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ABSTRACT

Motivation: Large-scale association studies, investigating the

genetic determinants of a phenotype of interest, are producing increas-

ing amounts of genomic variation data on human cohorts. A funda-

mental challenge in these studies is the detection of genotypic

patterns that discriminate individuals exhibiting the phenotype under

study from individuals that do not posses it. The difficulty stems from

the large number of single nucleotide polymorphism (SNP) combi-

nations that have to be tested. The discrimination problem becomes

even more involved when additional high-throughput data, such as

gene expression data, are available for the same cohort.

Results: We have developed a graph theoretic approach for identify-

ing discriminating patterns (DPs) for a given phenotype in a genotyped

population. The method is based on representing the SNP data as a

bipartite graph of individuals and their SNP states, and identifying fully

connected subgraphs of this graph that relate individuals enriched

for a given phenotypic group. The method can handle additional data

types such as expression profiles of the genotyped population. It is

reminiscent of biclustering approaches with the crucial difference

that its search process is guided by the phenotype under considera-

tion in a supervised manner. We tested our approach in simulations

and on real data. In simulations, our method was able to retrieve

planted patterns with high success rate. We then applied our approach

to a dataset of 72 breast cancer patients with available gene express-

ion profiles, genotyped over 695 SNPs. We detected several DPs that

were highly significant with respect to various clinical phenotypes, and

investigated the groups of patients and the groups of genes they

defined. We found the patient groups to be highly enriched for other

phenotypes and to display expression coherency among their profiles.

The gene groups displayed functional coherency and involved

genes with known role in cancer, providing additional support to their

involvement.

Availability: The program is available upon request.

Contact: roded@post.tau.ac.il

1 INTRODUCTION

The dissection of complex diseases is one of the greatest challenges

of human genetics with important clinical and scientific app-

lications. High-throughput technologies yield large-scale datasets

on genomic variation in diverse populations, allowing the study of

these variations and their association with disease and other

complex traits. A fundamental problem in interpreting this wealth

of data is to pinpoint genotype patterns that discriminate phenotype

classes from one another (Moore and Ritchie, 2004).

Traditionally, associations were sought between single genetic

markers and disease (Thomas, 2004; Martin et al., 2001). Very few

methods exist for identifying larger sets of single nucleotide poly-

morphisms (SNPs) that are associated with a phenotype of interest

(Marchini et al., 2005). However, existing empirical evidence

from model organisms (Segre et al., 2005) and human (Zerba

et al., 2000) studies suggests that interactions among loci contribute

broadly to complex traits.

Recently, several groups have conducted association studies

that combine genotype data with expression profiling of the popu-

lation under study (Sklan et al., 2004; Tanahashi et al., 2005). While

much of our understanding of the genetic base of disease comes

from identifying polymorphisms that affect protein structure or

integrity, it is clear that RNA and protein abundance also drive

disease processes (Takamizawa et al., 2004; Sorlie et al., 2001).
In this setting, the discrimination challenge is even more involved

and calls for pinpointing subsets of SNP and gene expression states

(features) that allow the separation of a given phenotypic group

from all others.

A possible approach to the problem is to apply biclustering

algorithms to the data, searching for subsets of individuals that

are coherent in their behavior across a subset of the features, as

is routinely done for gene expression datasets (Tanay et al., 2002;
Klugar et al., 2003). However, the obvious caveat of this approach is
that the phenotype information is ignored in the search process,

possibly yielding biclusters that exhibit no phenotypic coherence.

In this work, we present a graph theoretic approach to the

discrimination problem, which directly searches for subsets of

individuals that are both coherent in their phenotype information

and in their feature data. Our approach is based on representing the

feature data as a weighted bipartite graph in which vertices on one

side represent individuals and their associations with the phenotype

of interest, and vertices on the other side represent feature states.

Edges in this graph connect individuals and the feature states they

exhibit. The discriminating pattern (DP) problem can then be recast

into that of finding high weight bicliques (fully connected sub-

graphs) in this graph. We first lay the theoretical foundations to

this computational problem and prove its computational hardness;

we then give a branch and bound like algorithm for the problem,

which is shown to have good retrieval properties in simulations.�To whom correspondence should be addressed.
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Finally, we apply our approach to a combined SNP-expression data

collected from 72 breast cancer patients (Kristensen et al., 2006).
The data consist of 695 genotyped SNPs in selected genes from

the reactive oxygen species (ROS) biochemical and signaling path-

ways, and expression levels of 3351 transcripts in tumor biopsies

(Sorlie et al., 2001, 2003). We detect several DPs that are highly

significant with respect to various clinical phenotypes, and invest-

igate the groups of patients and the groups of genes they define.

The rest of this paper is organized as follows: Section 2 presents

the DP problem and analyzes its complexity. Our algorithmic

approach to the problem is described in Section 3. Finally, Section

4 presents our simulation experiments and the application of the

method to real genotype and expression data.

2 PROBLEM DEFINITION

Let P denote the population under study and let (P+, P�) be a

partition of the population w.r.t. a certain phenotype, where P+

denotes the phenotypic class of interest, and P� ¼ P\P+. We call

the individuals in P+ (P�) positives (negatives). Any biological

attribute measured across the population, such as SNP states or

gene expression levels, is called a feature. We assume that features

can attain a set of discrete values, called states. The dataset can

be represented as a feature matrix whose rows correspond to indi-

viduals and whose columns correspond to features. The entries of

the matrix reflect the values of the biological attributes across the

population. Given such a feature matrix, and a phenotypic group of

interest, the goal is to identify a subset of features and an assign-

ment of states to those features, such that individuals satisfying this

assignment are enriched with the phenotype in question.

To formally define the DP problem, we first model the data using

a bipartite graph G ¼ (P, F, E), where P is the set of individuals in

the studied population and F is the set of all feature states. The edges

in E connect each individual to the feature states he/she possesses.

For a vertex v 2 P[F denote its set of neighbors in G by N(v). For a
subset V � P [ F, let NðVÞ ¼ ð [v2V NðvÞÞnV. For each individual

p2P, we assign a weight w(p) to its corresponding vertex in G. w(p)
is set to 1 if the individual belongs to the phenotypic group under

study, and �1 otherwise. We focus on bicliques of G, which rep-

resent subsets of individuals sharing certain feature patterns. We

define the size of a biclique as the number of individuals it contains

and the weight of a biclique as the sum of weights of the individuals

it contains, i.e. the number of positives it contains minus the number

of negatives it contains.

How does one measure pattern discrimination? An exact score

is the hypergeometric p-value of the set of individuals satisfying

the pattern, computed according to the phenotype in question. An

approximate score that is much more efficient to compute is the

weight of the set of individuals satisfying this pattern, i.e. the num-

ber of positives minus the number of negatives among them.

Accepting the latter score, the discrimination problem is reduced

to that of finding high scoring maximal bicliques in G. In fact, the

crucial point is that each biclique is maximal w.r.t. individuals. This

ensures that the pattern defined by the biclique is not satisfied by

negative individuals outside the biclique. The problem is formally

defined as follows:

DEFINTION 1. (DP). Given a bipartite graph G ¼ (P, F, E, w)
with w:P!{�1,1}, find a feature subset F0�F such that the

biclique defined by F0 and P0 ¼ {p 2 P:N(p)�F0} has maximum
weight.

In Appendix A we show that the decision version of DP is

NP-hard. A branch and bound like approach to the problem is

presented in the next section.

3 ALGORITHMIC APPROACH

3.1 Biclique identification

While there are previous studies of biclique identification in the

literature (Tanay et al., 2002; Hochbaum, 1998; Bar-Yehuda et al.,
2002), our instances differ in three important aspects: (1) vertex

weights can be both positive and negative; (2) vertex degrees on

both sides of the bipartite graph are not bounded and (3) solution

bicliques are maximal with respect to the elements of P, i.e. no
individual outside the biclique is fully connected to the features of

the biclique. Thus, we cannot easily adapt approaches that search for

maximum node bicliques (Hochbaum, 1998), or approaches that

assume some degree bound on one of the sides of the bipartite

graph (Tanay et al., 2002). Instead, to tackle DP we use a greedy

search algorithm, which we describe next.

The input to the algorithm is a weighted bipartite graph G ¼ {P,
F, E, w} with w:P!{�1,1}. The algorithm returns a collection of

feature subsets, each inducing a high scoring biclique. It consists of

a series of recursive steps, gradually building the feature subsets

to be returned. At each step the algorithm greedily chooses possible

extensions to the current subsets and creates a collection of smaller

instances of the problem to be passed on to subsequent recursion

steps. The search starts at all possible single features and builds a

search tree around each of them. The search tree is characterized by

two parameters: k, denoting the maximum degree of a node in the

tree, and f, denoting the maximum depth of the tree.

Starting with a single feature node, vroot2F, the algorithm

chooses the k best candidate extensions v1. . .vk 2 F \{vroot},
where each candidate vi is scored based on the weight of the biclique
it induces with vroot, i.e. scoreðvÞ ¼

P
p2NðvrootÞ\NðvÞ wðpÞ. For each

pair ðvi‚vrootÞ‚1 � i � k, the algorithm combines the two nodes

and creates a new, smaller instance of the problem G0 ¼ {P0, F0, E0}
where F

0 ¼ F \fvig‚P
0 ¼ NðvrootÞ \ NðviÞ and E

0 ¼ E \ ðP0 · F
0 Þ.

Each new instance is then passed on to the next recursive step.

This process continues until the recursion reaches a depth of f.

Throughout its execution, the algorithm maintains a hash table

where every feature subset visited during the search process is

recorded in order to avoid repetitive computations. When the

algorithm terminates, all subsets in the hash table whose corres-

ponding biclique’s score exceeds a certain threshold (Th) are

output. The algorithm is summarized in Figure 1.

In our implementation f was set to 5, and k changed with the

tree level: its value was set to 10 at the first level and 5 at all other

levels. The running time of the algorithm for a typical input matrix

with 50 individuals and 2000 features was <3min, on average (using

a single processor).

3.2 Significance assessment and post-processing

The computed feature subsets are subjected to several filtering

steps that produce a set of significant, non-redundant patterns.

Each subset induces a biclique whose set of individuals are enriched

with the phenotype of interest. To evaluate the chance of observing
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such phenotype enrichment at random, we compare the returned

bicliques to those obtained on randomized instances, in which the

phenotype labeling is randomly permuted. For each random

instance we record the highest scoring biclique of each size pro-

duced by our algorithm, and use these to rank and assign empirical

p-values to the bicliques we identified in the original instance.

The ranking is based on an exact hypergeometric score for each

biclique rather than the less-accurate weight score. Formally, a

biclique of size n that contains k positives is assigned the hyper-

geometric score HG( jP j ,jP+j, n, k), where

HGðN‚B‚n‚bÞ ¼
Xminfn‚Bg

m¼ b

�
B
m

��
N � B
n � m

�
�
N
n

� :

Finally, we use a greedy process to filter the significant bicliques

obtained, so that no bicliques share >50% of their edges (computed

w.r.t. the smaller biclique). We also add to each output biclique

additional features that are consistent with its patient set, whenever

possible, thus obtaining maximal bicliques.

The process that we apply identifies the significant bicliques of

each size. To estimate the false discovery rate (FDR) when com-

bining all sizes together we use a procedure by Yekutieli and

Benjamini (1999). For a given threshold p, on empirical p-values,
the expected FDR is pK/R, where K is the number of sizes possible,

and R is the total number of discoveries with empirical p-value
less than p. We set p so that the expected FDR of the discovered

bicliques is at most 10%.

The discrimination power of individual features within each

feature subset reported by the algorithm may vary. Thus, for

each subset F0 we compute a core, which consists of a maximal

subset of the features F0
C such that the enrichment of positives

induced by F0
C is significant given the enrichments attained by

all proper subsets of F0
C. Formally, let n ¼ jF0

C j and let

P1, . . . ,Pn denote the subsets of P induced by each of the (n �
1)-size subsets of F0

C. Let PC be the subset of individuals induced by

F0
C. For a subset Q � P, let Q+(Q�) denote the subset of positives

(negatives) in Q. We are interested in the probability to randomly

draw n subsets of P with the same sizes and scores as P1, . . . ,Pn

such that their intersection contains at least jPþ
C j positives and at

most jP�
C j negatives. To compute this score we use a method by S.

Kaplan (personal communication). For simplicity, we describe it for

n ¼ 2, but the same technique generalizes to any n. For n ¼ 2, this

excess significance is score ðF0
CÞ ¼

gðjPþ
C
j‚minðPþ

1
‚Pþ

2
Þ‚ 0‚ jP�

C jÞ
gð0‚minðPþ

1
‚Pþ

2
Þ‚ 0‚minðP�

1 ‚P
�
2 ÞÞ

‚

where

gða1‚a2‚b1‚b2Þ ¼
Xa2

pos¼a1

Xb2

neg¼b1

jPþj
pos

� �
·

jP�j
neg

� �
·

jPþj � pos

jPþ
1 j � pos

� �

·
jP�j � neg

jP�
1 j � neg

� �
·

jPþj � pos� ðjPþ
1 j � posÞ

jPþ
2 j � pos

� �

·
jP�j � neg� ðjP�

1 j � negÞ
jP�

2 j � neg

� �

4 EXPERIMENTAL RESULTS

To test our approach we first benchmarked it on simulated data

which preserves some of the attributes of the real data. Next, we

analyzed a genotype dataset of breast cancer patients. We began by

applying a standard unsupervised biclustering algorithm to find

bicliques without considering the phenotypic information. We

then proceeded to show the added value provided by considering

the phenotypic information available and applying our method.

Finally, we analyzed a combined genotype-expression dataset.

4.1 Simulations

To study the performance of our algorithm, we performed a com-

prehensive set of simulation experiments. The simulated datasets

were obtained by randomizing the real data that we subsequently

analyzed. The randomization process was applied to the bipartite

graph representing the real data, shuffling its edges while preserving

vertex degrees. We randomly assigned half of the individuals in

each simulation to be positives and the rest to be negatives.

The simulation tests were aimed at testing the ability of the

algorithm to retrieve true significant bicliques. To this end, we

planted within the randomized graphs bicliques of varying

significance levels (hypergeometric scores). The algorithm was

considered successful whenever it retrieved the planted biclique,

or a biclique containing the planted one that attains a higher sig-

nificance level. Figure 2 depicts the mean success rate in retrieving

the planted bicliques as a function of their significance levels. The

figure demonstrates that for high significance levels the planted

biclique is retrieved with high success rate, while for lower signi-

ficance levels (p > e�6) the performance drops; the latter drop in

performance is likely owing to a ‘masking’ effect of random

bicliques that attain higher significance levels. Indeed, as can be

Fig. 1. Pseudo code of the biclique identification algorithm. HG_Score(·)

computes the hyper geometric score of a biclique induced by a given feature

subset. ChooseCandidates(·, k) returns the best k candidate extensions

according to a given score.
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seen in Appendix B, the vast majority of random bicliques lie within

this range of significance levels.

4.2 Application to breast cancer data

To demonstrate our approach in the settings of a large-scale

association study, we applied it to a genotype-expression dataset

collected from a group of 72 breast cancer patients (Kristensen

et al., 2006). Blood samples of the patients were used to type

695 SNPs in selected genes from the ROS pathway. Gene expres-

sion profiles for 50 of these patients were collected from tumor

tissues, and include the expression levels of 3351 genes (Sorlie

et al., 2001, 2003). These expression data were normalized so

that the mean expression level per individual is zero.

The patients were assigned with six clinical phenotypes, includ-

ing response to treatment (ranging from 1 to 3, where 3 denotes a

poorer response), grade of tumor (denoting its histological form,

ranging from 1 to 3, with a higher grade being associated with

poorer prognosis), the mutational status (either mutated or normal)

of the TP53 gene (known to be associated with breast cancer and to

affect the outcome of cytotoxic treatment), tumor classification

according to Sorlie et al. (2001) (yielding five subtypes using a

hierarchical clustering of expression data), lymph node status (ran-

ging from 0 to 2, with a larger number denoting a more severe

spread), and its T category (the staging level of the tumor, ranging

from 1 to 4, denoting the tumor size, with category 4 denoting its

spread to the chest wall). Each of these phenotypes induces a par-

tition of the patients into several classes, or phenotypic groups. In

the following we describe the application of the algorithm to each

one of those classes.

4.3 Data modeling

We constructed a bipartite graph of individuals and features. Feature

vertices correspond to SNP or expression states. Each SNP is

represented by three feature vertices, corresponding to each of

the states it can attain. Each gene is represented by two vertices

reflecting up- or down-regulation of that gene compared with its

mean expression level across all patients (determined as one stand-

ard deviation above or below the mean, respectively). Edges in this

graph connect individuals to their corresponding features.

In a preprocessing step, we removed redundant features that

shared all but at most five of their neighboring individuals in the

bipartite graph. We also removed features that were connected to

>60% of the individuals, to avoid unspecific features and reduce the

computation time.

4.4 Treatment of missing data

Approximately 6.8% of the entries in the genotype-expression data-

set were missing, mainly owing to poor signal to background ratios

(Sorlie et al., 2001) or undetermined genotypes (Kristensen et al.,
2006). We chose to treat missing data as if the corresponding edges

did not exist (i.e. when the expression level of a certain gene in a

certain sample is unknown, we assume that the gene was not sig-

nificantly over- or under-expressed in that sample; similarly for

missing genotype data). To ensure that the obtained bicliques are

not influenced by biases in the missing data toward some of the

phenotype classes, we test for such bias explicitly. Define the back-

ground set of a biclique as the set of of patients who do not miss any

of the genotype or expression data of the biclique’s features. We test

whether this set is biased toward the phenotype class according to

which the biclique was computed using a hypergeometric score. We

discard bicliques whose hypergeometric p-value is <0.05.

4.5 Quality assessment

In order to evaluate the biological significance of the detected

bicliques we examined whether they carry biological information

in addition to the information related to the phenotype by which

they were computed. We used three different criteria to evaluate the

bicliques: enrichment of the patients in other phenotypic groups,

coherency of the expression profiles of the patients, and functional

enrichment of the genes participating in the bicliques. For all cri-

teria, the computed score is compared with 100 scores for random

sets of patients (in the first two cases) and of genes (in the third case)

of the same size, and the resulting empirical p-value is estimated and

reported.

Cross phenotype enrichment. Consider a biclique (P0, F0) construc-
ted according to a phenotype T, and suppose we wish to test the

enrichment of P0 w.r.t. to a different phenotype Z. Since Z and Tmay

be correlated, we cannot simply compute a hypergeometric score

w.r.t. Z; instead we should take this possible correlation into

account. To this end, we compute a hypergeometric-based

p-value that conditions on the enrichment of the biclique w.r.t.

T. Let (Z+, Z�) and (T+, T�) be the partitions induced by each of

the two phenotypes, and let k¼ jP0\T+j and m¼ jP0\Z+j. The cross
phenotype enrichment score is computed as

ProbðP0
‚ZjTÞ ¼

X
m1þm2�m

jTþ \ Zþj
m1

� �
·

jTþ \ Z�j
k � m1

� �
·

jT� \ Zþj
m2

� �
·

jT� \ Z�j
jP0 j � k � m2

� �

Tþ

k

� �
·

T�

jP0 j � k

� � ‚
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Fig. 2. Retrieval rate of planted bicliques is plotted as a function of their

significance levels (hypergeometric score). The data are binned according to

the significance scores of the planted bicliques, with�100 data points in each

bin. A polynomial spline of the success rate is provided to approximate the

mean trend.
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where m1 is restricted to the range ½maxf0‚k � jTþ \ Z�jg‚ jTþ \
Zþj� and m2 is restricted to the range ½maxf0‚ jP0 j � k � jT� \
Z�jg‚ jT� \ Zþj�. The cross phenotype score assigned to the bicli-

que is taken as the minimum over its cross phenotype enrichments

w.r.t. all phenotypes (other than T).
Gene expression coherency. We compare the pairwise cor-

relations among expression profiles of patients in a biclique to

those of random pairs of individuals using one-sided Wilcoxon

rank-sum test.

Functional enrichment. For each biclique, we consider all feature
nodes that represent expression states and are connected to >90% of

the patients in the biclique. We test the functional enrichment of

the corresponding gene set w.r.t. the gene ontology annotation

using a hypergeometric score.

4.6 Performance of unsupervised biclustering

Our first task was to assess the potential advantages of our approach

compared with extant unsupervised biclustering approaches. To

this end, we analyzed the genotype data in an unsupervised manner

using our in-house implementation of the SAMBA algorithm

(Tanay et al., 2002), a state-of-the-art biclustering algorithm.

SAMBA employs a likelihood ratio based scoring scheme to identi-

fy bicliques whose likelihood of occurrence in a random, degree

preserving graph is small1. Since the seeding approach of

SAMBA was infeasible in our setting (owing to the high degrees

on each side of the bipartite graph), we used our recursive search

procedure instead.

We evaluated the bicliques returned by SAMBA versus those

returned on randomized, degree preserving instances. For each

size separately, empirical p-values for bicliques of that size were

evaluated using the randomized instances (comparing the score of

the biclique to the maximum scores obtained for each of the ran-

domized instances). Overall, 117 bicliques had significantly high

scores. To test whether these bicliques were enriched for some

phenotype we proceeded as follows: For each biclique we computed

its enrichment w.r.t. each of the phenotypes using the standard

hypergeometric score. We then picked the highest score and com-

pared it with those obtained on 100 random subsets of individuals of

the same size, obtaining an empirical p-value for the biclique. Only

eight of the bicliques attained p-values <0.05; none of these passed
an FDR threshold of 10%.

4.7 Analysis of the genotype data

Next, we applied our algorithm to the genotype data. The prepro-

cessed bipartite graph contained 1410 feature nodes, representing

SNP states, and 72 patient nodes. The algorithm identified nine

significant bicliques in this graph, constructed w.r.t. four different

phenotypes: response class, grade of tumor, TP53 mutational status

and T staging category. Interestingly, seven out of the eight bicli-

ques returned by the unsupervised analysis were detected in the

course of the algorithm, although none was found to be significant.

To evaluate the biological significance of the bicliques, we com-

puted their cross phenotype scores and the expression coherency of

the patient sets they define. Two of the bicliques showed markedly

high cross-phenotypic scores. A third biclique exhibited significant

expression coherency. These bicliques are listed in Table 1 (top).

As an example, one of these bicliques was obtained w.r.t. the

grade of tumor phenotype. It consists of three feature nodes span-

ning two heterozygous-state SNPs of IGF2R (insulin like growth

factor 2 receptor), and one homozygous-state SNP of the GCLC
gene (Glutamate-cysteine ligase, catalytic subunit). The biclique

contains 15 individuals, 13 of which have a tumor grade of 3. Its

core consists of two SNPs, one of each gene. It has significant cross-

phenotypic score w.r.t. the TP53 mutational status (enriched for

status mutated). Interestingly, IGF2R is known to be associated

with poor patient prognosis in head and neck cancer (Jamieson

et al., 2003), and we now find it to be associated with poor prognosis

in breast cancer too, as 13 out of 15 of the patients in the biclique

have the disseminated, grade 3 state of the tumor. More generally,

IGF2R is involved in a variety of cancer types, including squamous

cell carcinoma, lung cancer, hepatocellular carcinoma and prostate

cancer, and has also previously been shown to be involved in breast

cancer. However, it is known to play a malignant role only after

attaining a heterozygous state followed by the occurrence of

somatic point mutations in the remaining allele (Oates et al.,
1998)—indeed, we find it in the pathogenic biclique in the form

of two heterozygous-state SNPs, in full correspondence with the

existing knowledge. Finally, statistically significant differences in

M6P/IGF2R allelic variants have been identified between Japanese

and American populations, but without any clear functional signi-

ficance (Killian et al., 2001)—the involvement of the IGF2R
variation in the biclique provides the first support that at least in

Table 1. Representative significant bicliques

Data Phenotype Features/patients HG score Expression

coherency

Functional

enrichment

Cross phenotype score/enriched phenotype

SNP grade of tumor ¼ 3 3/15 0.011 0.46 — 0.02/TP53 mut. Status ¼ mutated

SNP T category ¼ 2 or 3 2/16 0.04 0.94 — 0.03/TP53 mut. Status ¼ mutated

SNP T category ¼ 4 2/19 0.005 0.009 — 0.7/�
Combined T category ¼ 4 7/15 0.02 0.13 0.01 1/�
Combined T category ¼ 4 12/15 0.02 0.009 0.01 0.009/Array tumor classification ¼ Luminal A

Columns indicate the dataset used, the phenotype according towhich the bicliquewas computed, its size, its hypergeometric scorew.r.t. its definingphenotype, the expression coherency

of its patient set, the functional enrichment of its induced gene set (applicable only for bicliques containing expression state nodes), and the cross-phenotype enrichment score of the

biclique together with the enriched phenotype.

More generally, it can be applied to detect high-scoring bipartite subgraphs

that are not necessarily complete.
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breast cancer such variations may play an important pathological

role.

4.8 The combined SNP-expression data

Finally, we applied our algorithm to the combined SNP-expression

data. The bipartite graph we constructed contained 844 SNP state

nodes, 1414 expression state nodes and 50 patient nodes. We

excluded from the analysis the array tumor classification phenotype,

as the latter was defined by Sorlie et al. based on its expression

characteristics. Overall, the algorithm discovered seven significant

bicliques w.r.t. two phenotypes: grade of tumor and T category.

Two of these bicliques involved both SNP and expression features,

while the other five contained only expression features. Expectedly,

most of the bicliques were highly expression coherent. Two

bicliques exhibited significant functional coherencies; one of them

also showed a significant cross phenotype enrichment. These two

bicliques are summarized in Table 1 (bottom).

Markedly, one of the identified bicliques, computed w.r.t. the

T category phenotype, was found to be expression coherent, func-

tional coherent and cross-phenotype enriched (Fig. 3). It consists of

12 feature nodes, all of which represent gene expression states, and

15 individuals, 14 of which have T category 4 (the highest and most

invasive one in the data). The core of this biclique consists of nodes

corresponding to over-expression of a zinc transporter gene

SLC39A6 and under-expression of CKS2 (CDC28 protein kinase

regulatory subunit 2). The SLC39A6 gene has been previously asso-
ciated with oestrogen-positive breast cancer and its metastatic

spread to the regional lymph nodes, and it was claimed that it

may play an important role in breast cancer progression (Taylor

et al., 2003)—indeed, we find that 14 out of the 15 biclique patients

have a T category of 4, i.e. larger tumors which have spread into the

adjacent tissue. Interestingly, this biclique is highly enriched w.r.t.

the array tumor classification phenotype, providing further support

to the categorization devised by Sorlie et al.

5 CONCLUSIONS

Particular patterns of genotype variation and expression levels

across multiple genes are believed to contribute to a predisposition

to certain medical conditions and to underlie individual variation in

response to medical treatments. One of the major difficulties in

finding such patterns is computational; the processing time required

for an exhaustive search over all combinations of genotype and

expression states of a given size becomes prohibitively large

even for relatively small sizes (3–4). In this study, we present a

graph theoretic approach for this problem, designed to conduct an

efficient search over a wide space of combinations. Unlike previous

biclustering approaches, our method uses phenotype information

specifically to find characteristic patterns for different phenotypic

groups. We show that these patterns carry further clinical informa-

tion, in addition to the phenotypic assignment according to which

they were computed.

We apply our approach to a combined SNP-expression data

collected from a group of breast cancer patients. We identify

DPs w.r.t. several clinical phenotypes, and show that the induced

patient sets exhibit coherent behavior w.r.t. other biological attrib-

utes, including different phenotypes and expression profiles.

The treatment of missing data remains a difficult challenge. In

addition to the strategy we employed in this work, there are two

other common strategies: data imputation and background adjust-

ment. The first tries to complete the missing data. In our case, it

seems that this strategy would have been less successful when

applied to SNP data, since it relies on modeling the underlying

haplotype data and such modeling would suffer from the sparse

SNP data per gene in this study. The other strategy evaluates the

significance of each biclique based on its corresponding background

set. In our case, due to the relatively small number of individuals,

this might yield ‘incomparable’ p-values that are based on substan-

tially different background sets. Notably, when applying these two

approaches to our data, the obtained significant bicliques substan-

tially overlapped the ones reported here.

We believe that supervised identification of DPs will play

a fundamental role in identifying novel pathogenic genomic

alterations in future, larger datasets, requiring deeper (and albeit,

computationally extensive) search processes. Here we already dem-

onstrate the potential power of our approach in shedding new light

on the putative role of genes that are likely to be involved in the

pathogenesis and invasive spread of breast cancer.

ACKNOWLEDGEMENTS

The authors thank Oded Regev for proving the hardness of DP, Dani

Yekutieli for his helpwith the FDR analysis and Shai Kaplan for help

with the excess hypergeometric score. N.Y. is supported by the Tel-

Aviv university president and rector scholarship. E.R. is supported

by grants from the Yeshaya Howoritz Complexity Center, from the

Tauber Foundation and the Israeli Science Foundation. R.S. is sup-

ported by an Alon Fellowship.

Phenotype

B
ic

liq
ue

N
ot

 in
 b

ic
liq

ue

P
at

ie
nt

s

Gene expression

Fig. 3. A representative high scoring biclique. The figure depicts the fifth

biclique listed in Table 1. Rows correspond to all individuals in the data and

columns to phenotypes and features of the biclique. A horizontal line separate

the patients in the biclique from all others. Columns 2 and 3 in the gene

expression segment correspond to the genes that comprise the core of this

biclique. The first column in the phenotype segment shows the T category

annotation, according to which this biclique was constructed. Evidently,

the biclique is also enriched w.r.t the array tumor classification phenotype,

displayed on the second column and w.r.t the grade of tumor phenotype

displayed on the third column. Interestingly, patients with the same T cate-

gory outside the biclique have different array tumor classifications than those

in the biclique.
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APPENDIX A

Complexity of the discriminating pattern problem

THEOREM 1. Discriminating Pattern (DP) is NP-hard.

Proof. Consider an instanceG¼ (P, F, E, w) of DP and let F0 � F
induce an optimum solution, i.e. a biclique (P0, F0) where P

0 ¼
\f2F0 Nðf Þ andW* ¼

P
p2P0 wðpÞ is maximum. For P

00 � P, denote
byW(P00) the sum of weights of the elements in (P00). Examine now

the bipartite complement graph �GG ¼ ðP‚F‚ �EE‚wÞ, where
�EE ¼ ðP · FÞnE. It is easy to see that Wð [f2F0 N�GGðf ÞÞ ¼
WðPÞ � Wð \f2F0 NGðf ÞÞ. In other words, DP is equivalent to the

following problem: Given a graph G ¼ ðP‚F‚E‚wÞ, find a subset

F0�F such that Wð [f2F0 Nðf ÞÞ is minimum. We prove the

NP-hardness of this problem by reducing Set Cover to it.

Let (U, C) be an instance of Set Cover, where C ¼ {S1, . . . , Sm}
is a collection of subsets of U ¼ {1, . . . , n}. W.l.o.g. we assume

that U admits a set cover.

Construct an instance G ¼ (P, F, E, w) of DP as follows: Let F ¼
{f1, . . . , fm} and let P ¼ fp1‚1‚ . . . ‚p1‚mþ1‚ . . . ‚pn‚ 1 . . . ‚pn‚mþ1g[
fz1 . . . zmg. We define, E ¼ fðf i‚ziÞ : 1 � i � mg [ ÊE, where

ðf i‚pj‚ kÞ 2 ÊE iff j 2 Si. We set w(pi,j) ¼ �1 for all i,j and

w(zi) ¼ 1 for all i. We prove that the Set Cover instance has a

solution of cardinality at most r iff the DP instance has a solution

of weight at most r � (m + 1)n.
Let H � C be an optimal solution for the Set Cover instance

with cardinality r. Let F0�F be the corresponding set of features.

Clearly, Wð [f2F0 Nðf ÞÞ ¼ r � ðmþ 1Þn.
Conversely, let F0 be a solution for the DP instance with weight at

most r � (m + 1)n. Then every vertex pi,j must be adjacent to some

vertex f 2 F0, implying a set cover of cardinality at most r.

APPENDIX B

Expected number of bicliques

Given a bipartite graph G¼ (P, F, E, w) with w:P!{�1,1}, denote

byY(G, p) the expected number of bicliques whose hypergeometric

p-value w.r.t. the partition of P to positives and negatives is at most

p (Fig. A1). To estimateY(G,p) we first define the expected number

of bicliques with exactly F0 feature nodes, jP0+j positive nodes and
jP0�j negative nodes:

¡ðjFj‚ jF0 j‚ jPj‚ jP0þj‚ jP�jÞ ¼
� jPþj
jP0þj

�
·
� jP�j
jP0�j

�
·
� jFj
jF0 j

�
·ajF0 j · jP0 j

· ð1�ajP0 jÞjFj�jF0 j
· ð1�ajF0 jÞjPj�jP0 j

‚

where a is the fraction of edges in the bipartite graph, and the last

two terms ensure that the chosen biclique is maximal.Y(G,p) is then
taken as the sum over all ¡ðjFj‚ jF0 j‚ jPj‚ jP0þj‚ jP0�jÞ such that

HGðjPj‚ jPþj‚ jP0 j‚ jP0þjÞ � p.
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Fig. A1. Expected number of bicliques. The figure depicts the function

Y (G, p) for different values of p, where G is the graph induced by the breast

cancer genotype data.
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