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ABSTRACT

The problem of inferring haplotypes from genotypes of single nucleotide polymorphisms

(SNPs) is essential for the understanding of genetic variation within and among popula-

tions, with important applications to the genetic analysis of disease propensities and other

complex traits. The problem can be formulated as a mixture model, where the mixture

components correspond to the pool of haplotypes in the population. The size of this pool

is unknown; indeed, knowing the size of the pool would correspond to knowing something

significant about the genome and its history. Thus methods for fitting the genotype mixture

must crucially address the problem of estimating a mixture with an unknown number of

mixture components. In this paper we present a Bayesian approach to this problem based

on a nonparametric prior known as the Dirichlet process. The model also incorporates a

likelihood that captures statistical errors in the haplotype/genotype relationship trading off

these errors against the size of the pool of haplotypes. We describe an algorithm based

on Markov chain Monte Carlo for posterior inference in our model. The overall result

is a flexible Bayesian method, referred to as DP-Haplotyper, that is reminiscent of parsi-

mony methods in its preference for small haplotype pools. We further generalize the model

to treat pedigree relationships (e.g., trios) between the population’s genotypes. We apply

DP-Haplotyper to the analysis of both simulated and real genotype data, and compare to

extant methods.
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1. INTRODUCTION

THE AVAILABILITY of a nearly complete human genome sequence makes it possible to begin to explore

individual differences between DNA sequences on a genome-wide scale, and to search for associations

of such genotypic variation with disease and other phenotypes (Risch, 2000). The largest class of individual
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differences in DNA are the single nucleotide polymorphisms (SNPs). Millions of SNPs have been detected

thus far out of an estimated total of ten million common SNPs (Sachidanandam et al., 2001).

A SNP commonly has two variants, or alleles, in the population, corresponding to two specific nucleotides

chosen from fA; C; G; T g. A haplotype is a list of alleles at contiguous sites in a local region of a single

chromosome. Assuming no recombination in this local region, a haplotype is inherited as a unit. Recall that

for diploid organisms (such as humans) the chromosomes come in pairs. Thus two haplotypes go together

to make up a genotype, which is the list of unordered pairs of alleles in a region. That is, a genotype is

obtained from a pair of haplotypes by omitting the specification of the association of each allele with one

of the two chromosomes—its phase. Common biological methods for assaying genotypes typically do not

provide phase information; phase can be obtained at a considerably higher cost (Patil et al., 2001). It is

desirable to develop automatic methods for inferring haplotypes from genotypes and possibly other data

sources (e.g., pedigrees). With a set of inferred haplotypes in hand, associations to disease can be explored.

From the point of view of population genetics, the basic model underlying the haplotype inference

problem is a finite mixture model. That is, letting H denote the set of all possible haplotypes associated

with a given region (a set of cardinality 2k in the case of binary polymorphisms, where k is the number

of heterozygous SNPs), the probability of a genotype is given by:

p.g/ D
X

h1;h22H

p.h1; h2/I.h1 ˚ h2 D g/ (1)

where I.h1 ˚ h2 D g/ is the indicator function of the event that haplotypes h1 and h2 are consistent with

g. Under the assumption of Hardy-Weinberg equilibrium (HWE), an assumption that is standard in the

literature and will also be made here, the mixing proportion p.h1; h2/ is assumed to factor as p.h1/p.h2/.

Given this basic statistical structure, the simplest methodology for haplotype inference is maximum

likelihood via the EM algorithm, treating the haplotype identities as latent variables and estimating the

parameters p.h/ (Excoffier and Slatkin, 1995). This methodology has rather severe computational require-

ments, in that a probability distribution must be maintained on the (large) set of possible haplotypes, but

even more fundamentally it fails to capture the notion that small sets of haplotypes should be preferred.

This notion derives from an underlying assumption that for relatively short regions of the chromosome there

is limited diversity due to population bottlenecks and relatively low rates of recombination and mutation.

One approach to dealing with this issue is to formulate a notion of “parsimony,” and to develop algorithms

that directly attempt to maximize parsimony. Several important papers have taken this approach (Clark

et al., 1998; Gusfield, 2002; Eskin et al., 2003) and have yielded new insights and algorithms. Another

approach is to elaborate the probabilistic model, in particular by incorporating priors on the parameters.

Different priors have been discussed by different authors, ranging from simple Dirichlet priors (Niu et al.,

2002) to priors based on the coalescent process (Stephens et al., 2001) to priors that capture aspects of

recombination (Greenspan and Geiger, 2004). These models provide implicit notions of parsimony, via the

implicit “Ockham factor” of the Bayesian formalism.

We also take a Bayesian statistical approach in the current paper, but we attempt to provide more explicit

control over the number of inferred haplotypes than has been provided by the statistical methods proposed

thus far, and the resulting inference algorithm has commonalities with the parsimony-based schemes.

Our approach is based on a nonparametric prior known as the Dirichlet process (Ferguson, 1973). In the

setting of finite mixture models, the Dirichlet process—not to be confused with the Dirichlet distribution—

is able to capture uncertainty about the number of mixture components (Escobar and West, 2002). The basic

setup can be explained in terms of an urn model, and a process that proceeds through data sequentially.

Consider an urn which at the outset contains a ball of a single color. At each step we either draw a ball

from the urn, and replace it with two balls of the same color, or we are given a ball of a new color which

we place in the urn, with a parameter defining the probabilities of these two possibilities. The association

of data points to colors defines a “clustering” of the data.

To make the link with Bayesian mixture models, we associate with each color a draw from the distribution

defining the parameters of the mixture components. This process defines a prior distribution for a mixture

model with a random number of components. Multiplying this prior by a likelihood yields a posterior

distribution. Markov chain Monte Carlo algorithms have been developed to sample from the posterior

distributions associated with Dirichlet process priors (Escobar and West, 2002; Neal, 2000).
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The usefulness of this framework for the haplotype problem should be clear—using a Dirichlet process

prior we in essence maintain a pool of haplotype candidates that grows as observed genotypes are processed.

The growth is controlled via a parameter in the prior distribution that corresponds to the choice of a new

color in the urn model, and via the likelihood, which assesses the match of the new genotype to the

available haplotypes.

To expand on this latter point, an advantage of the probabilistic formalism is its ability to elaborate

the observation model for the genotypes to include the possibility of errors. In particular, the indicator

function I.h1 ˚ h2 D g/ in Equation (1) is suspect—there are many reasons why an individual genotype

may not match with a current pool of haplotypes, such as the possibility of mutation or recombination in

the meiosis for that individual, and errors in the genotyping or data recording process. Such sources of

small differences should not lead to the inference procedure spawning new haplotypes.

In the current paper we present, DP-Haplotyper, a statistical model for haplotype inference based on a

Dirichlet process prior and a likelihood that includes error models for genotypes. We describe a Markov

chain Monte Carlo procedure, in particular a procedure that makes use of both Gibbs and Metropolis-

Hasting updates, for posterior inference. We present results of applying our method to the analysis of both

simulated and real genotype data, comparing to the state-of-the-art PHASE algorithm (Stephens et al.,

2001). On the simulated data, our predictions are comparable to those obtained by PHASE, and superior to

those obtained by the EM algorithm. On a real dataset of Daly et al. (2001) our results are again comparable

to those of PHASE, and we outperform two other algorithms: HAP (Halperin and Eskin, 2002; Eskin et al.,

2003) and HAPLOTYPER (Niu et al., 2002). On data from Gabriel et al. (2002), which is a difficult test

case due to the small number of individuals in the sample, we outperform PHASE by a significant margin.

2. HAPLOTYPE INFERENCE VIA THE DIRICHLET PROCESS

The input to a phasing algorithm can be represented as a genotype matrix G with columns corresponding

to SNPs in their order along the chromosome and rows corresponding to genotyped individuals. Gi;j

represents the information on the two alleles of the i -th individual for SNP j . We denote the two alleles

of a SNP by 0 and 1, and Gi;j can take on one of four values: 0 or 1, indicating a homozygous site; 2,

indicating a heterozygous site; and “?,” indicating missing data.1

We will describe our model in terms of a pool of ancestral haplotypes, or templates, from which each

population haplotype originates (Greenspan and Geiger, 2004). The haplotype itself may undergo point

mutation with respect to its template. The size of the pool and its composition are both unknown, and

are treated as random variables under a Dirichlet process prior. We begin by providing a brief description

of the Dirichlet process and subsequently show how this process can be incorporated into a model for

haplotype inference.

2.1. Dirichlet process mixtures

Rather than present the Dirichlet process in full generality, we focus on the specific setting of mixture

models, and make use of an urn model to present the essential features of the process (Ishwaran and

James, 2001). We assume that data x arise from a mixture distribution with mixture components p.xj�/.

We assume the existence of a base measure G0.�/, which is one of the two parameters of the Dirichlet

process. (The other is the parameter � , which we present below.) The parameter G0.�/ is not the prior for

�, but is used to generate a prior for �, in the manner that we now discuss.

Consider the following process for generating samples fx1; x2; : : : ; xng from a mixture model consisting

of an unspecified number of mixture components, or equivalence classes:

� The first sample x1 is sampled from a distribution p.xj�1/, where the parameter �1 is sampled from

the base measure G0.�/.
� The i th sample, xi , is sampled from the distribution p.xj�ci

/, where:

1Although we focus on binary data here, it is worth noting that our methods generalize immediately to non-binary

data and accommodate missing data.
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ı The equivalence class of sample i , ci , is drawn from the following distribution:

p.ci D cj for some j < i jc1; : : : ; ci�1/ D
ncj

i � 1 C �
(2)

p.ci ¤ cj for all j < i jc1; : : : ; ci�1/ D
�

i � 1 C �
; (3)

where nci
is the occupancy number of class ci—the number of previous samples belonging to class

ci .

ı The parameter �ci
associated with the mixture component ci is obtained as follows:

�ci
D �cj

if ci D cj for some j < i (i.e., ci is a populated equivalence class),

�ci
� G0.�/ if ci ¤ cj for all j < i (i.e., ci is a new equivalence class).

Equations (2) and (3) define a conditional prior for the equivalence class indicator ci of each sample

during a sequential sampling process. They imply a self-reinforcing property for the choice of equivalence

class of each new sample—previously populated classes are more likely to be chosen. The parameter �k

for the k-th mixture component, p.�j�k/, has an interpretation which is problem-specific. In the case of

Gaussian mixtures, this parameter defines the mean and covariance matrix of each mixture component. In

the haplotype inference problem, �k defines underlying genetic parameters for a population. In particular,

in the model we describe below, we let �k WD fA.k/; � .k/g, where A.k/ WD ŒA.k/

1 ; : : : ; A.k/

J � is a founding

haplotype configuration, or ancestral template, for genetic loci t D Œ1; : : : ; J �, and where � .k/ as the

mutation rate of this founder.

It is important to emphasize that the process that we have discussed generates a prior distribution. We

now embed this prior in a full model that includes a likelihood for the observed data. In Section 3 we

develop Markov chain Monte Carlo inference procedures for this model.

2.2. DP-haplotyper: a Dirichlet process mixture model for haplotypes

We now present a probabilistic model, DP-haplotyper, for the generation of haplotypes in a population

and for the generation of genotypes from these haplotypes. We assume that each individual’s genotype is

formed by drawing two random templates from an ancestral pool, and that these templates are subject to

random perturbation. To model such perturbations we assume that each locus is mutated independently

from its ancestral state with the same error rate. Finally, we assume that we are given noisy observations

of the resulting genotypes. The model is displayed as a graphical model in Figure 1.

Let J be an ordered list of loci of interest. For each individual i , we denote his/her paternal haplotype

by Hi0 WD ŒHi0;1; : : : ; Hi0;J � and maternal haplotype by Hi1 WD ŒHi1;1; : : : ; Hi1;J �. We denote a set of

ancestral templates as A D fA.1/; A.2/; : : : g, where A.k/ WD ŒA.k/

1 ; : : : ; A.k/

J
� is a particular member of

this set.

In our framework, the probability distribution of the haplotype variable Hit , where the sub-subscript

t 2 f0; 1g indexes paternal or maternal origin, is modeled by a mixture model with an unspecified number

of mixture components, each corresponding to an equivalence class defined by the choice of a particular

ancestor. For each individual i , we define the equivalence class variables Ci0 and Ci1 for the paternal

and maternal haplotypes, respectively, to specify the ancestral origin of the corresponding haplotype.

The Cit are the random variables corresponding to the equivalence classes of the Dirichlet process. The

base measure G0 of the Dirichlet process is a joint distribution on ancestral haplotypes A and mutation

parameters � , where the latter captures the probability that an allele at a locus is identical to the ancestor

at this locus. We let G0.A; �/ � p.A/p.�/, and we assume that p.A/ is a uniform distribution over all

possible haplotypes. We let p.�/ be a beta distribution, Beta.˛h; ˇh/, and we choose a small value for

ˇh=.˛h C ˇh/, corresponding to a prior expectation of a low mutation rate.
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FIG. 1. The graphical model representation of the haplotype model with a Dirichlet process prior. Circles represent

the state variables, ovals represent the parameter variables, and diamonds represent fixed parameters. The dashed boxes

denote sets of variables corresponding to the same ancestral template, haplotype, and genotype, respectively. The solid

boxes correspond to i.i.d. replicates of sets of variables, each associated with a particular individual, or ancestral

template, respectively.

Given Cit and a set of ancestors, we define the conditional probability of the corresponding haplotype

instance h WD Œh1; : : : ; hJ � to be:

p.Hit D hjCit D k; A D a; �/

D p.Hit D hjA.k/ D a; � .k/ D �/

D
Y

j

p.hj jaj ; �/; (4)

where p.hj jaj ; �/ is the probability of having allele hj at locus j given its ancestor. Equation (4) assumes

that each locus is mutated independently with the same error rate. For haplotypes, Hit ;j takes values from

a set B of alleles. We use the following single-locus mutation model:

p.hj jaj ; �/ D � I.hj Daj /

�

1 � �

jBj � 1

�I.hj ¤aj /

(5)

where I.�/ is the indicator function.

The joint conditional distribution of haplotype instances h D fhit W t 2 f0; 1g; i 2 f1; 2; : : : ; I gg and

parameter instances � D f� .1/; : : : ; � .K/g, given the ancestor indicator c of haplotype instances and the set

of ancestors a D fa.1/; : : : ; a.K/g, can be written explicitly as:

p.h; �jc; a/ /
Y

k

Œ� .k/ �mkC˛h�1

�

1 � � .k/

jBj � 1

�m0

k

Œ1 � � .k/ �ˇh�1 (6)

where mk D
P

j

P

i

P

t I.hit ;j D ak;j /I.cit D k/ is the number of alleles that were not mutated with

respect to the ancestral allele, and m0
k

D
P

j

P

i

P

t I.hit ;j ¤ ak;j /I.cit D k/ is the number of mutated

alleles. The count mk D fmk; m0
k
g is a sufficient statistic for the parameter �k and the count m D fmk; m0

k
g

is a sufficient statistic for the parameter �. The marginal conditional distribution of haplotype instances
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can be obtained by integrating out � in Equation (6):

p.hjc; a/ D
Y

k

R.˛h; ˇh/
�.˛h C mk/�.ˇh C m0

k
/

�.˛h C ˇh C mk C m0
k
/

� 1

jBj � 1

�m0

k
(7)

where �.�/ is the gamma function, and R.˛h; ˇh/ D
�.˛hCˇh/

�.˛h/�.ˇh/
is the normalization constant associated

with Beta.˛h; ˇh/. (For simplicity, we use the abbreviation Rh for RŒ˛h; ˇh� in the sequel.)

We now introduce a noisy observation model for the genotypes. We let Gi D ŒGi;1; : : : ; Gi;J � denote

the joint genotype of individual i at loci Œ1; : : : ; J �, where each Gi;j denotes the genotype at locus j . We

assume that the observed genotype at a locus is determined by the paternal and maternal alleles of this

locus as follows:

p.gi;j jhi0;j ; hi1;j ; / D  I.hi;j Dgi;j /Œ�1.1 � /�I.hi;j

1

¤gi;j /Œ�2.1 � /�I.hi;j

2

¤gi;j /

where hi;j , hi0;j ˚ hi1;j denotes the unordered pair of two actual SNP allele instances at locus j ; “
1

¤”

denotes set difference by exactly one element (i.e., the observed genotype is heterozygous, while the true

one is homozygous, or vice versa); “
2

¤” denotes set difference of both elements (i.e., the observed and true

genotypes are different and both are homozygous); and �1 and �2 are appropriately defined normalizing

constants.2 We place a beta prior Beta.˛g ; ˇg/ on  . Assuming independent and identical error models for

each locus, the joint conditional probability of the entire genotype observation g D fgi W i 2 f1; 2; : : : ; I gg

and parameter  , given all haplotype instances is:

p.g;  jh/ D
Y

i

p.gi ;  jhi0 ; hi1/

D ˛gCu�1Œ1 � �ˇgCu0Cu00�1�u0

1 �u00

2 ; (8)

where the sufficient statistics u D fu; u0; u00g are computed as u D
P

i;j I.hi;j D gi;j /, u0 D
P

i;j I.hi;j

1

¤

gi;j /, and u00 D
P

i;j I.hj;i

2

¤ gj;i /, respectively. Note that uCu0 Cu00 D IJ . To reflect an assumption that

the observational error rate is low we set ˇg=.˛g C ˇg/ to a small constant (0.001). Again, the marginal

conditional distribution of g is computed by integrating out  .

Having described the Bayesian haplotype model, the problem of phasing individual haplotypes and

estimating the size and configuration of the latent ancestral pool can be solved via posterior inference

given the genotype data. In Section 3 we describe Markov chain Monte Carlo (MCMC) algorithms for this

purpose.

2.3. Haplotype modeling given partial pedigrees

A diploid individual carries two chromosomes, or haplotypes, one of paternal origin and one of maternal

origin. When a parent-offspring triplet (or even other close biological relatives) are (geno)typed, the ambi-

guity of haplotypes of an individual can sometimes be resolved by exploiting the dependencies among the

haplotypes of family members induced by genetic inheritance and segregation. For example, if both parents

are homozygous, i.e., g1 D a˚a, g0 D b˚b, and the offspring is heterogeneous, i.e., g�10
D a˚b, where

�10 denotes the offspring of subjects “1” and “0,” then we can infer that the haplotypes of the offspring

2For simplicity, we may let �1 D �2 D 1=V , where V is the total number of ways a single SNP haplotype

hi;j and a single SNP genotype gi;j can differ (i.e., two for binary SNPs). When different �1 and �2 are desired

to penalize single- and double-disagreement differently, one must be careful to treat the case of homozygous hi;j

and heterozygous hi;j differently, because they are related to noisy genotype observations in different manners. For

example, a heterozygous hi;j (e.g., 01) cannot be related to any genotype with a double-disagreement, whereas a

homozygous hi;j (e.g., 00) can (e.g., w.r.t. gi;j D 11).
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are h�10
D .a; b/. However, inheritance of haplotypes may be more than mere faithful copying. In partic-

ular, chromosomal inheritance could be accompanied by single-generation mutations, which alter single or

multiple SNPs on the chromosomes, and recombinations, which disrupt and recombine some chromosome

pairs in gamete donors to generate novel (i.e., mosaic) haplotypes. Although genotypes of this nature do

not directly lead to full resolution of each individual’s haplotypes, undoubtedly the strong dependencies

that exist among the genotype data (in contrast to the iid genotypes we studied in the last section) could

be exploited to reduce the ambiguity of the phasing. In order to exploit pedigree information, we need

to introduce a few new ingredients into the basic DP-haplotyper model described in the last section and

in particular to model the distribution of individual haplotypes in a population consisting of now partially

coupled (rather than conditionally independent) individuals (Fig. 2). We refer to this expanded model as

the Pedi-haplotyper model. Formally, we introduce a segregation random variable, Sit ;j , for each one of

the two SNP alleles of each locus of an individual, to indicate its meiotic origin (i.e., from which one of the

two SNP alleles of a parent it is inherited). For example, Sit ;j D 1 indicates that allele Hit ;j is inherited

from the maternal allele of individual i ’s t-parent (where t D 0 means father and t D 1 means mother).

We denote the t-parent of individual i by �.it /, and his/her paternal (resp. maternal) allele by �0.it / (resp.

�1.it /). We use the following conditional distribution to model possible mutation during single generation

inheritance:

p.hit ;j jsit ;j D r; h�0.it /;j ; h�1.it /;j ; �t / D Œ�t �
I.hit ;j Dh�r .it /;j /

�

1 � �t

jBj � 1

�

I.hit ;j ¤h�r .it /;j /

; (9)

where 1 � �t is the mutation rate during inheritance, and r 2 f0; 1g represents the choice of the paternal

or maternal alleles of a parent subject by an offspring. Note that this single generation inheritance model

FIG. 2. The graphical model representation of the Pedi-haplotyper model.



274 XING ET AL.

allows different mutational rates for the parental and maternal alleles if desired (e.g., to reflect the difference

in gamete environment in a male or a female body), by letting �0 and �1 take different values, or giving

them different beta prior distributions. To model possible recombination events during single generation

inheritance, we assume that the list of segregation random variables, ŒSit ;1; : : : ; Sit ;J �, associated with

individual haplotype Hit forms a first-order Markov chain, with transition matrix �:

p.Sit ;j C1 D r 0jSit ;j D r/ D �rr 0

D
�

�
�I.rDr 0/�

1 � �
�I.r¤r 0/

; (10)

where 1 � � is the probability of a recombination event (i.e., a swap of parental origin) at position j .

This model is equivalent to assuming that the recombination events follow a Poisson point process of

rate � along the chromosome. If desired, a beta prior Beta.˛s ; ˇs/ can be introduced for � . Again, the

recombination rates in males and females can be different if desired. Considering the overall graphical

topology of the Pedi-haplotyper model, as illustrated in Figure 2, for founding members in the pedigree

(i.e., those without parental information), or half-founding members (i.e., those with information from

only one of the two parents), we assume that their un-progenitored haplotype(s) are inherited from missing

ancestors, thus following the basic haplotype model. For the haplotypes of the offspring in the pedigree,

we couple them to their parents using the single generation mutation and recombination model described

in the previous paragraphs. Thus, the Pedi-haplotyper model proposed in this section is fully generalizable

to any pedigree structure. We note that this model has some commonalities with the probabilistic model

for linkage analysis developed by Fishelson and Geiger (2002).

3. MARKOV CHAIN MONTE CARLO FOR HAPLOTYPE INFERENCE

In this section, we describe a Gibbs sampling algorithm for exploring the posterior distribution under our

DP-haplotyper model, including the latent ancestral pool. We also present a Metropolis-Hastings variant

of this algorithm that appears to mix better in practice.

3.1. A Gibbs sampling algorithm

Recall that the Gibbs sampler draws samples of each random variable from a conditional distribution

of that variable given (previously sampled) values of all the remaining variables. The variables needed in

our algorithm are: Cit , the index of the ancestral template of a haplotype instance t of individual i ; A.k/

j ,

the allele pattern at the j th locus of the kth ancestral template; Hit ;j , the t th allele of the SNP at the j th

locus of individual i ; and Gi;j , the genotype at locus j of individual i (the only observed variables in the

model). All other variables in the model—� and —are integrated out. The Gibbs sampler thus samples

the values of Cit , A.k/

j and Hit ;j . Conceptually, the Gibbs sampler alternates between two coupled stages.

First, given the current values of the hidden haplotypes, it samples the cit and subsequently a.k/

j , which

are associated with the Dirichlet process prior. Second, given the current state of the ancestral pool and

the ancestral template assignment for each individual, it samples the hit ;j variables in the basic haplotype

model. In the first stage, the conditional distribution of cit is:

p.cit D k jcŒ�it �; h; a/

/ p.cit D k jcŒ�it �/

Z

p.hit jcit D k; �k; a.k//p.� .k/ jfhi 0

t0
W i 0

t 0 ¤ it ; ci 0

t0
D kg; a.k//d� .k/

D p.cit D k jcŒ�it �/p.hit ja.k/; c; hŒ�it �/

D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

nŒ�it �;k

n � 1 C �
p.hit ja

.k/ ; mŒ�it�;k/ if k D ci 0

t0
for some i 0

t 0 ¤ it

�

n � 1 C �

X

a0

p.hit ja
0/p.a0/ if k ¤ ci 0

t0
for all i 0

t 0 ¤ it

(11)
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where Œ�it � denotes the set of indices excluding it ; nŒ�it �;k represents the number of ci 0

t0
for i 0

t 0 ¤ it

that are equal to k; n represents the total number of instances sampled so far; and mŒ�it �;k denotes the

sufficient statistics m associated with all haplotype instances originating from ancestor k, except hit .

This expression is simply Bayes theorem with p.hit ja
.k/; c; hŒ�it �/ playing the role of the likelihood and

p.cit D k jcŒ�it �/ playing the role of the prior. The likelihood p.hit ja
.k/; mŒ�it �;k/ is obtained by integrating

over the parameter � .k/ , as in Equation (7), up to a normalization constant:

p.hit ja
.k/; mŒ�it �;k/ / R.˛h; ˇh/

�.˛h C mit ;k/�.ˇh C m0
it ;k

/

�.˛h C ˇh C mit ;k C m0
it ;k

/

�

1

jBj � 1

�m0

it ;k

; (12)

where mit ;k D mŒ�it �;k C
P

j I.hit ;j D a.k/

j / and m0
it ;k

D m0
Œ�it �;k

C
P

j I.hit ;j ¤ a.k/

j /, both functions

of hit (note that mit ;k C m0
it ;k

D nJ ).3 It is easy to see that the normalization constant is the marginal

likelihood p.mŒ�it �;k j a.k//, which leads to:

p.hit ja
.k/; mŒ�it �;k/

D
�.˛h C mit ;k/�.ˇh C m0

it ;k
/

�.˛h C mŒ�it �;k/�.ˇh C m0
Œ�it �;k

/

�.˛h C ˇh C .nk � 1/J /

�.˛h C ˇh C nkJ /

�

1

jBj � 1

�J

: (13)

For p.hit ja/, the computation is similar, except that the sufficient statistics mŒ�it �;k are now null (i.e., no

previous matches with a newly instantiated ancestor):

p.hit ja/ D R.˛h; ˇh/
�.˛h C mit /�.ˇh C m0

it
/

�.˛h C ˇh C J /

�

1

jBj � 1

�m0

it

; (14)

where mit D
P

j I.hj;it D aj / and m0
it

D J � mit ;k are the relevant sufficient statistics associated only

with haplotype instance hit . The conditional probability for a newly proposed equivalence class k that

is not populated by any previous samples requires a summation over all possible ancestors: p.hit / D
P

a0 p.hit ja
0/p.a0/. Since the gamma function does not factorize over loci, computing this summation

takes time that is exponential in the number of loci. To skirt this problem we endow each locus with its

own mutation parameter � .k/

j , with all parameters admitting the same prior Beta.˛h; ˇh/.4 This gives rise

to a closed-form formula for the summation and also for the normalization constant in Equation (11). It is

also, arguably, a more accurate reflection of reality. Specifically,

p.hit ja/ D
Y

j

R.˛h; ˇh/
�.˛h C mit ;j /�.ˇh C m0

it ;j /

�.˛h C ˇh C 1/

�

1

jBj � 1

�m0

it ;j

D
Y

j

�

˛h

˛h C ˇh

�

I.hit ;j Daj / � ˇh

.jBj � 1/.˛h C ˇh/

�

I.hit ;j ¤aj /

: (15)

Assuming that loci are also independent in the base measure p.a/ of the ancestors and that the base

measure is uniform, we have:

3Recall that in Subsection 2.2 we use the symbol mk to denote the count of matching SNP alleles in those individual

haplotypes associated with ancestor a.k/ (and m0
k

for those inconsistent with the ancestor a.k/). Here, we use a variant

of these symbols to denote the pair of random counts (as indicated by the additional subscript it ) resulting from the

original mk (or m0
k

) for individual haplotypes known to associate with a.k/ plus a randomly assigned haplotype hit

(whose actual associated ancestor is unknown).
4Note that now we also need to split counts mŒ�it �;k , mit ;k and mit into site-specific counts, mŒ�it �;k;j , mit ;k;j

and mit ;j , respectively, where j denotes a single SNP site.
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X

a

p.hit ja/p.a/ D
Y

j

 

X

l2B

p.aj D l/p.hit ;j jaj D l/

!

D
Y

j

 

X

l2B

1

jBj

�

˛h

˛h C ˇh

�I.hit ;j Dl/ �
ˇh

.jBj � 1/.˛h C ˇh/

�I.hit ;j ¤l/
!

D

�

1

jBj

�J

: (16)

In this case (that each locus has its own mutation parameter), the conditional likelihood computed in

Equation (13) is:

p.hit ;j ja.k/

j ; mŒ�it�;k;j /

D
Y

j

�

˛h C mŒ�it �;k;j

˛h C ˇh C nk � 1

�

I.hit ;j Da
.k/

j
/
 

ˇh C m0
Œ�it �;k;j

.jBj � 1/.˛h C ˇh C nk � 1/

!I.hit ;j ¤a
.k/

j
/

: (17)

Note that during the sampling of cit , the numerical values of cit are arbitrary, as long as they index distinct

equivalence classes.

Now we need to sample the ancestor template a.k/, where k is the newly sampled ancestor index for cit .

When k is not equal to any other existing index ci 0

t0
, a value for ak needs to be chosen from p.ajhit /,

the posterior distribution of A based on the prior p.a/ and the single dependent haplotype hit . On the

other hand, if k is an equivalence class populated by previous samples of ci 0

t0
, we draw a new value of

a.k/ from p.ajfhit ; W cit D kg/. If, after a new sample of cit , a template is no longer associated with

any haplotype instance, we remove this template from the pool. The conditional distribution for this Gibbs

step is therefore:

p.a.k/ ja.�k/; h; c/ D p.a.k/jfhit ; W cit D kg/ D
p.fhit ; W cit D kgja.k//

X

a

p.fhit ; W cit D kgja.k/ D a/

D
Y

j

p.mk;j ja.k/

j /
X

l2B

p.mk;j ja.k/

j D l/
: (18)

We can sample a.k/

1 ; a.k/

2 ; : : : ; sequentially:

p.a.k/

j jfhit ;j W cit D kg/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1

Z
p.hit ;j ja.k/

j /

D

�

˛h

˛h C ˇh

�

I.hit ;j Da
.k/

j
/ � ˇh

.jBj � 1/.˛h C ˇh/

�

I.hit ;j ¤a
.k/

j
/

if k is not previously instantiated

1

Z
p.fhit ;j W cit D kgja.k/

j /

D
1

Z

�.˛h C mk;j /�.ˇh C m0
k;j

/

�.˛h C ˇh C nk/ � .jBj � 1/m0

k;j

D
�.˛h C mk;j /�.ˇh C m0

k;j
/=.jBj � 1/m0

k;j

X

l2B

�.˛h C mk;j .l//�.ˇh C m0
k;j .l//=.jBj � 1/m0

k;j
.l/

if k is previously instantiated,

(19)



BAYESIAN HAPLOTYPE INFERENCE VIA THE DIRICHLET PROCESS 277

where mk;j (respectively, m0
k;j

) is the number of allelic instances originating from ancestor k at locus j

that are identical to (respectively, different from) the ancestor, when the ancestor has the pattern a.k/

j ; and

mk;j .l/ (respectively, m0
k;j

.l/) is the value of mk;j (respectively, m0
k;j

) when a.k/

j D l .5

We now proceed to the second sampling stage, in which we sample the haplotypes hit . We sample each

hit ;j , for all j; i , and t , sequentially according to the following conditional distribution:

p.hit ;j jhŒ�.i;j /�; hiNt ;j ; c; a; g/ / p.gi jhit ;j ; hiNt ;j ; uŒ�.i;j /�/p.hit ;j ja.k/

j ; mŒ�.it;j /�;k/

D Rg

�.˛g C u/�.ˇg C .u0 C u00//

�.˛g C ˇg C IJ /
Œ�1�u

0

Œ�2�u
00

� Rh

�.˛h C mit ;k;j /�.ˇh C m0
it ;k;j

/

�.˛h C ˇh C nk/ � .jBj � 1/
m0

it ;k;j

; (20)

where Œ�.it ; j /� denotes the set of indices excluding .it ; j / and mit ;k;j D mŒ�.it ;j /�;k;j C I.hit ;j D a.k/

j /

(and similarly for the other sufficient statistics). Note that during each sampling step, we do not have to

recompute the �.�/, because the sufficient statistics are either not going to change (e.g., when the newly

sampled hit ;j is the same as the old sample), or only going to change by one (e.g., when the newly sampled

hit ;j results in a change of the allele). In such cases the new gamma function can be easily updated from

the old one.

3.2. A Metropolis-Hasting sampling algorithm

Note that for a long list of loci, a prior p.a/ that is uniform over all possible ancestral template

patterns will render the probability of sampling a new ancestor infinitesimal, due to the small value of the

smoothed marginal likelihood of any haplotype pattern hit , as computed from Equation (11). This could

result in slow mixing. An alternative sampling strategy is to use a partial Gibbs sampling strategy with

the following Metropolis-Hasting updates, which could allow more complex p.a/ (e.g., non-factorizable

and non-uniform) to be readily handled. To sample the equivalence class of hit from the target distribution

�.cit / D p.cit jcŒ�it �; h; a/ described in Equation (11), consider the following proposal distribution:

q.c�
it

D kjcŒ�it �/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

nŒ�it �;k

n � 1 C �
W if k D ci 0

t0
for some i 0

t 0 ¤ it

�

n � 1 C �
W if k ¤ ci 0

t0
for all i 0

t 0 ¤ it

(21)

Then we sample a
.c�

it
/

from the prior p.a/. For the target distribution p.cit D kjcŒ�it �; h; a/, the proposal

factor cancels when computing the acceptance probability � , leaving:6

�.c�
it

; cit / D min

"

1;
p.hit ja

c�

it ; c; hŒ�it �/

p.hit ja
cit ; c; hŒ�it �/

#

: (23)

In practice, we found that the above modification to the Gibbs sampling algorithm leads to substantial

improvement in efficiency for long haplotype lists (even with a uniform base measure for A), whereas for

short lists, the Gibbs sampler remains better due to the high (100%) acceptance rate.

5Note that here the counts mk (and m0
k

) vary with different possible configurations of the ancestor a.k/ given h,

unlike previously in Eqs. (12)–(17), in which they vary with different possible configurations of hit given a.k/.
6The cancellation of the proposal in � can be seen from the following derivation:

q.cit jcŒ�it �/

q.c�
it

jcŒ�it �/

�.c�
it

/

�.cit /
D

q.cit jcŒ�it �/

q.c�
it

jcŒ�it �/

p.c�
it

jcŒ�it �; h; a/

p.cit jcŒ�it �; h; a/
D

q.cit jcŒ�it �/

q.c�
it

jcŒ�it �/

p.c�
it

jcŒ�it �/p.hit ja
.c�

it
/
; c; hŒ�it �/

p.cit jcŒ�it �/p.hit ja.cit
/; c; hŒ�it �/

D
p.hit ja

.c�

it
/
; c; hŒ�it �/

p.hit ja.cit
/; c; hŒ�it �/

; (22)
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3.3. A sketch of MCMC strategies for the Pedi-Haplotyper model

The MCMC sampling strategy for the Pedi-haplotype model is similar to that of the basic DP-haplotyper

described above, except that we need to sample a few more variables on top of the DP-haplotyper model,

which requires collecting a few more sufficient statistics for updating the predictive distributions of these

variables. In addition to the sufficient statistics m (for the consistency between the ancestral and individual

haplotypes (i.e., the number of cases of which the ancestral and individual haplotypes agree in a single

sweep during sampling), and u (for the consistency between the individual haplotypes and genotype (i.e.,

the number of cases of which the genotype and its corresponding haplotype pair agree in a single sweep

during sampling), needed in the DP-haplotyper model, we need to update the following sufficient statistics

during each sampling step that sweeps all the random variables:

� w: the sufficient statistics of the transition probability �,

wrr 0 D
X

t

X

i

X

j

I.sit ;j D r/I.sit ;j C1 D r 0/:

If we prefer to model the recombination rates in males and females differently, then we compute wt

separately for t D 0 and t D 1.
� v: the sufficient statistics of the single generation inheritance (i.e., non-mutation) rate �,

v D
X

t

X

r

X

i

X

j

I.hit ;j D h�r .it /;j /I.sit ;j D r/:

The ancestral template indicators associated with the founding subjects and the ancestor pool can be

sampled as in the basic DP-haplotyper model. Now we derive the additional predictive distributions needed

for collapsed Gibbs sampling for the Pedi-haplotyper model. For each predictive distribution of the hidden

variables, we integrate out the model parameters given their (conjugate) priors.

� Sample a founding haplotype:

p.hit ;j jhŒ�.i;j /�; hiNt ;j ; s; c; a; g/

D p.hit ;j jhiNt ;j ; h�.i/;j ; s�.i/;j ; acit
;j ; gi ; vŒ�.i;j /�; uŒ�.i;j /�; mŒ�.i;j /�/

/ p.hit ;j ; h�.i/;j ; gi jhiNt ;j ; s�.i/;j ; acit
;j ; vŒ�.i;j /�; uŒ�.i;j /�; mŒ�.i;j /�/

D p.h�.i/;j jhit ;j ; hiNt ;j ; s�.i/;j ; vŒ�.i;j /�/p.gi jhit ;j ; hiNt ;j ; uŒ�.i;j /�/p.hit ;j jacit
;j ; mŒ�.i;j /�/

D Rm

�.˛m C v.hit ;j //�.ˇm C v0.hit ;j //

�.˛m C ˇm C v.hit ;j / C v0.hit ;j //

� Rg

�.˛g C u.hit ;j //�.ˇg C u0.hit ;j / C u00.hit ;j //

�.˛m C ˇm C IJ /
�u0

1 �u00

2

� Rh

�.˛h C m.hit ;j //�.ˇh C m0.hit ;j //

�.˛h C ˇh C m.hit ;j / C m0.hit ;j // � .jBj � 1/m0.hit ;j /
; (24)

where h�.i/;j refers to the allele in the child of i that is inherited from i . For simplicity, we suppose

only one child. For the case of multiple children, the first term of Equation (24) becomes a product of

such terms, each corresponding to one child.
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� To sample a non-founding haplotype:

p.hit ;j jhŒ�.i;j /�; hiNt ;j ; s; c; a; g/

D p.hit ;j jhŒ�.i;j /�; hiNt ;j ; h�.i/;j ; h�.it /0;j ; h�t .it /;j ; sit ;j ; s�.i/;j ; gi ; vŒ�.i;j /�; uŒ�.i;j /�/

/ p.hit ;j ; h�.i/;j ; gi jhŒ�.i;j /�; hiNt ;j ; h�.it/0;j ; h�t .it /;j ; sit ;j ; s�.i/;j ; vŒ�.i;j /�; uŒ�.i;j /�/

D p.hit ;j jh�.it /0;j ; h�.it/1;j ; sit;j ; vŒ�.i;j /�/p.h�.i/;j jhit ;j ; hiNt ;j ; s�.i/;j ; vŒ�.i;j /�/

p.gi jhit ;j ; hiNt ;j ; uŒ�.i;j /�/

D Rm

�.˛m C v.hit ;j //�.ˇm C v0.hit ;j //

�.˛m C ˇm C v.hit ;j / C v0.hit ;j //

� Rg

�.˛g C u.hit ;j //�.ˇg C u0.hit ;j / C u00.hit ;j //

�.˛m C ˇm C IJ /
�u0

1 �u00

2 : (25)

� Sample the segregation variable:

p.sit ;j jh; sŒ�.i;j /�; siNt ;j ; c; a; g/

D p.sit ;j jhit ;j ; h�0.it /;j ; h�1.it /;j ; sit ;j �1; sit ;j C1; vŒ�.i;j /�; wŒ�.it ;j /�/

/ p.hit ;j jh�0.it /;j ; h�1.it /;j ; sit ;j ; vŒ�.i;j /�/p.sit ;j �1jsit ;j ; wŒ�.it ;j /�/

D p.sit ;j jsit ;j C1; wŒ�.it ;j /�/

D Rm

�.˛m C v.sit ;j //�.ˇm C v0.sit ;j //

�.˛m C ˇm C v.sit ;j / C v0.hit ;j //

� Rs

�.˛s C w00.sit ;j / C w11.sit ;j //�.ˇs C Cw01.sit ;j / C w10.sit ;j //

�.˛s C ˇs C jwj/
;

(26)

where jwj D
P

r;r 0 wr;r 0.

4. EXPERIMENTAL RESULTS

We validated our algorithm by applying it to simulated and real data and compared its performance

to that of the state-of-the-art PHASE algorithm (Stephens et al., 2001) and other current algorithms. We

report on the results of both variants of our algorithm: the Gibbs sampler, denoted DP(Gibbs), and the

Metropolis-Hasting sampler, denoted DP(MH). Throughout the experiments, we set the hyperparameter �

in the Dirichlet process to be roughly 1% of the population size; i.e., for a data set of 100 individuals,

� D 1. We used a burn-in of 2000 iterations (or 4000 for datasets with more than 50 individuals), and

used the next 6000 iterations for estimation.

4.1. Simulated data

In our first set of experiments we applied our method to simulated data (“short sequence data”) from

Stephens et al. (2001). This data contains sets of 2n haplotypes, randomly paired to form n genotypes, under

an infinite-sites model with parameters � D 4 and R D 4 determining the mutation and recombination

rates, respectively (Stephens et al., 2001). We used the first 40 datasets for each combination of individuals

and sites, where the number of individuals ranged between 10 and 50, and the number of sites ranged

between 5 and 30.

To evaluate the performance of the algorithms we used the following error measures: errs, the ratio of

incorrectly phased SNP sites over all non-trivial heterozygous SNPs (excluding individuals with a single
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TABLE 1. PERFORMANCE ON DATA FROM STEPHENS ET AL. (2001)

DP (MH) PHASE
No. of

individuals errs erri ds errs erri ds

EM,

erri

10 0.060 0.216 0.051 0.046 0.182 0.054 0.424

20 0.039 0.152 0.039 0.029 0.136 0.046 0.296

30 0.036 0.121 0.038 0.024 0.101 0.027 0.231

40 0.030 0.094 0.029 0.019 0.071 0.026 0.195

50 0.028 0.082 0.024 0.019 0.072 0.025 0.167

Average 0.039 0.133 0.036 0.027 0.112 0.036 0.263

The results for the EM algorithm are adapted from Stephens et al. (2001).

heterozygous SNP); erri , the the ratio of incorrectly phased individuals over all non-trivial heterogeneous

individuals; and ds, the switch distance, which is the number of phase flips required to correct the predicted

haplotypes over all non-trivial heterogeneous SNPs. The results are summarized in Table 1. Overall, we

perform slightly worse than PHASE on the first two measures, and similar to PHASE on the switch distance

measure (which uses 100,000 sampling steps). Both algorithms provide a substantial improvement over EM.

4.2. Real data

We applied our algorithm to two real datasets and compared its performance to that of PHASE (Stephens

et al., 2001) and other algorithms.

The first dataset contains the genotypes of 129 individuals over 103 polymorphic sites (Daly et al.,

2001). In addition it contains the genotypes of the parents of each individual, which allows the inference

of a large portion of the haplotypes as in Eskin et al. (2003). The results are summarized in Table 2. It is

apparent that the Metropolis-Hasting sampling algorithm significantly outperforms the Gibbs sampler, and

is to be preferred given the relatively limited number of sampling steps (� 6000). The overall performance

is comparable to that of PHASE and better than both HAP (Halperin and Eskin, 2002; Eskin et al., 2003)

and HAPLOTYPER (Niu et al., 2002).

TABLE 2. PERFORMANCE ON THE DATA OF DALY ET AL. (2001), USING THE BLOCK STRUCTURE

PROVIDED BY HALPERIN AND ESKIN (2002)

DP (Gibbs) DP (MH) PHASE
Block

ID Length errs erri ds errs erri ds errs erri ds

HAP,

errs

HAPLO-

TYPER,

errs

1 14 0.223 0.485 0.229 0 0 0 0.003 0.030 0.003 0.007 0.039

2 5 0 0 0 0.007 0.026 0.007 0.007 0.026 0.007 0.036 0.065

3 5 0 0 0 0 0 0 0 0 0 0 0.008

4 11 0.143 0.262 0.128 0 0 0 0 0 0 0.015 —

5 9 0.020 0.066 0.020 0.011 0.033 0.011 0.011 0.033 0.011 0.027 0.151

6 27 0.071 0.191 0.074 0.005 0.043 0.005 0 0 0 0.018 0.041

7 7 0.005 0.018 0.005 0.005 0.018 0.005 0.005 0.018 0.005 0.068 0.214

8 4 0 0 0 0 0 0 0 0 0 0 0.252

9 5 0.029 0.097 0.029 0.012 0.032 0.012 0.012 0.032 0.012 0.057 0.152

10 4 0.007 0.025 0.007 0.007 0.025 0.007 0.008 0.025 0.008 0.042 0.056

11 7 0.010 0.034 0.005 0.005 0.017 0.005 0.011 0.034 0.011 0.033 0.093

12 5 0.010 0.037 0.020 0 0 0 0 0 0 0 0.077

Average 8.58 0.043 0.101 0.043 0.004 0.016 0.004 0.005 0.017 0.005 0.025 0.104

The results of HAP and HAPLOTYPER are adapted from Halperin and Eskin (2002). Since the error rate in Halperin and Eskin

(2002) uses the number of both heterozygous and missing sites as the denominator, whereas we used only the non-trivial heterozygous

ones, we rescaled the error rates of the two latter methods to be comparable to ours.
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FIG. 3. The top 10 ancestral templates during Metropolis-Hasting sampling for block 1 of the data of Daly et al.

(2001). (The numbers in the panels are the posterior means of the frequencies of each template.) (a) Immediately after

burn-in (first 2000 samples). (b) 3000 samples after burn-in. (c) 6000 samples after burn-in.

It is important to emphasize that our methods also provide a posteriori estimates of the ancestral pool of

haplotype templates and their frequencies. We omit a listing of these haplotypes, but provide an illustrative

summary of the evolution of these estimates during sampling (Fig. 3).

The second dataset contains genotype data from four populations, 90 individuals each, across several

genomic regions (Gabriel et al., 2002). We focused on the Yoruban population (D), which contains 30 trios

of genotypes (allowing us to infer most of the true haplotypes) and analyzed the genotypes of 28 individuals

over four medium-sized regions. The results are summarized in Table 3. All methods yield higher error

rates on these data, compared to the analysis of the data of Daly et al. (2001), presumably due to the low

sample size. In this setting, over all but one of the four regions, our algorithm outperformed PHASE on all

three types of error measures. A preliminary analysis suggests that our performance gain may be due to

the bias toward parsimony induced by the Dirichlet process prior. We found that the number of template

haplotypes in our algorithm is typically small, whereas in PHASE the haplotype pool can be very large

(e.g., region 7b has 83 haplotypes, compared to 10 templates in our case and 28 individuals overall).

In terms of computational efficiency, we noticed that PHASE typically required 20,000–100,000 steps

until convergence, while our DP-based method required around 2000–6000 steps to convergence (Fig. 4a).

The posterior distribution of K, the number of ancestor haplotypes underlying the population, is sharply

peaked at a single mode (Fig. 4b).

5. CONCLUSIONS

We have proposed a Bayesian approach to the modeling of genotypes based on a Dirichlet process

prior. We have shown that the Dirichlet process provides a natural representation of uncertainty regarding

the size and composition of the pool of haplotypes underlying a population. We have developed several

Markov chain Monte Carlo algorithms for haplotype inference under either a basic DP mixture haplotype

model intended for an iid population, or, an extended graphical DP mixture model—the Pedi-haplotyper

model—for a population containing both iid subjects and subjects coupled by partial pedigrees. The ex-

TABLE 3. PERFORMANCE ON THE DATA OF GABRIEL ET AL. (2002)

DP (MH) PHASE

Region Length errs erri ds errs erri ds

16a 13 0.185 0.480 0.141 0.174 0.440 0.130

1b 16 0.100 0.250 0.160 0.200 0.450 0.180

25a 14 0.135 0.353 0.115 0.212 0.588 0.212

7b 13 0.105 0.278 0.066 0.145 0.444 0.092

Average 14 0.131 0.340 0.121 0.183 0.481 0.154
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FIG. 4. (a) Sampling trace of the number of population haplotypes derived from the genotypes. As can be seen,

the Markov chain starts from a rather non-parsimonious estimation, and converges to a parsimonious solution after

about two thousand samples. (b) The histogram representation of the posterior distribution of the number of ancestors

obtained via Gibbs sampling.

periments on the basic DP mixture haplotype model show that this model leads to effective inference

procedures for inferring the ancestral pool and for haplotype phasing based on a set of genotypes. The

model accommodates growing data collections and noisy and/or incomplete observations. The approach

also naturally imposes an implicit bias toward small ancestral pools, reminiscent of parsimony methods,

doing so in a well-founded statistical framework that permits errors.

Our focus here has been on adapting the technology of the Dirichlet process to the setting of the standard

haplotype phasing problem. But an important underlying motivation for our work, and a general motivation

for pursuing probabilistic approaches to genomic inference problems, is the potential value of our model

as a building block for more expressive models. In particular, as in Greenspan and Geiger (2004) and

Lauritzen and Sheehan (2002), the graphical model formalism naturally accommodates various extensions,
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such as segmentation of chromosomes into haplotype blocks and the inclusion of pedigree relationships.

In Subsection 2.3, we have outlined a preliminary extension of the basic Dirichlet process mixture model

that incorporates pedigree relationships and briefly discussed how to model realistic biological processes

that might influence haplotype formation and diversification, such as recombination and mutation during

single generation inheritance. We recognize that many other important issues also deserve careful attention,

for example, haplotype recombinations among the ancestral haplotype pools (so far, we assume that these

ancestral haplotypes relate to modern individual haplotypes only via mutations), aspects of evolutionary

dynamics (e.g., coalescence, selection), and linkage analysis under joint modeling of complex traits and

haplotypes. We believe that the graphical model formalism we proposed can readily accommodate such

extensions. In particular, it appears reasonable to employ an ancestral recombination hypothesis (rather than

single generation recombination) to account for common individual haplotypes that are distant from any

single ancestral haplotype template, but can be matched piecewise to multiple ancestral haplotypes. This

may be an important aspect of chromosomal evolution and can provide valuable insight into the dynamics of

populational genetics in addition to point-mutation-based coalescence theory, and can potentially improve

the efficiency and quality of haplotype inference. The Dirichlet process parameterization also provides a

natural upgrade path for the consideration of richer models; in particular, it is possible to incorporate more

elaborate base measures G0 into the Dirichlet process framework—the coalescence-based distribution of

(Stephens et al., 2001) would be an interesting choice. From an implementation point of view, our model, as

many other basic haplotype inference programs, can be straightforwardly wrapped into a simple Partition-

Ligation scheme (or more sophisticated HMM-based model) as in Niu et al. (2002) and Stephens et al.

(2001), to phase long sequences of SNP genotype data.
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