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ABSTRACT

Non-negative matrix factorization (NMF) is a fundamental matrix decomposition tech-
nique that is used primarily for dimensionality reduction and is increasing in popularity in the
biological domain. Although finding a unique NMF is generally not possible, there are vari-
ous iterative algorithms for NMF optimization that converge to locally optimal solutions. Such
techniques can also serve as a starting point for deep learning methods that unroll the al-
gorithmic iterations into layers of a deep network. In this study, we develop unfolded deep
networks for NMF and several regularized variants in both a supervised and an unsupervised
setting. We apply our method to various mutation data sets to reconstruct their underlying
mutational signatures and their exposures. We demonstrate the increased accuracy of our
approach over standard formulations in analyzing simulated and real mutation data.

Keywords: NMF, unfold and deep network.

1. INTRODUCTION

Non-negative matrix factorization (NMF) is a popular and useful decomposition tool for high-

dimensional data. It is widely used in signal and image processing, text analysis, and in analyzing DNA

mutation data. NMF is NP-hard (Vavasis, 2010) in general, and is commonly approximated by various

iterative algorithms such as multiplicative updates (MUs) (Lee and Seung, 2000) and alternating non-

negative least squares (ANLS) (Lin, 2007). Almost all NMF methods use a two-block coordinate descent

scheme, which alternatively optimizes one of the W‚ H matrices in the data decomposition V*WH, whereas

keeping the other fixed (Gillis, 2014). These iterative algorithms generally suffer from slow convergence and

high computational cost when applied to large matrices (Kim and Park, 2011).

Recently, architectures based on deep learning were suggested for NMF (Hershey et al., 2014; Wisdom

et al., 2017) as part of a general unfolding (or unrolling) framework (Monga et al., 2021). Unrolling

techniques connect between iterative methods and deep networks by viewing each iteration of an under-

lying iterative algorithm as a layer of a network, such that concatenating the layers forms a deep neural

network where the algorithm parameters transfer to the network parameters. The network is trained using

backpropagation, resulting in model parameters that are learned from real-world training sets. However,

these previous unrolling methods for NMF were limited to supervised settings where one of the matrix

factors is known and can be used for training.
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In this study, we develop a deep unrolled network architecture, which we call deep non-negative matrix

factorization (DNMF), for regularized variants of NMF for both the supervised and unsupervised settings.

In our model, we learn two types of weight matrices for added flexibility in learning complex patterns and

design the network so that conventional backpropagation tools such as the auto gradient in Pytorch can be

used to allow for large-scale implementation. We implement the resulting networks and show their utility

over standard iterative formulations. In particular, we apply our constructions to analyze a diverse col-

lection of simulated and real mutation data sets, and show that they lead to better reconstructions of unseen

data compared with the MU scheme. In the supervised setting, we train the network based on given input

vectors V and their corresponding coefficients H, without the need of knowing the underlying dictionary

(corresponding to mutational signatures) W. In the unsupervised setting, our network operates with the

input non-negative data matrix V only.

2. METHODS

2.1. Problem formulation and current approaches

NMF receives as input a non-negative matrix Vf · n and a number k of desired factors; its goal is

to decompose V into a product of two non-negative matrices Wf · k and Hk · n such that kV - WHk2 is

minimized. In addition to the popular Euclidean distance criterion, often called reconstruction error, an-

other popular optimization criterion for NMF is the Kullback–Leibler (KL) divergence KL(VkWH) =P
ij (Vij log (

Vij

(WH)ij
) - Vij + (WH)ij). In the presentation hereunder we mostly focus on the reconstruction error

case but provide full details on the KL divergence optimization in Appendix A2.

A popular iterative method to approximate the reconstruction error is Lee–Seung’s MU scheme (Lee

and Seung, 2000):

Hl + 1)Hl �
WT

l V

WT
l WlHl

(1)

Wl + 1)Wl �
VHT

l

WlHlH
T
l

‚ (2)

where �‚ [:]
[:] denote entry-wise multiplication and division, superscript T denotes matrix transpose, and the

subscript index denotes the iteration number. Usually, W0‚ H0 are initialized by random or fixed non-

negative values; more complicated initialization strategies have also been introduced (Albright et al., 2006;

Boutsidis and Gallopoulos, 2008).

2.1.1. Regularized variants. Hoyer (2002) extended the classical MU scheme for the case of an

L1 penalty imposed on the coefficients of H. Other works have also developed formulations for L2 reg-

ularization (Wang et al., 2016). For completeness, we redevelop a regularized variant with both penalties in

Appendix A1. Fixing W and looking at one sample v and one column h of H at a time, we consider the

problem:

min
h�0

1

2
kv - Whk2 + k1khk1 +

1

2
k2khk2

2

� �
: (3)

This leads to the following MU equation (see Appendix A1):

hl + 1)hl �
WT v

WT Whl + k1 + k2hl

: (4)

Note that if h0‚ W‚ v and the regularization parameters k1‚ k2 are non-negative, then hl will be non-negative

as well.

2.2. Unrolling the iterative algorithm

To obtain our suggested unrolled network, it will be convenient to consider one input sample v 2 Rf at a

time. Following Hershey et al. (2014), we develop the network architecture by optimizing the corre-

sponding column h while allowing W to be part of the network’s parameters that are being learned and,

46 NASSER ET AL.

D
ow

nl
oa

de
d 

by
 T

el
 A

vi
v 

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

1/
26

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



moreover, vary between layers. In the unrolled network, each layer represents a possible solution to h that is

formed by a nonlinear transformation of the values at the previous layer. The transformation imitates the

MU Eq. (4), with W varying between the layers (rather than being fixed) and k1‚ k2 fixed across layers.

Moreover, the network ignores the dependency between the WT term and the WT W terms in the updated

formula and treats them as independent matrices, A and B, respectively. These matrices are later learned

from data. Overall, in the supervised setting, the network relies on training data v1‚ v2‚ . . . vN 2 Rf and their

corresponding coefficient vectors h01‚ h02‚ . . . h0N 2 Rk to optimize the parameters Al‚ Bl‚ k1‚ k2. The re-

sulting network model is depicted in Figure 1. We note that the L2 regularization term k2hl could be

combined into Blhl, thus simplifying the update function f in each layer, but in practice separating the two

terms leads to better results.

Notably, a similar unrolling architecture applies to the KL divergence case with the main differences

being the loss function used and the MU function, which involves two learned matrices that represent W

and WT in the update formula (see Appendix A2).

To test the resulting network, we used 10 layers (see Section 3 for performance across varying depth

values) and implemented backpropagation using Pytorch. Training was performed through minimizing the

MSE loss function kh10 - h0k2 using the ADAM optimizer with learning rate 0:001. The parameters were

updated using constrained gradient descent to guarantee that network weights are non-negative.

The model parameters including the A‚ B matrices across layers and the two regularization parameters

k1‚ k2 were initialized to a fixed positive value (value of 1). We also initialized the entries of h0 to the same

FIG. 1. A sketch of the proposed supervised

unrolled network for non-negative matrix factor-

ization.

FIG. 2. A sketch of the unrolled deep network for the unsupervised variant. NNLS, non-negative least squares.
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value. For each of the data sets we trained a model based on 80% of the data, and measured the MSE with

respect to the remaining 20% using the true matrix H.

2.3. An unsupervised variant

Typically, we do not know the decomposition matrices H and/or W in advance, in which case super-

vised training is not feasible. Instead, we propose to evaluate a solution by its ability to reconstruct the

original matrix V. To this end, after obtaining the network output h for each of the data columns, we use

non-negative least squares (NNLS) to reconstruct W (Lawson and Hanson, 1995) and adjust the cost

function accordingly. In detail, we start by initializing h0 to fixed values for every column of V, the two

columns are forward propagated in the network, and the resulting h‘-s for all samples are gathered to form

the estimated H matrix. Next, we apply NNLS to estimate W from V and H. Last, we calculate the cost

function given in Eq. (3) and backpropagate to update the network weights A‚ B. The model is depicted in

Figure 2.

a b c

d e f

g h i

j k l

FIG. 3. The effect of regularization on DNMF performance in the supervised case. (a–l) Represent simulated data

sets (1–12), respectively. DNMF, deep non-negative matrix factorization.
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In the unsupervised case we cannot learn the regularization parameters as they affect the cost function

and if we would omit them from the cost function, their optimal value will be zero (corresponding to no

regularization). Hence, in this variant we use k1 = k2 = k and present results for k = 0‚ 1‚ 2.

2.4. Data description and performance evaluation

We used two types of mutation data sets: simulated and real ones. In all cases the number of rows in the

observed (count) matrix V was 96, representing the 96 standard mutation categories (Alexandrov et al.,

2019). For such data, V is assumed to be the result of the activity of certain mutational processes whose

signatures are given by the dictionary W and whose exposures are given by the coefficient matrix H. We

describe these data sets as follows.

2.4.1. Simulated data. The simulated data were taken from Alexandrov et al. (2019) and includes

multiple mutation data sets with varying numbers of underlying signatures and degrees of noise. For each

data set we are given an observed matrix of mutation counts (denoted V earlier) and its decomposition into

signature (W) and exposure (H) matrices. In total, we used 12 different simulated data sets with at least

1000 samples each as detailed in Appendix A3.

2.4.2. Real data. We analyzed a breast cancer (BRCA) mutation data set of whole-genome sequences

from the International Cancer Genome Consortium. The data set has 560 samples and believed to be the

result of the activity of 12 mutational processes as cataloged in the Catalogue of Somatic Mutations in

Cancer (COSMIC) database.

2.4.3. Performance evaluation. We evaluated our method on each data set using fivefold cross-

validation and compared with the standard MU method under various regularization schemes. All model

parameters in both methods were initialized to one, unless specified otherwise. In the supervised case, we

report the MSE between the true H and the estimated matrix Hl over a test set (20% of the samples), where

the MSE is averaged over the columns of H. In the unsupervised case, we report the MSE between V and its

reconstruction WH over a test set (20% of the samples), where the MSE is averaged over the columns of H.

For both DNMF and MU, W in inferred using the training samples and H is estimated on the test samples.

For DNMF, the estimation of H is done by propagating the columns of V in the learned network. For MU, it

is done by fixing W and using the iterative update rule to compute H.

2.5. Implementation and runtime details

All reported runs were done in Google Colab using a 2-core CPU (x86_64). Code is available at https://

github.com/raminass/deep-NMF. The inference time of supervised/unsupervised DNMF with 10 layers was

0.0019 seconds, similar to a 10-iteration MU inference in the supervised case (0.0021 seconds), and an order of

magnitude faster than a 100-iteration MU inference in the unsupervised case (as used in this study, 0.016 seconds).

a b

FIG. 4. The effect of number of layers on algorithm’s performance. Each line corresponds to one of the simulated

data sets. (a) Supervised; (b) unsupervised.
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3. RESULTS

We developed a deep learning based framework for NMF, which we call DNMF. The DNMF framework

imitates the classical MU scheme for the problem by unrolling its iterations as layers in a deep network

model. We further developed regularized variants for MU and DNMF. We apply our framework in both a

supervised setting, where training data regarding the true factorization is available, and in an unsupervised

setting. Full details on the different models appear in Section 2.

We start with testing the different model formulations using simulated data. First, we compare the regu-

larized with the nonregularized variant in the supervised case. As expected, the results, summarized in

Figure 3, show that the regularized variant performs best in terms of MSE, hence we focus on it in the sequel.

a b c

d e f

g h i

j k l

FIG. 5. Comparative performance on simulated data in the supervised setting. (a–l) Represent simulated data sets (1–

12), respectively.
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Next, we tested the effect of the depth of the unrolled network on the algorithm’s performance. The

results, depicted in Figure 4, show that after 10–15 layers the performance reaches a plateau, hence we

focus in the following on depth-10 networks. Notably, as our network borrows from the MU update scheme

and does not rely on activation functions, it is less affected by the problem of gradient decay for deep

architectures.

After determining the architecture of the developed framework, we turn to examine it in the supervised

case and compare with the MU approach on the simulated data. To this end, we apply MU to the training

data to estimate W, and then use MU with the learned W to estimate H on the test data. The results,

summarized in Figure 5, show that DNMF outperforms MU across a wide range of regularization values for

the latter (note that DNMF learns the regularization parameters automatically from data in this case).

a b c

d e f

g h i

j k l

FIG. 6. Comparative performance in the unsupervised setting on simulated data. Blue: DNMF; orange: MU. (a–l)

Represent simulated data sets (1–12), respectively. MU, multiplicative update.

DEEP UNFOLDING FOR NON-NEGATIVE MATRIX FACTORIZATION 51

D
ow

nl
oa

de
d 

by
 T

el
 A

vi
v 

U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

1/
26

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Next, we evaluate DNMF in the unsupervised case. In this case, the regularization parameters are part of

the objective function and cannot be learned by the model, hence we compare DNMF with MU under

different regularization settings. As evident from the results in Figures 6 and 7a, DNMF outperforms MU

across a wide range of data sets and regularization values on both simulated and real data.

For the real mutation data, we also evaluate the KL divergence variant of DNMF as this type of

optimization is commonly applied to such data (Kim et al., 2016). The results, depicted in Figure 7b, again

show the superiority of DNMF over MU.

To get an intuition for the improved performance of DNMF compared with MU, we looked at the cost

function being optimized across algorithmic iterations when considering the real data set and multiple

regularization parameters. We observed that MU converges to a local minimum after a few iterations only,

hence we attempted different random initializations for it and report the best one. Nevertheless, DNMF

remains the best performer under all settings (Fig. 8).

4. CONCLUSIONS

We provided a detailed deep learning framework for NMF that is applicable in both supervised and

unsupervised settings. The framework outperforms classical approaches to this problem and greatly im-

proves the reconstruction error of the factorization across a wide range of data sets and regularization

schemes. We demonstrated the utility of our framework in analyzing mutation data from simulated and real

data sets and expect it to greatly improve our ability to reconstruct mutational signatures and their

exposures.

For future study, we intend to explore different strategies for initializing the DNMF model and to select

its regularization parameters in the unsupervised case.

a b

FIG. 7. Comparative performance in the unsupervised setting on real data for both Euclidean (a) and Kullback–

Leibler divergence (b) objectives. Blue: DNMF; orange: MU.

a b c

FIG. 8. Unsupervised reconstruction error during training on real data for MU and DNMF. Values of l1 and l2 from

left to right: (a) l1 = l2 = 0; (b) l1 = l2 = 1; (c) l1 = l2 = 2.
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Appendix

APPENDIX A1. REGULARIZED NON-NEGATIVE MATRIX FACTORIZATION

Consider the problem of finding an approximate non-negative factorization that is close to the original

matrix V and satisfies the sparseness constrains. We use the Frobenius norm as a measure of the distance

between V and WH, adding L1‚ L2 regularizations, arriving at the following cost function:

C(W‚ H) =
1

2
kV - WHk2

F + k1 kHk1 +
1

2
k2 kHk2

2 : (A1)

Theorem A1. The cost function is nonincreasing under the update rules:

H)H � WT V

WT WH + k1 + k2H
; W)W � VHT

WHHT
:

Proof. We follow the proofs of Lee and Seung (2000; Hoyer, 2002) and focus on the update formula for

H, considering one column h at a time corresponding to a column v of V. Our goal is to minimize

C(h) =
1

2
kv - Whk2

F + k1khk1 +
k2

2
khk2

2 :

As in these references, we define G(h‚ hl) to be an auxiliary function for C(h) that satisfies

G(h‚ hl) � C(h)‚ G(h‚ h) = C(h). At each iteration we update as follows:

hl + 1 = argmin
h

G(h‚ hl):

We keep the original definition of the auxiliary function:

G(h‚ hl) = C(hl) + (h - hl)
T =C(hl) +

1

2
(h - hl)

T K(hl)(h - hl)‚

where K(hl) is a diagonal matrix. However, we slightly change K(hl) to reflect the regularization:

Kab(hl) : = K 0ab(hl) + k2 = dab
(WT Whl)a + k1

hla
+ k2. To show that G(h‚ hl) � C(h) we take a Taylor expansion of

C:

C(h) = C(hl) + (h - hl)
T =C(hl) +

1

2
(h - hl)

T (WT W + k2)(h - hl):

Thus, we need to show that 0 � (h - hl)
T (K 0(hl) - WT W)(h - hl), which was shown in Hoyer (2002).

It remains to compute the gradient of G and equate it to zero:

=hG(h‚ hl) = =C(hl) + (h - hl)K(hl) = 0:

This gives the update rule hl + 1 = hl - K(hl)
- 1=C(hl) where =C(hl) = - WT v + WT Whl + k2hl + k1. Overall,

we get

hl + 1 = hl -
hl

WT Whl + k1 + k2hl

( - WT v + WT Whl + k2hl + k1) = hl �
WTv

WT Whl + k1 + k2hl

‚

completing the proof. ,

APPENDIX A2. KULLBACK–LEIBLER DIVERGENCE OPTIMIZATION

We develop update rules to optimize the regularized variant also for the Kullback–Leibler (KL) di-

vergence criterion. The cost function to be optimized is

C(W‚ H) = KL(VkWH) + k1kHk1: (A2)

(Appendix continuous)
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Note that in this setting we only use L1 regularization as the KL divergence does not have a quadratic

term.

Theorem A2. The cost function is nonincreasing under the update rules:

H)H �WT (V � (WH) - 1)

WT 1f · n + k1

; W)W � (V � (WH) - 1)HT

1f · nHT
:

Proof. We follow the proof of Lee and Seung (2000) and focus on the update formula for H, considering

one column h at a time corresponding to a column v of V. Our goal is to minimize

C(h) = KL(vkWh) + k1khk1:

As before, we keep the original definition of the auxiliary function with the addition of the sparsity

factor:

G(h‚ hl) = G0(h‚ hl) + k1khk1:

Lee and Seung (2000) proved that G0(h‚ hl) � KL(vkWh), hence G(h‚ hl) � C(h). Computing the gradient

of G and equating it to zero:

=hG(h‚ hl) = =hG0(h‚ hl) + k1 = 0:

=hG0(h‚ hl) = -
WT (v� (Whl)

- 1)

h
� hl + WT 1f :

The resulting update to h is

hl + 1)hl �
WT (v� (Whl)

- 1)

WT 1f + k1

:

completing the proof. ,

APPENDIX A3. SIMULATED DATA

Appendix Table A1. List of Simulated Data Sets Used in This Study

Data set No. samples No. components

1 pancreas.sp 1000 11

2 pancreas.sa 1000 20

3 many.types.sp 2700 21

4 many.types.sa 2700 39

5 3.5.40.rcc.and.ovary.sp 1000 11

6 3.5.40.rcc.and.ovary.sa 1000 19

7 3.5.40.abst.sp 1000 3

8 3.5.40.abst.sa 1000 3

9 2.7a.7b.bladder.and.melanoma.sp 1000 11

10 2.7a.7b.bladder.and.melanoma.sa 1000 26

11 2.7a.7b.abst.sp 1000 3

12 2.7a.7b.abst.sa 1000 3
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