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Abstract
Motivation: Protein–protein interactions (PPIs) provide the skeleton for signal transduction in the cell. Current PPI measurement techniques do 
not provide information on their directionality which is critical for elucidating signaling pathways. To date, there are hundreds of thousands of 
known PPIs in public databases, yet only a small fraction of them have an assigned direction. This information gap calls for computational 
approaches for inferring the directionality of PPIs, aka network orientation.
Results: In this work, we propose a novel deep learning approach for PPI network orientation. Our method first generates a set of proximity 
scores between a protein interaction and sets of cause and effect proteins using a network propagation procedure. Each of these score sets is 
fed, one at a time, to a deep set encoder whose outputs are used as features for predicting the interaction’s orientation. On a comprehensive 
dataset of oriented PPIs taken from five different sources, we achieve an area under the precision–recall curve of 0.89–0.92, outperforming 
previous methods. We further demonstrate the utility of the oriented network in prioritizing cancer driver genes and disease genes.
Availability and implementation: D’or is implemented in Python and is publicly available at https://github.com/pirakd/DeepOrienter.

1 Introduction
Protein–protein interactions (PPIs) provide the skeleton for 
signal transduction in the cell. However, current high- 
throughput PPI measurement techniques do not provide 
information on the direction of interactions. This type of 
information has been shown to be instrumental in various 
biological tasks such as discovery and reconstruction of sig
naling pathways in yeast (Gitter et al. 2010), retrieval of un
known pathway modulators in human (Vinayagam et al. 
2011), drug design (Csermely et al. 2005), and prediction of 
proteins function (Cao et al. 2014). While not all interactions 
are necessarily directed, prior research predicted that about 
2/3 of them are Silberberg et al. (2014). Thus, there is a grow
ing need to infer interaction directions computationally 
(Pandey and Loscalzo 2023), a task known as network 
orientation.

Earlier works in this area mostly used unsupervised techni
ques to infer edge directions. These techniques relied on pairs 
of cause and effect proteins derived from perturbation experi
ments together with the notion that there must be a path in 
the network between the two for the effect to take place. A 
major challenge in this approach is the complexity of consid
ering all possible paths between two nodes. Yeang et al. 
(2004) used a probabilistic model together with a max- 
product algorithm to infer orientation and sign of edges but 
their solution was limited to very small networks with short 
connecting paths (Gitter et al. 2010). Later, Gitter et al. 
(2010) used random orientation of edges followed by a 
greedy local search to connect known endpoints of signaling 
pathways with paths of bounded length. Silverbush and 

Sharan (2014) overcame path length limitation by formulat
ing an integer program which considers only the shortest 
path between any cause–effect pair. A caveat of this method 
is its low recall as most edges do not lie on short paths from 
causes to effects.

Previous supervised approaches are scarcer. One approach 
by Vinayagam et al. (2011) used shortest path statistics be
tween membrane receptors and transcription factors to train 
a Naïve Bayes classifier for predicting edge directions. 
However, limited edge coverage by shortest paths hampered 
this approach. Another approach, D2D, by Silverbush and 
Sharan (2019) classified edges based on the assumption that 
heads and tails of oriented edges should have higher proxim
ity to cause and effect protein sets, respectively. As the 
method is applicable to any edge, it overcame the recall prob
lem of previous approaches producing state-of-the-art results 
for the problem. Yet, D2D is based on heuristic approaches 
for evaluating set-to-node proximity, according to the sum of 
proximities of each member in the set, as well as on arbitrary 
choices of how to compare proximities to causes and effects. 
These choices as we show below greatly affect the method’s 
performance.

In this work we present D’or, the first deep learning based 
method for orienting PPIs. D’or uses sets (or distributions) of 
proximity scores from available cause–effect pairs as input to a 
deep learning encoder, which is trained in a supervised fashion 
to generate features for orientation prediction. A key novelty of 
D’or is its ability to learn a general function of proximity scores 
rather than using arbitrary measures such as a sum, used by 
D2D to aggregate node scores, or a ratio, used by D2D to con
trast causes with effects. On a comprehensive dataset of 
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oriented edges taken from five different sources, we achieve an 
area under the precision–recall curve of 0.89–0.92, outperform
ing previous methods. We further demonstrate that the oriented 
network can aid in prioritizing disease-associated genes and in 
particular cancer driver genes.

2 Materials and methods
2.1 The D’or algorithm
We devised an orientation algorithm called Deep Orienter 
(D’or). D’or learns functions over sets of propagation scores 
from cause and effect genes to a target PPI in order to predict 
an orientation for that interaction. The algorithm consists of 
three main parts (Fig. 1): (i) computation of network propa
gation scores from cause and effect gene sets to genes that are 
incident to the target interaction. (ii) A deep learning model 
that encodes these scores into set-function-based features for 
each cause–effect set pair. And (iii) linear classification of the 
resulting features followed by a softmax function to produce 
the final prediction scores. We describe these components in 
detail below.

Network propagation. Our starting point is the computa
tion of proximity scores of each vertex to given sets of causal 
or effect proteins. These proximity scores are given by solu
tions to the following system of equations: 

FðvÞ ¼ α
X

u2NðvÞ

FðuÞwðu; vÞ
� �

þð1 − αÞPðvÞ
� �

v2G

(1) 

where P(v) is called the prior term for vertex v and is set to 1 for 
input cause or effect proteins and 0 otherwise. α is a smoothing 
parameter that balances between the network and the prior 
term and is set to 0.8 following the previous work (Silverbush 
and Sharan 2019). w is a normalized edge weight matrix 
obtained by W ¼D− 1=2AD− 1=2, where A is the network’s ad
jacency matrix and D is a diagonal matrix of weighted degrees. 
For partially directed networks, the symmetric normalization 
above does not distinguish between in-going and out-going 
edges, hence we normalize by W ¼ AD− 1. To ensure conver
gence of the subsequent diffusion process, the network must be 

connected in the undirected case and strongly con
nected otherwise.

Constructing set-function-based features. Unlike previous 
works such as D2D or the method of Vinayagam et al., which 
use hand-crafted features for orientation prediction, D’or aims 
to learn a more general family of set functions, avoiding poten
tial information loss. For a single pair of cause and effect protein 
sets Sj and Ej and a target interaction (u, v), D’or assigns a confi
dence measure to each of its possible orientations by: 

scorejðu ! vÞ ¼

ρ
��

1
jCjj

X

ci2Cj

ϕCðF
ciðuÞ;FciðvÞÞ

�

jj

�
1
jEjj

X

ei2Ej

ϕEðF
eiðuÞ; FeiðvÞÞ� jj embj

�
(2) 

where FcðuÞ stands for the diffusion score of node u when 
propagating from node c. ϕC and ϕE are two fully connected 
neural networks operating on each element of the set sepa
rately. embj is a learned embedding vector, of dimension z 
and unique for each set pair (Cj, Ej). ρ is another fully con
nected neural network. The model is summarized in Fig. 2.

Learning set-functions. The network structure borrows 
ideas from the DeepSets framework (Zaheer et al. 2017) that 
learns set functions, i.e. functions that are invariant to ele
ment permutations and can be applied to inputs of varying 
size. It was shown that for countable sets, all set-functions 
can be represented as ρð

P
x2X ϕðxÞÞ, where X is a set and ϕ 

and ρ are some suitable transformations. DeepSets approxi
mates ϕ and ρ using neural networks.

Similarly, in D’or we aim to learn a function over two sets 
with a model of the following form: f ðX1;X2Þ ¼

ρð
P

x2X1
ϕ1ðxÞ;

P
x2X2

ϕ2ðxÞÞ. One can generalize the proof 
in (Zaheer et al. 2017) to show that such a form captures all 
functions on pairs of sets:

Theorem 1. Let X1 ¼ fx1
1; . . . ;x1

Mg and 
X2 ¼ fx2

1; . . . ;x2
Ng; x1

i ;x
2
j 2 Γ; 8i; j be two sets whose 

Figure 1. An overview of D’or. (a) The algorithm receives as input a list of cause–effect pairs of gene sets and an undirected PPI network. (b) Information 
is diffused from the cause and effect vertices sets to a pair of vertices incident to an edge of interest. This results in four distributions of diffusion scores 
(one for each node-set couple). (c) Each distribution quartet is encoded to a scalar feature that represents the confidence in an edge direction. (d) A linear 
classifier assigns a final confidence score to the edge’s orientation.
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elements are countable. A function 
f ðX1;X2Þ : 2Γ×2Γ ! R is permutation invariant for 
each set separately iff it can be decomposed 
to ρð

P
x2X1

ϕ1ðxÞ;
P

x2X2
ϕ2ðxÞÞ for suitable ϕ1;ϕ2;ρ. 

Proof. The “if” part follows by observing that the 
separate summation of the elements of the two sets 
implies that the order of their elements becomes 
irrelevant. Conversely, since Γ is countable there is a 
mapping c : Γ ! N. By choosing ϕ1 ¼ ϕ2 ¼ 4− cðxÞ we 
get that 

P
x2X1

ϕ1ðxÞ and 
P

x2X2
ϕ2ðxÞ form a unique 

mapping each of the sets X1;X2 2 Γ, hence the pair 
ð
P

x2X1
ϕ1ðxÞ;

P
x2X2

ϕ2ðxÞÞ forms a unique mapping 
for any combination of the sets above. It follows that 
a function ρ : R2 ! R can be constructed such that 
f ðX1;X2Þ ¼ ρð

P
x2X1

ϕ1ðxÞ;
P

x2X2
ϕ2ðxÞ

�
.                  w   

Classification and loss function. The complete model con
sists of applying the D’or block (Fig. 2) on multiple cause–ef
fect pairs. The block’s weights are shared across pairs except 
of the embedding vector that is unique to each pair. Finally, 
the N outputs are fed into a linear layer with a softmax acti
vation function which outputs a final prediction for the edge 
ðu; vÞ. The objective function for D’or includes two parts. 
The first part is the binary cross-entropy (BCE) between the 
classifier’s outputs and the true labels. The second part is a 
regularization term which sums the BCE between the output 
of each block and the true label. The two parts are combined 
as follows: 

Lossðu ! vÞ ¼ β � BCEðf ðu ! vÞ; yÞþ

ð1 − βÞ �
1
N

XN

j¼1

BCEðscorejðu ! vÞ; yÞ; β 2 ½0;1� (3) 

where y is the true direction, f ðu ! vÞ is the output of the fi
nal linear layer for the orientation ðu ! vÞ; scorejðu ! vÞ is 
the output of the jth block and β is a model parameter. 
Equation (3) represents the loss term of a single prediction, 
the total loss is calculated as an average over all predic
tions losses.

2.2 Consensus orientation
For each possible edge orientation (u ! v) and each model 
m, we assign a direction certainty measure in the form of the 
probability ratio fmðu ! vÞ=fmðv ! uÞ. The consensus score 

of several models is given by the sum of log-likelihood of 
these ratios: 

Sconsensusðu ! vÞ ¼
X

m2M

log
fmðu ! vÞ
fmðv ! uÞ

(4) 

where M is the group of models. Finally, we say that the edge 
(u, v) is oriented from u to v if Sconsensusðu ! vÞ lies in the top 
q percentile of scores. For evaluations including hard predic
tions, we chose q such that 80% of the edges are oriented.

2.3 Implementation details
Model optimization and training process. For hyperpara
meter optimization we performed a simple random search, in 
which we trained hundreds of models with different configu
rations over the training data. The configuration of the best 
performing model was then chosen for evaluation. We opti
mized for width and depth of networks ρ and ϕ (both ϕ net
works were fixed to be identical in size), dropout ratio, loss 
weight parameter β, block index embedding dimension z and 
learning rate. For the search space of hyperparmeters and ex
ample set of hyper parameters (see Table 1). Note that the di
mension of the first layer of network ρ is determined by the 
dimension of the last layer of the networks ϕC;E and the size 
of the block embedding z. The layer dimensions for ρ in  
Table 1 are the layers following that first determined layer.

The training process was conducted as follows: We split 
our orientation data for three disjoint groups of train, valida
tion and test. For each evaluation, we fit three differently ini
tialized models (all of them with the same optimized 
hyperparameter configuration), then choosing the one which 
performed the best over the validation set. This model was 
used for final evaluation over the test set. Each model was 
trained until a stopping condition of five consecutive epochs 
without improvement was met. We used ADAM for weight 
optimization (Kingma and Ba 2014). For the 5-fold cross val
idation, we repeated the process above five times (including 
the hyperparameter search).

We compared our approach to two previous ones: D2D 
(Silverbush and Sharan 2019) and that of Vinayagam et al. 
(2011). For D2D, we used the implementation in Silverbush 
and Sharan (2019) but incorporated it in our own frame
work. We reimplemented the method of Vinayagam et al. as 
portrayed in the original paper. This implementation is also 
available in our open GitHub repository. We could not use 
our own cause–effect dataset for this method due to low cov
erage of nodes by shortest paths. Hence, we used transcrip
tion factors and membrane receptors datasets as used in the 
original paper. Transcription factors were taken from 
Lambert et al. (2018) and Vaquerizas et al. (2009) and mem
brane receptors from Alm�en et al. (2009).

2.4 Data
Cause–effect data. Cancer genomic data were taken from 
TCGA spanning breast cancer, colon cancer, ovarian cancer 
and AML cancer patients. Following Silverbush and Sharan 
(2019) we defined the set of causal genes as those that were 
called mutated or had a copy number variation. The set of ef
fect genes comprised all genes whose expression had an abso
lute fold change z-score > 3. We filtered out set pairs if one 
of the sets had >1000 genes. We also evaluated over drug re
sponse data taken from Silverbush and Sharan (2019). 

Figure 2. A single D’or block. Propagation scores from the causal set 
(blue) and effect set (red) are used as inputs to two neural networks 
(ϕC ; ϕE ), whose outputs are being averaged separately and then 
concatenated together with an addition of the block’s index embedding. 
This concatenated vector is used as an input for another neural 
network (ρ).
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Guiding source dataset information is summarized 
in Table 2.

Benchmark sets. For training and validation, we used five 
sets of interactions with known directions. As negative sam
ples, we used the opposite directions of these interactions. To 
prevent any degree bias, similar to Silverbush and Sharan 
(2019), we forced an equal number of interactions directed 
from high degree nodes to low degree nodes and vice versa. 
Interactions that had conflicting orientations in two different 
datasets were treated as undirected. We denote below the 
number of interactions in each of the datasets followed by the 
number of interaction after preprocessing inside parentheses.

1) 450 (432) signal-transduction interactions in mamma
lian cells (STKE) from Vinayagam et al. (2011). 

2) 117 (110) interactions of the EGFR signaling pathway 
(EGFR) from Samaga et al. (2009). 

3) 5762 (2510) kinase/phosphatase to substrate interactions 
(KPIs) from Phosphositeplus (Hornbeck et al. 2004). 

4) 28 564 (198) protein–DNA interactions (PDIs) down
loaded from ChEA (Lachmann et al. 2010). 

5) 330 (326) E3 ubiquitination interactions, downloaded 
from hUbiquitome (Du et al. 2011). 

For validation, we additionally used an independent set of 
9176 directed interactions from Pathlinker (Ritz et al. 2016) 
that do not appear in the benchmark sets above.

Cancer driver genes. We assembled a list of 943 cancer 
driver genes coming from two sources:

1) Cancer Gene Census v95 (729 genes). 
2) Following Hofree et al. (2016), we queried UniportKB 

(The UniProt Consortium 2016) for the keywords “proto- 
oncogene,” “oncogene,” and “tumor-suppressor gene” 
(417 genes). 

We merged these lists and filtered out genes that did not 
appear in the PPI network.

Disease genes. The disease gene list compiled by Menche 
et al. (2015) contains genes associated with 299 diseases de
fined by the Medical Subject Headings (Mesh) (Lipscomb 
2000) taken from the Online Mendelian Inheritance in Man 
(OMIM) (Kuhn et al. 2013) and genome-wide association 
study (GWAS) (Ramos et al. 2013) databases. Differentially 
expressed genes for these diseases were taken from the man
ual disease signature dataset in Creeds (Wang et al. 2016). 
We mapped diseases from both resources to their matching 
MeSH IDs to form gene set pairs. For each disease gene set 
we included all genes that were listed under descendent 

diseases in the MeSH tree. The resulting filtered set of dis
eases (after the mapping) included 207 diseases with an aver
age of 115 causal genes and 1619 differentially expressed 
genes per disease.

PPI network. We used the weighted human PPI network 
from ANAT (Signorini et al. 2021). At the time of download, 
the network contained 483 206 interactions and 18 880 
unique proteins. The network edges are weighted according 
to the reliability of the interactions based on the experimental 
techniques they were discovered.

3 Results
We designed a network orientation approach that starts from 
a collection of pairs of cause and effect sets and uses those 
sets to generate classification features for edge direction 
(Fig. 1). Our main source for cause–effect information is ge
nomic data deposited in TCGA on mutated and differentially 
expressed genes in cancer patients. Each patient induces a set 
of mutated genes or genes with a copy number variation that 
are viewed as causes, as well as a set of differentially 
expressed genes (w.r.t. a normal tissue) that are viewed as 
effects. Information from these sets is diffused and then proc
essed by a deep learning framework to generate features used 
for an edge orientation prediction.

Our main contribution is the latter feature generation pro
cess in which individual proximity scores between pairs of 
nodes are automatically aggregated and contrasted using the 
deep learning framework. This improves upon the previous 
D2D algorithm which uses sums and ratios to aggregate and 
contrast proximities. In more detail, for a set of causes C, a 
set of effects E and a potential orientation u ! v of an edge, 

D2D computes a feature of the form scoreðu ! vÞ ¼ FCðuÞ�FEðvÞ
FCðvÞ�FEðuÞ, 

where FCðuÞ and FEðuÞ are the sum of proximity scores be
tween u and nodes from cause and effect sets, respectively (and 
similarly for v). In contrast, D’or learns a general function on 
the set of proximities between u and v and cause and effect 
nodes to construct its directionality features.

3.1 Application and performance evaluation
We applied D’or to a network of unoriented PPIs in human 
with 483 206 interactions spanning 18 880 proteins (Signorini 
et al. 2021). As cause–effect data we used TCGA cancer geno
mic data from 1648 patients, where the causal set of each pa
tient contained genes that had mutation or copy number 
variations and the effect set consisted of the differentially 
expressed genes of that patient (Methods). We benchmarked 
D’or using sets of interactions with known directions from five 
different sources: Kinase-substrate and phosphatase-substrate 
interactions (KPIs), protein–DNA interactions (PDIs), E3 ubiq
uitination interactions (E3), known directed interactions from 
the EGFR pathway (EGFR), and a collection of signaling 

Table 1. Searched hyperparamater space (middle column), optimized 
hyperparameters for first fold using AML dataset (Fig. 3a) (right column).

Hyperparameter Search space Sample set

ϕC; ϕE networks  
dimensions

[[128,64], [64, 32, 16],  
[64, 32], [128, 64, 32]]

[128,64]

ρ network  
dimensions

[[128, 64], [64, 32, 16],  
[64, 32], [32, 16, 8], 

[32, 16]]

[64, 32]

Dropout ratio [0, 0.2, 0.4, 0.7] 0
β [0.25, 0.5, 0.75, 0.9, 0.99] 0.5
Block embedding size [4, 8, 12, 16, 20] 8
Learning rate [5e−5, 1e−4, 5e−4, 

1e−3, 5e−3]
1e−3

Table 2. Details of guiding sets used.

Guiding source No. of guiding sets Average set size

Cause Effect

AML 205 110.4 298.6
Breast cancer 805 290.8 331.1
Colon cancer 419 336.2 375.3
Ovarian Cancer 219 263.8 460.9
Drug response 480 3.6 36.7
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interactions in mammalians from the signal transduction 
knowledge environment (STKE).

Performance evaluation was conducted using the area un
der the precision–recall curve (AUPRC) in a 5-fold cross vali
dation test. D’or achieved an AUPRC of 0.89–0.92 compared 
to the previous state-of-the-art D2D with 0.81–0.86, and the 
method of Vinayagam et al. with 0.65 (Fig. 3). The results of 
the latter method are identical in all comparisons since we 
used their own features which do not depend on the patient 
data for evaluation (see Section 2). Similar results were 
obtained when using drug response cause–effect data 
(Supplementary Fig. S2).

We further tested the performance as a function of number 
of patients used for feature generation. Figure 4 depicts pre
diction performance with an increasing number of patients. 
Evidently, D’or requires substantially less data than the other 
methods to achieve better results.

3.2 Consensus orientation
After establishing the accuracy of our model, we turn to inte
grate the results from the four datasets into a single final 
score based on a log-likelihood score which takes into ac
count each of the sources confidence of orientation (see 
Section 2 and Supplementary Fig. S2). We evaluated D’or 
consensus predictions on an independent set of directed inter
actions from the PathLinker database (Ritz et al. 2016). 
PathLinker comprises samples acquired through varied meth
ods encompassing diverse interaction types. Demonstrating 
superior performance on an unfamiliar dataset illustrates that 
the generalizability of D’OR learning extends beyond the 
confines of its original training dataset, albeit with a corre
sponding decrease in performance (Fig. 5a). To further vali
date our predictions, we examined PPIs that reside within 
known protein complexes, with the assumption that such 
interactions should be left (to a large extent) unoriented by 

Figure 3. (a–d) Precision–recall curves using patient data from four different cancer types. (e) AUROC results for the same evaluations as in (a–d).
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any orientation method. Indeed, we observe that such edges 
are significantly under represented in the group of edges with 
high confidence orientations (Fig. 5b).

To examine the functional role of proteins that are in
volved in interactions that were directed with high confi
dence, we focused on the 1% top scoring ones. We ranked 
the proteins by the number of such interactions they touch 
and subjected the 100 highest scoring proteins to GO slim en
richment analysis using the Panther tool v17.0 (Ashburner 
et al. 2000, Thomas et al. 2021, Aleksander et al. 2023). 
Expectedly, the most enriched terms (FDR corrected 
p< 1E−12) include phosphorylation, regulation, signal trans
duction and protein modification (Table 3).

3.3 Gene prioritization
An oriented network facilitates the prioritization of disease- 
associated genes as it greatly reduces the space of (directed) 
paths that have to be explored (Silverbush and Sharan 2019). 
To assess the utility of the consensus network in gene prioriti
zation, we conducted a leave-one-out test where each time we 
used three of the four patient datasets for direction prediction 
and aimed to predict cancer driver genes using the left out 
dataset. Since mutated genes may be directly informative of 
driver genes, we focused on prediction using differentially 
expressed genes only. To this end, we flipped edge directions 
(since we are interested in their upstream cause) and applied 

network propagation to the set of differentially expressed 
genes of each patient in the left-out set. We ranked genes for 
each patient separately and then aggregated the ranks and ex
amined what portion of genes with the top K rank percentile 
(for varying K values) are known to be cancer driver genes. 
The focus of this experiment is to validate the accuracy of the 
algorithm’s orientation predictions. For that reason, we do 
not compare our results to other prioritization techniques. 
The prioritization results with respect to the AML dataset are 
given in Fig. 6a. Evidently, D’or outperforms D2D and an 
unoriented network across all K values. Similar results for the 
other cancer types appear in Supplementary Fig. S3.

As another test of the consensus orientation, we examined 
its utility in prioritizing genes associated with various diseases 
(see Methods), using all four datasets. Also in this test D’or 
outperformed D2D and an unoriented network across all K 
values (Fig. 6b).

4 Conclusions
We developed a network orientation method that is based on 
learning functions of sets of diffusion scores for pairs of cause 
and effect disease genes. Unlike previous approaches, D’or 
does not rely on heuristics and manually engineered features. 
Consequently, we presented a considerable improvement in 
orientation prediction over all tested scenarios. We further 

Figure 4. (a–d) Performance evaluation of D’or on an increasing number of patients of various cancer types. Shaded areas represent result boundaries 
over five different folds.
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showed the utility of the oriented network in prioritizing can
cer driver genes and other disease-related genes.

The framework we have presented can be extended in sev
eral ways. First, D’or only uses topological network informa
tion to make its predictions, even though its deep learning 
framework can easily incorporate additional information 
such as protein functional annotation. Second, while D’or 
provides limited explainability over its decision process, 
adopting explainable set learning methods (Hirsch and 
Gilad-Bachrach 2021) might shed more light on the underly
ing orientation mechanisms.

It is important to acknowledge that the utilization of four 
specific cancer-related datasets in this study might potentially 
restrict the generalization of the predictions to other condi
tions. Furthermore, while our scoring scheme ranks the inter
actions, it remains for future work to devise ways to learn a 
threshold that would distinguish the set of directed interac
tions from interactions that are likely to be undirected.
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Supplementary data are available at Bioinformatics online.
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