metabolites that can be

produced from a set of compounds - permits the reconstruction

of networks in different metabolic environments [15]. Using the

network expansion approach, generic sub-networks (describing

a collection of metabolic reactions across known genomes rather

than the reactions tenable within any specific organism),

expanded under different collection of metabolites, were shown

to be highly robust against the elimination of mutations [16,17].

The network expansion method has been helpful in uncovering

the role played by some specific metabolites on the evolution of

metabolic networks. The introduction of oxygen to the

atmosphere, for example, was demonstrated to be coupled with

the appearance of many new pathways and reactions, consid-

erably increasing the complexity of the metabolic networks of

aerobic species beyond that reachable by any anoxic network

[18]. Studying the species-specific expansion of networks given

various metabolite combinations has permitted the grouping

together of organisms with similar metabolic capabilities [19].

Following the introduction of the expansion method, other

related topological approaches have been developed to provide

predictions for the network-specific set of externally consumed

metabolites, as inferred by the structure of the corresponding

metabolic network [20,21]. These methods aim to define the

minimal set of externally acquired compounds – i.e., these

metabolites that cannot be synthesized from other compounds

and permit the production of all other compounds in the

network. Here, we combined the expansion algorithm and an

algorithm for predicting species-specific metabolic environments

(The seed algorithm [20]). By integrating these two algorithms,

we provide a new model that not only predicts robustness across

species (as was previously done using the expansion method

[17]), but also examines robustness across environments and

hence provides predictions for condition-dependent and inde-

pendent reactions. Taking this integrative approach, we aim to

characterize the level of species-specific robustness and, for each

species individually, to decouple between robustness which is

condition-dependent (due to reactions which are essential in

some environments but not in other) and robustness which is

condition-independent. We start by describing our model and

testing its biological plausibility. We then use it to systematically

characterize the level of robustness across bacterial species

(condition dependent and independent). Finally, we apply the

model for studying whether dispensability is a directly selected

feature.

Results

The buffering capacity of metabolic networks was previously

predicted using in silico metabolic flux analysis approaches [22–32]

but the underlying stoichiometric metabolic models (providing the

quantitative relationships between the reactants and the products

of each reaction) are available for only a few selected species.

Topology-driven approaches (requiring only the network topolog-

ical backbone and not a full blown stoichiometric model), although

providing only qualitative predictions for the activity of a reaction

(active/not active) rather than a quantitative estimate of the fluxes

it carries, have been previously shown to predict the in vivo

essentiality of genes with considerable accuracy [33,34]. Such

methods unravel topological, network genetic robustness (NGR), which

refers to the network’s ability to buffer mutations via the existence

of alternative pathways, and is distinct from robustness that arises

from the presence of alternative genes (duplicates or functional

analogs) [4,16,29,30]. Here, we studied species-specific topological

robustness by applying a topology-driven computational approach

for predicting an organism’s viability in a given environment,

estimated according to its ability to produce a set of essential

biomass metabolites (Figure 1). Taking a similar approach to [21],

these metabolites were chosen because they are deemed essential

for life in all known bacteria and include amino acids, nucleotides

and essential co-factors (Methods).

Author Summary

When a species is grown under optimal conditions the
single-knockout of most of its genes is not likely to affect
its viability. The resilience of biological systems to
mutations is termed genetic robustness and its extent
across different species has not yet been systematically
described. Since the deletion of a gene can have varying
consequences depending on the environmental condi-
tions, the extent of species’ genetic robustness reflects
both the range of conditions (or environments) in which it
can survive as well as the availability of alternative cellular
routes (compensating for a gene’s loss of function). Here,
we developed a computational model for estimating the
essentiality of metabolic reactions across natural-like
environments and applied it to chart species’ level of
genetic robustness, providing the first systematic descrip-
tion of genetic robustness across species. Studying
robustness across a wide collection of natural-like envi-
ronments enables one to stratify, for each species
individually, the extent of environmental-dependant and
independent robustness and hence advances our under-
standing of its evolutionary origins. Our main finding is
that the level of environmental dependent robustness is
associated with the lifestyle of a species (i.e., specialists
versus generalist), whereas the level of environmental-
independent robustness is associated with its metabolic
production capacities.

Environment-Dependent and Independent Robustness
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We quantify metabolic NGR in 487 bacterial organisms. For

each species we simulate its growth on a rich medium and

systematically delete each reaction in turn. Under each deletion,

we test the ability of the metabolic network to produce key biomass

metabolites (Methods). A specific rich medium was individually

computed for each species by employing a previously developed

‘reverse ecology’ algorithm [20] that computes the full set of

metabolites that an organism extracts from its environment

(Methods). Growth simulation was done by using the expansion

method [15] – an approach where networks of increasing size are

constructed starting from an initial set of substrates (the seed) by

stepwise addition of those reactions whose substrates are produced

in the current core network (i.e., compounds present in the seed or

provided as product by reactions incorporated in earlier steps).

Here, the expansion method was used to construct the species-

specific metabolic networks following each deletion, given the

species-specific rich environment. In the toy example illustrated in

Figure 1 this procedure leads to the identification of the two

external metabolites, based on the topology of the metabolic

network. NGR is calculated as the fraction of non-essential

reactions (i.e., those reactions whose absence is compensated by

the presence of alternative routes) out of all network reactions. In

Figure 1, g is the only essential reaction out of 7 reactions and the

NGR of the network is 6/7. The topological-based essentiality

predictions show good agreement in two species where essentiality

data has been assembled via experimental knock-out studies –

Escherichia coli and Bacillus subtilis – yielding an accuracy of 0.86 and

0.85 respectively (Methods). Taken together, the computation of

species-specific rich growth media results in an ensemble of 487

environments, representing a sample of the ecological niches that

different bacterial species can inhabit.

To elucidate the contribution of environmental robustness to

genetic robustness across species and lifestyles, we first assess the

viability of all 487 species across these 487 sample environments

(in Figure 1, for example, we identify two viable environments –

environments II and III). We consider the fraction of the

environments in which a given species is viable as a measure of

its environmental robustnesss [35]. This measure significantly correlates

with two (general, non-metabolic) established measures of

variability of species’ habitats (Fraction of regulatory genes: 0.44,

P = 9e-8 [36]; Environmental complexity: 0.33, P = 3e-4 [37],

Spearman correlations; Methods), showing that as a general trend

(though not in all cases) high environmental robustness in observed

in generalist species. As expected (according to [38]), the

environmental robustness of species also significantly correlates

with the modularity of their metabolic networks (20.43, P,2e-16,

Methods).

Following using the collection of 487 environments (constructed

by calculating the optimal metabolic environment of each species

in the analysis and hence representing a sample of the ecological

niches that different bacterial species can inhabit, Methods) for

predicting species-specific environmental robustness, we use it for

the identification of conditionally essential reactions. In every

viable environment of a given organism (that is, a collection of

metabolites that allows the production of all target metabolites of a

given species) we systematically delete all its metabolic reactions

(single reaction at a time). This leads to the identification of

conditionally essential/non-essential reactions – reactions that are

essential in some viable growth environment of the organism but

are non-essential under other, more favorable, conditions such as

its own species-specific rich medium (reactions a and b in Figure 1;

Methods). The resulting matrix, describing the essentiality of all

metabolic reactions across the 487 by 487 species and environ-

ments, is given in Text S1 note 1. The metabolic reactions of each

species can hence be divided into three non-overlapping groups: (i)

(unconditionally) essential reactions – i.e., reactions that are essential

over all growth media (reaction g in Figure 1); (ii) conditionally

essential/non-essential reactions (reactions a and b in Figure 1); and (iii)

(unconditionally) non-essential reactions – that are backed-up over all

growth media (reactions c, d, e and f in Figure 1, and see Text S1

Figure 1. Illustration of a simple metabolic network producing an essential constituent of biomass on different growth media.
doi:10.1371/journal.pcbi.1000690.g001

Environment-Dependent and Independent Robustness

PLoS Computational Biology | www.ploscompbiol.org 3 February 2010 | Volume 6 | Issue 2 | e1000690



note 2 for evidence that we recover the large majority of

conditionally essential genes). For each network we compute a

condition-independent NGR score (ciNGR) that denotes the fraction of

the non-essential reactions (group iii) out of all reactions and a

condition-dependent NGR score (cdNGR) which denotes the fraction of

the non-essential and conditionally-essential/non-essential reac-

tions (group iii and group ii) out of all reactions. The fraction of

each reaction’s group (non-essential, essential, conditionally-

essential/non-essential) over all species is shown in Figure 2. In

Escherichia coli, where 83% of the genes were experimentally shown

to be dispensable under aerobic growth in rich medium [39,40],

we observe a corresponding fraction of 0.78 non-essential

reactions (Table S1). In host-dependent species the observed

fraction of non-essential reactions (ciNGR) is typically markedly

lower (0.35 in Mycoplasma genitalium for example), in accordance

with the experimentally observed range of 20% to 60%

dispensable genes [39]. Overall, in most species we observe a

large fraction of non-essential reactions closely scattered around a

mean of 0.75 (Table S1, Figure 2).

We further studied how the topology of the metabolic networks

relates to their level of observed robustness. For this, we looked at

two topological characteristics measured for each network:

network connectivity – describing the average number of

neighbors each protein-node has, and network centrality –

describing the average centrality of its node members where the

centrality of each individual node is determined by calculating the

mean shortest path between the node and all other nodes in the

network (Methods). The overall robustness of the network

(cdNGR) is positively correlated with its topological properties

including network size, network connectivity and network

centrality (size of network: 0.61, P = 0; connectivity: 0.77, P = 0;

mean shortest path: 20.65, P = 0; Spearman correlations;

Methods). This shows that an array of topological properties is

related to network robustness and that the structure of the

network, and not only its size, has functional significance. The

associations between condition-dependent NGR, centrality and

connectivity remain significant when controlling for the effect of

network size (Text S1 note 3), providing a system-level support to

the view that network connectivity contributes towards a better

compensation for loss-of-function mutations [41,42]. The associ-

ation between topological properties, robustness, and species’

lifestyle is visualized in Figure 3 where we show two metabolic

networks of similar size (,200 reactions) that greatly differ in both

their topological properties and their robustness. The metabolic

network of the free-living Clostridium botulinum is more central and

connected than the network of the host-associated Helicobacter

acinonychis, and correspondingly exhibits a remarkably higher

robustness.

Next we quantified the robustness of each reaction in each

species as the fraction of its non-essential entries across all viable

environments, marking its degree of conditional-essentiality in

each species (from 0 – essential across all environments, to 1 – non-

essential across all environments). For each species, we studied the

association between the species-specific level of reaction’s

essentiality and other topological and evolutionary characteristics.

In accordance with experimental data from yeast [41], non-

essential reactions tend to be more central and highly connected

than essential reactions (Methods; Text S1 Note 4). Hence, our

data provide a large-scale, cross-species support to findings

observed at the single-species level. The robustness of reactions

is also associated with evolutionary conservation: in the large

majority of species (83%) we find a significant positive correlation

(P,0.05) between a reaction’s robustness and its conservation, as

inferred from the phylogenetic distribution of reactions across

species (mean correlation – 0.21, maximal correlation – 0.37; Text

S1 Figure 2). At the species level, this correlation is absent

Figure 2. The distribution of non-essential, essential and conditionally-essential/non-essential reactions versus environmental
diversity across the 487 organisms studied. Lines represent the linear regression calculated for each group.
doi:10.1371/journal.pcbi.1000690.g002

Environment-Dependent and Independent Robustness
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primarily in host-associated species, where the robustness of

reactions is likely to be affected by the host-microbe interactions

(Text S1 Figure 2). Notably, when considering the robustness of

reactions across all species and environments (i.e., a reaction-

specific score describing its mean level of essentiality across all

species) the correlations between essentiality and conservation is

markedly higher than that observed when considering each species

alone (0.58 P,2.2e-16, Spearman, and compare with Text S1

Figure 2) further testifying to the utility of the large scale

investigation performed here.

Examining the distribution of the reaction categories within

major metabolic classes reveals two metabolic categories that are

highly enriched in non-essential reactions: nucleotide metabolism

and carbohydrate metabolism (P = 0, Fisher test) (Text S1 note 5).

Conversely, reactions functioning in amino-acid biosynthesis

contain significantly more essential reactions (conditionally and

un-conditionally) than expected by chance (P = 0, Fisher test),

hence, due to the over-representation of essential reactions,

comprising a particularly non-robust to mutations functional

category. The level of essentiality of reactions associated with two

very basic metabolites, oxygen and ATP, is an interesting case of

marked dissociation. We find that oxygen-utilizing reactions are

highly backed-up (fraction of non-essential appearances in oxygen-

utilizing reactions versus all reactions: 0.96 and 0.88 respectively; P

value 5e-5 in a Wilcoxon test; Text S1 Note 6 and 7, Table S4).

There are several possible explanations for the high level of

redundancy of oxygen utilizing reactions: First oxygen was

introduced into the atmosphere after the appearance of cellular

life forms, where oxygen-dependant reactions were shown to

augment more ancient, pre-oxygen reactions [18]. Second, oxygen

is a limiting factor across many environments and hence the

availability of alternative pathways allows species to alternate

between pathways, according to the environmental conditions at a

given time. Notably, reactions utilizing other redox molecules such

as NAD also show high level of redundancy (fraction of backed

appearances in NAD-utilizing reactions: 0.93; P value 5e-3 in a

Wilcoxon test; Text S1 Note 6), possibly due to the occurrence of

alternative pathways using NADP or other electron acceptors.

However, oxygen-utilizing reactions are still significantly more

backed-up (i.e., non-essential) than NAD utilizing reactions (P

value 0.017 in a Wilcoxon test; Text S1 Note 6). ATP-dependent

reactions, on the other hand, have significantly low levels of

robustness (fraction of backed appearances in ATP-utilizing

reactions: 0.79; P value 1e-4 in a Wilcoxon test; Text S1 Note

6). The least robust (most essential) reactions across bacterial

species are those performed by ATP-dependent amino-acyl tRNA

synthethases (Table S2), a class of highly conserved enzymes [43]

that are known to be essential across species [44]. One potential

explanation for the high level of essentiality of ATP-dependent

reactions may be that such reactions, being thermodynamically

unfavorable in the forward direction when not coupled to ATP

hydrolysis, are not likely to have other, spontaneous, alternatives.

Figure 2 displays the correlation between the species distribu-

tion of the reaction types (non-essential, essential and conditionally

essential/non-essential) with environmental robustness. Notably,

the fraction of ciNGR (unconditionally non-essential reactions -

green dots in Figure 2) is not strongly affected by the species’ level

of environmental robustness (the number of environments in

which it is viable). In contrast, the fraction of conditionally-

essential/non-essential reactions exhibits a remarkably high

correlation with environmental robustness (0.81, P,2e-16,

Spearman), which remains significant when controlling for the

effect of network size (Text S1 Note 8). A strong correlation

between the fraction of conditionally-essential/non-essential

reactions and environmental robustness is also observed when

using an alternative set of 20,000 environments constructed by

random shuffling of the seeds from the original environments

while maintaining their original distribution (0.76, P,2e-16,

Spearman; Text S1 Note 2). Our findings thus provide direct

large-scale evidence that genetic robustness is associated with

environmental robustness. Although such association is expected

considering both the nature of the model as well as the biological

Figure 3. The metabolic networks of species with similar network size and different topological properties. (A) Clostridium botulinum:
Network size, 189; connectivity, 5.2; centrality (mean shortest path), 3.7; robustness (NGR), 0.85. (B) Helicobacter acinonychis: Network size, 191;
connectivity, 4.1; centrality (mean shortest path), 5.4; robustness (NGR), 0.56. Red circles - essential reactions; green circles - non-essential reactions.
doi:10.1371/journal.pcbi.1000690.g003

Environment-Dependent and Independent Robustness
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setting it aims to recapture, the use of the approach for the

characterization of condition-essential/non-essential reactions

demonstrates that environmental diversity by itself cannot fully

account for the level of robustness observed, whereas conditional-

independent robustness is observed across all species examined

including the most specialized and most diverse ones (Figure 2).

Notably, the fraction of conditionally-essential/non-essential

reactions almost invariably does not exceed 20% of the total

metabolic reactions in the dataset, in line with previous

experimental findings indicating that niche-specificity by itself

cannot explain the dispensability of a significant fraction of the

genes [6,7,45]. While these results provide a fair estimate of the

contribution of nutritional factors, other environmental factors

(e.g., temperature, salinity, etc.) that go beyond the current model

probably lead to an overall larger environmental contribution.

As environmental diversity mainly affect the robustness of

condition-dependent reactions and not condition-independent

reactions (Figure 2), we turn to study the level of association

between metabolic activity and the level of robustness of the latter

group (ciNGR), aiming at revealing its pattern of association with

other phenotypic characteristics. Notably, no correlation is

observed between the fraction of ciNGR and the fraction of

conditional-essential/non-essential reactions, further supporting

the view that the evolution of the condition-independent

component of genetic robustness is derived by different selective

forces than the condition-dependent component. We use growth

rate data to account for the growth capacity of an organism and

additionally measure the fraction of metabolic reactions dedicated

to the production of its secondary metabolites (Methods) [46]. A

generalized linear model based on both measures is employed to

predict network robustness values and yields a fairly marked

correlation with the observed NGR scores (0.59 Pearson, P = 1e-

11, Figure 4), providing a significantly improved fit over the results

obtained while using each measure individually (Text S1 Note 9).

This association, though by itself cannot infer causality, provides

support to the notion that a need to increase metabolic capacities

has been a driving force in the evolution of genetic robustness in

bacterial metabolic networks [2]. Unlike the correlation between

metabolic activity and condition-independent robustness reported

above, the correlation between metabolic activity and condition-

dependent robustness is insignificant when controlling for the

effect of other co-associated factors (Text S1 Note 10). Interest-

ingly, the predictor provides a good approximation for the level of

genetic robustness in facultative bacteria and a more moderate

approximation in aerobic bacteria (facultative: 0.70 P 5e-7;

aerobic: 0.43 P 0.007; Pearson correlations), but an insignificant

one for anaerobic bacteria (Figure 4). Indeed, it has been

previously suggested that oxygen-tolerant bacteria (facultative

and aerobic) have developed an array of alternative metabolic

pathways of different energetic costs, whose activity they delicately

balance to optimize their metabolic yield given the environmental

conditions [47,48]. Notably, information on the rate of growth is

only available to less than fourth of the species examined, and

many pathways involved in secondary metabolism are yet to be

revealed. Hence our estimate of metabolic capacity only reflects

current state of knowledge. The availability of growth rate

information for additional species, as well as the characterization

of additional secondary pathways will allow more accurate

predictions of species’ metabolic capacities.

To study whether genetic robustness has evolved directly in an

adaptive manner we use an approach suggested by [7] and

examine the association between network-level robustness (the

existence of alternative pathways) and gene-level robustness (the

existence of a duplicate gene or of a functional analogs) [2,42,45]

across all species studied. If the network dispensability of reactions

would have adaptively evolved to provide resilience to mutations,

one would expect that duplicate genes of non-essential reactions

would be preferentially lost while duplicate gene copies of essential

genes would be preferentially maintained, as they provide gene-

level back-up to essential reactions. Yet, in accordance with

previous findings in yeast [7], we find that essential reactions are

not more enriched in multi-copy genes (Text S1 Note 11). We

further looked the level of genetic robustness at Rubrobacter

xylanophilus and Deinococcus radiodurans - extermophyls which are

exposed to high levels of radiation (Text S1 Notes 1). The NGR

values of both species do not significantly differ from those

observed in other bacteria. (0.74 and 0.77 respectively, compared

with a mean value of 0.75 over all species), and hence do not

support an association between high level of genetic robustness

and high rate of genetic perturbations, as can be expected in case

of adaptive origin of robustness.

Beyond evolutionary insights about the extent and origins of

metabolic robustness, our approach permits the high-throughput

identification of essential reactions across species and can be

applied for delineating species-specific (or group-specific) essenti-

ality. Potential antibiotic drug targets, for example, can be

identified by revealing reactions that are backed up in commensal

human bacteria while essential in human pathogens. Methenylte-

trahydrofolate cyclohydrolase (EC 3.5.4.9) is an example for a

widely distributed reaction (present in most species) that is non-

essential across all non-pathogenic human bacteria in our data,

while essential in many human pathogens (Figure 5). In many

pathogenic species methenyltetrahydrofolate cyclohydrolase catal-

yses the only reaction for the production of 10-formyltetrahy-

drofolate, an essential metabolite for the translation process in

bacteria [49,50]. In human commensal organisms, an alternative

route for the production of 10-formyltetrahydrofolate is available

via a reaction catalyzed by Formyltetrahydrofolate synthetase

(6.3.4.3). Notably, methenyltetrahydrofolate cyclohydrolase has

known inhibitors, which have little activity in mammalian cells and

Figure 4. Observed versus predicted NGR. Predicted values are
derived from a generalized linear predicting NGR from the growth rate
and fraction of secondary metabolites of each species. Growth rate data
was available for 109 species including 17 anaerobic (red), 37 aerobic
(blue), 40 facultative (green), 4 microaerophilic, and 11 unknown.
doi:10.1371/journal.pcbi.1000690.g004

Environment-Dependent and Independent Robustness
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are therefore selective [50]. Additional examples of pathogenic-

specific essential reactions are provided in Text S1 Note 13 and in

Table S6.

Discussion

Overall, our analysis charts out the robustness of the metabolic

system across a wide variety of bacterial species and growth media.

Several limitation of this analysis should yet be acknowledged. The

predictions for the essentiality of reactions, as well as the set of

growth environments, are based on a topological network-based

computation. Hence, this analysis ignores many other properties of

metabolic reactions such as stochiometry, rate, and dynamics.

Incorporating these properties into the metabolic network model

can potentially yield more accurate results [51]. Nevertheless,

metabolic network topologies can readily be obtained for hundreds

of species, allowing a phylogenetic, large-scale analysis [37] and

may thus delineate emerging patterns in the metabolic data. This

broad perspective enables the elucidation of general principles

underlying the structure and evolution of metabolic networks

[16,17,52]. Finally, our predictions of reactions’ essentiality are

shown to be in general agreement with experimental observations,

in the few cases where the latter exist.

Several recent studies have used topological-based approach-

es for systematically revealing the structural properties of

metabolic networks. The expansion algorithm was applied for

estimating the level of robustness in reference sub-networks,

comprising all reactions present in the KEGG database

(irrespective of the organism in which they have been found)

[16], as well as for conducting a comparative study of the level

of robustness in species-specific sub-networks produced by the

expansion algorithm under a given combination of external

resources [17]. These studies clearly testify for the high

robustness of metabolic sub-networks, where the sensitivity

following deletion of reactions decreases as the size of the sub-

network increases [17]. Here, we introduce a computational

approach that integrates together algorithms which were

previously used individually for studying the structure and

evolution of metabolic network: The expansion algorithm was

used for studying robustness under different environments and

in different species (though in a given environment); The seed

algorithms were used to predict the nutritional environment of

species [20,21]. By integrating these two algorithms, we provide

a new model that provides predictions for condition-dependent

and independent robustness across many species and environ-

ments. By conducting a large-scale comparative study we

provide evidence that variations among species in their level

of network genetic robustness (condition-dependent and inde-

pendent) reflect adaptations to different ecological niches and

lifestyles. Notably, beyond robustness, other features of meta-

bolic networks such as the collection of enzymatic functions [53]

and the ability to utilize external nutrients [19] also reflect

environmental adaptations, where in many cases the metabolic

capacities of species are better associated with their lifestyle than

with their phylogeny. Alternative lifestyle characteristics are

associated with the two types of robustness: the extent of

conditional-dependent robustness is strongly associated with the

environmental diversity of species (specialized or generalist), and

the extent of condition-independent robustness is associated

with the corresponding metabolic capacities. Importantly, our

model only considers qualitative conditions, i.e., the actual

availability of metabolites, whereas the choice between alterna-

tive pathways can reflect adaptations to quantitative conditions,

i.e., the concentration of metabolites [14,47]. Considering this

qualitative description of conditional-dependence of reactions,

the association between the level of condition-dependent

robustness and species’ environmental diversity suggests that

the former evolve as a result of a selection for alternating

between nutritional sources. For most species examined the

range of nutrients that can be consumed by a species can only

partially explain the corresponding level of robustness (only

about 20 percent of the reactions), where the complementary

non condition-dependent robustness has arisen mainly to meet

the metabolic requirements of a species. The association

between the level of robustness and the corresponding metabolic

capacity of a species can be explained either by a selection to

increase flux – similarly to the effect of gene dosage [7] – or by

selection to optimize the metabolic efficiency under given

conditions, for example by alternating between routes in

accordance with the corresponding substrate concentrations

[47,48]. Thus, the design of metabolic networks (as viewed by

the presence of alternative pathways) represents a species-

specific adaptation to both its needs and its environment.

Beyond the evolutionary implications of this study, additional

applications can be withdrawn from the association between

growth rate and topological properties (i.e., network robustness),

as reported here. The observed association suggests that

topological models can be used for predicting growth rate (for

a broader spectrum of species than is currently possible with the

existing range of stochiometeric models). An intriguing chal-

lenge is to develop supervised learning techniques to learn a

predictive function for condition-dependent growth rate, given

the topological characteristics of that environment-specific

network and the species-specific growth potential under optimal

conditions. Currently, there is a lack of systematic data of

growth rate across media for a wide collection of species [54],

needed for building the growth rate predictor suggested above.

Hopefully, the future accumulation of such data will allow

conducting such study.

Figure 5. Distribution of pathways for the synthesis of 10-
formyltetrahydrofolate in human pathogens and human
commensal organisms. Maroon squares: metabolites; blue squares:
reactions. MCH: methenyltetrahydrofolate cyclohydrolase; FTL: formyl-
tetrahydrofolate synthetase; HC: human commensals; HP: human
pathogens. 10-Formyltetrahydrofolate acts as a formyl donor in purine
biosynthesis, and for formylation of methionyl-tRNA required for
producing fMet-tRNA – a molecule required in most bacterial species
for initiating protein synthesis. All human commensals (7/7) contains
two alternative routes for the production of 10-formyltetrahydrofolate.
Only 28 out of 73 human pathogens which have MCH contain the
alternative route, making MCH essential in the remaining 45 organisms.
These 45 pathogenic organisms include several Shigella, Salmonella and
Mycobacterium species (the full list of species and the essentiality of
MCH and FTL is provided in Text S1 Note 13 and in Table S5). The
approach presented here can easily be generalized for highlighting
essentiality in other groups of medical, ecological or agricultural
interest.
doi:10.1371/journal.pcbi.1000690.g005
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Methods

Construction of species-specific metabolic networks and
environments

Metabolic data on the enzymes and reactions in each species

were collected from KEGG 24 (release 46) [55] for 487 bacterial

organisms. The reaction scheme describing the substrates and

products in each reaction was retrieved from the reaction_

mapformula.lst file, describing only the main metabolites in

each reaction (as in the KEGG pathway diagrams) and not the

co-factors (e.g., H2O molecules). Metabolic networks were

constructed as follows: Each enzyme is represented as a node

in the network. Let E1 = e11, e21, … , en1 denote the set of

enzymes that catalyze reaction R1, and E2 = e12, e22, … , em2

denote the set of enzymes that catalyze reaction R2. If a product

of R1 is a substrate of R2, then edges are assigned between all

nodes of E1 and all nodes of E2. Edges are also assigned within

E1 nodes and within E2 nodes. A list of 86 target metabolites

(Table S3) – that is, metabolites that are likely to be essential for

growth in most species [56–58], was used for constructing

species-specific target metabolite lists according to the intersec-

tion between the generic target metabolites and the metabolites

that each species produces. Enzymes that are not relevant for

the production of biomass metabolites were omitted from the

networks. Such enzymes were identified by repeating the

expansion of the network in a reverse manner, using the full

networks and the set of biomass metabolites as seeds. Each

reaction that participated in the production of biomass

metabolites was added to the network. Thus, only reactions

that had no part (direct or indirect) in the production of the

biomass metabolites were omitted from the network. In the

approach taken here, reactions that are not involved in the

production of the biomass metabolites will have no effect on the

network’s viability following a deletion, hence would have no

effect on our results. Using these effective reactions, we

constructed the effective network further used throughout the

analysis. For each network we computed modularity, centrality

and connectivity. Modularity was computed using Newman’s

algorithm [59] as described in [60]. Centrality is computed by

first determining all pairwise shortest paths using the Floyd–

Warshall algorithm [61] and then calculating, for each node, its

mean shortest path (MSP) distance to all other nodes in the

network, denoting the node’s centrality (within a specific

network). In cases where the network has more than one

connected component, nodes from two different components

are assumed to have a distance of twice the maximal distance

obtained within the components. The centrality of the network

is the minimal MSP across all nodes.

Metabolic growth environments (rich media) were inferred for

each species individually using the seed algorithm developed by

[20], retrieving an ensemble of 487 species-specific rich growth

media (one for each species). Other approaches for the

construction of metabolic environments were additionally em-

ployed (Text S1 Note 2). To compute the species viability across all

environments we tested the viability of each species over the set of

487 metabolic growth environments as follows: given a specific

organism and an environment (set of external metabolites), an

organism is considered viable in this environment if all its essential

target metabolites are produced – this is examined by using a

network expansion algorithm [15] that outputs an activated

metabolic sub-network, and verifying that the expanded subnet-

work produces all target metabolites. The Environmental robustness of

each network is calculated as the corresponding fraction of viable

environments.

Computing topological network genetic robustness
(NGR)

For each metabolic network (i.e., species), we compute condition-

dependent and independent NGR. The species-specific NGR score is

computed as follows: using its species-specific metabolic rich

environment as the species’ growth medium, each enzyme in the

network examined is knocked out in turn and the expansion

algorithm is used to evaluate if all target metabolites are produced

in the perturbed network. If the whole list is still successfully

produced, this enzyme is scored 1 (non-essential) and otherwise it

is scored 0 (essential). The fraction of non-essential enzymes in the

network is the network’s NGR score. Condition-independent NGR is

computed using the ensemble of all viable environments of a given

species; i.e., we repeat the same knockout procedure in each viable

environment. Subsequently, an enzyme is scored 1 if it is backed-

up across all environments (non-essential) and 0 otherwise. The

enzymes that are non-essential under all conditions are termed

condition-independent and their fraction denotes the network’s overall

condition-independent NGR score. Enzymes are termed condition-

dependent if they are found to be backed-up in some (but not all) of

the viable media examined, per species, and their fraction in a

given species is their condition-dependent NGR score. Notably, the

species-specific rich media refers to the most optimal metabolic

environment a species can have, i.e., an environment where all of

its metabolic pathways have the potential to be active. Hence,

reactions that are essential when the metabolic network works at

full capacity will also be essential under less favorable conditions.

The species-specific condition-dependent and independent NGR scores are

listed in Table S1.

Benchmarking the topology-driven predictions for
reactions’ essentiality against experimental data

Using the procedure described above we classify each reaction

in each species as non-essential, essential or conditional-

dependent (essential/non-essential). Non-essential and essential

reactions (scoring either 1 or 0, respectively, i.e., non-essential or

essential across all environments) of E. coli and Bacillus subtilis were

assigned to the corresponding genes by parsing the KEGG

‘enzyme’ file (downloaded from ftp://ftp.genome.jp/pub/kegg/).

The essentiality predictions for 327 (out of 530) E. coli reactions

and 250 (out of 397) Bacillus subtilis reactions which are assigned

to a single gene were compared with the pertaining experimental

data. Experimental data from systematic gene knock-out studies

of E. coli genes were retrieved from [62] and for the essentiality of

Bacillus subtilis genes were retrieved from [63]. Accuracy was

calculated as the fraction of true positives and true negatives out

of all observations.

Retrieving species-specific measures
Fractions of regulatory genes were taken from [36], describing

the fraction of transcription factors out of the total number of

genes in the organism as an indicator of transcriptional complexity

(indirectly testifying to environmental variability) [37]. This is also

the measure of transcriptional complexity. Environmental com-

plexity values were obtained from [37], where the natural

environments of 117 bacterial species were ranked based on the

NCBI classification for bacterial lifestyle [64]. Growth rate:

minimal duplication-time data, available for 109 species in the

dataset were retrieved from [65]. Secondary metabolism: the

fractions of enzymes involved in secondary metabolites were

constructed by parsing KEGG data and counting for each species

the number of enzymes which participate in pathways of

secondary metabolism.
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Supporting Information

Text S1 Supplementary Notes, Tables and Figures.

Found at: doi:10.1371/journal.pcbi.1000690.s001 (0.53 MB PDF)

Table S1 Genomic and ecological attributes of species in the

analysis. This table displays the following attributes for the 487

bacterial species studied here: KEGG label, name, network size

(number of reaction-nodes participating in the production of

biomass metabolites), environmental robustness, condition-depen-

dent NGR, condition-independent NGR (across 487 environ-

ments), condition-independent NGR (across 487+200000 envi-

ronments), fraction of regulatory genes, environmental complexity

score, lifestyle description, doubling time, oxygen requirements,

centrality of the network, connectivity (mean rank) an modularity,

correlation between reactions’ essentiality and reactions’ conser-

vation, centrality and connectivity and the P-value for the

correlation (spearman) . Values were computed and retrieved as

described in the Methods section.

Found at: doi:10.1371/journal.pcbi.1000690.s002 (0.09 MB

TXT)

Table S2 Levels of evolutionary conservation (phylogenetic/

phyletic distributions) and essentiality of reactions across species

and environments.

Found at: doi:10.1371/journal.pcbi.1000690.s003 (0.35 MB XLS)

Table S3 Full description and KEGG ID of the 86 target

metabolites.

Found at: doi:10.1371/journal.pcbi.1000690.s004 (0.01 MB PDF)

Table S4 List of all species which have an enzymes catalyzing

reaction 1.14.16.1 (Phenylalanine 4-monooxygenase).

Found at: doi:10.1371/journal.pcbi.1000690.s005 (0.03 MB PDF)

Table S5 List of human commensal and pathogens and the

distribution and essentiality of Methenyltetrahydrofolate cyclohy-

drolase (EC 3.5.4.9) and Formyltetrahydrofolate synthetase

(6.3.4.3) across these species.

Found at: doi:10.1371/journal.pcbi.1000690.s006 (0.03 MB XLS)

Table S6 Distribution and essentiality of reactions across human

commensal and pathogens organisms.

Found at: doi:10.1371/journal.pcbi.1000690.s007 (0.06 MB XLS)
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