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ABSTRACT

Motivation: A holy grail of biological research is a working model of

the cell. Current modeling frameworks, especially in the protein–pro-

tein interaction domain, are mostly topological in nature, calling for

stronger and more expressive network models. One promising alter-

native is logic-based or Boolean network modeling, which was suc-

cessfully applied to model signaling regulatory circuits in human.

Learning such models requires observing the system under a sufficient

number of different conditions. To date, the amount of measured data

is the main bottleneck in learning informative Boolean models, under-

scoring the need for efficient experimental design strategies.

Results: We developed novel design approaches that greedily select

an experiment to be performed so as to maximize the difference or the

entropy in the results it induces with respect to current best-fit models.

Unique to our maximum difference approach is the ability to account

for all (possibly exponential number of) Boolean models displaying

high fit to the available data. We applied both approaches to simulated

and real data from the EFGR and IL1 signaling systems in human. We

demonstrate the utility of the developed strategies in substantially im-

proving on a random selection approach. Our design schemes high-

light the redundancy in these datasets, leading up to 11-fold savings in

the number of experiments to be performed.

Availability and implementation: Source code will be made available

upon acceptance of the manuscript.

Contact: roded@post.tau.ac.il

1 INTRODUCTION

Network analysis tools have become over the last decade the

method of choice for studying genome-wide data, yielding im-

portant insights into gene function, interaction and evolution.

Nevertheless, most of these tools, especially in the protein–pro-

tein interaction domain, have been limited to pure topological

analysis of the pertaining networks, calling for stronger and more

expressive network models (Huang and Fraenkel, 2009; Yeger-

Lotem et al., 2009; Yosef et al., 2009).

Recently, Boolean network modeling has been successfully at-

tempted at signaling networks, yielding a qualitative functional

understanding of signaling pathways and the ability to predict

their behavior under different perturbations and environmental

cues (Mitsos et al., 2009; Saez-Rodriguez et al., 2009; Sharan and

Karp, 2012). However, because of the sparsity of the currently

available data, learning such models de novo remains a formid-

able task, requiring computational strategies to efficiently priori-

tize experimental conditions that will best reveal the underlying

model. We refer the reader to Karlebach and Shamir (2008) for a

comprehensive survey of Boolean modeling.

An alternative modeling technique for signaling pathways dy-

namics based on ordinary differential equations (ODEs) was

thoroughly studied (Hughey et al., 2010). These equations offer

a mechanistic chemically based view on the change in the level of

cellular species as a function of the levels of their interactors. The

dependency of such a detailed modeling on the availability of

experimental data has triggered two lines of work of algorithmic

experimental design (Kreutz and Timmer, 2009): the first ad-

dressing the challenge in parameter estimation (Balsa-Canto

et al., 2008; Bandara et al., 2009) and the second addressing

the model identification problem (Apgar et al., 2008;

Harrington et al., 2012; Kremling et al., 2004; M�elyk �uti et al.,

2010). Nevertheless, the application of this formalism to large-

scale modeling is limited by the large number of required par-

ameters whose estimation is difficult (Gutenkunst et al., 2007).
In contrast to the relatively rich literature on ODEs, experi-

mental design algorithms for Boolean networks are scarce.

Ideker et al. (2000) proposed an experimental design scheme

involving two principal entities: a predictor that generates

models given an experimental data and a chooser that selects

the next experiment to be conducted based on information the-

oretic principles. These two entities were used in an iterative

manner to learn a genetic network from gene expression data.

A similar entropy-based criterion was used by Szczurek et al.

(2009) to learn regulatory relations downstream to a given sig-

naling pathway. Barrett and Palsson (2006) proposed an experi-

mental design algorithm for learning regulatory networks that

maximizes at each step an estimate of the expected information

gain. In the context of signaling networks, we have previously

sketched a maximum entropy-based experimental design scheme

(Sharan and Karp, 2012), but the scheme was not completely

defined nor its utility was tested.
Here we propose two comprehensive experimental design stra-

tegies. The first realizes the maximum entropy principle to guide

the selection of experiments in the context of Boolean networks

learning. The second strategy learns de novo experiments that

maximize the disagreement between current best-fit models, a

criterion that we term maximum difference. For this optimization

task, we propose a novel algorithm that considers the entire

space of candidate models and possible experiments.

We implement and test these strategies on simulated and real

experimental data using two detailed Boolean models for EGFR

and IL1 signaling. We show that both strategies can be used to

prioritize experiments and discover redundancies among them,

considerably outperforming a random-choice scheme. In particu-

lar, we find that the maximum difference criterion is superior to

all other approaches in all the settings we tested, leading to 5–11-

fold savings in the number of experiments to be performed with

respect to the available experiment sets.*To whom correspondence should be addressed.
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2 METHODS

2.1 Data retrieval

To evaluate a design scheme, we applied it to prioritize experiments in the

context of two signaling systems in human: EGFR signaling, which regu-

lates cellular growth, proliferation, differentiation and motility; and IL1

signaling, which is involved in coordinating the immune response upon

bacterial infection and tissue injury. Both systems are well studied, and

detailed manual models exist for them. In particular, Samaga et al. (2009)

have constructed a comprehensive Boolean model of the EGFR system,

which contains 112 molecular species and their associated Boolean func-

tions; Ryll et al. (2011) have created a Boolean model of the IL1 system

with 121 molecular species. We retrieved these models from the

CellNetAnalyzer repository (http://www.mpi-magdeburg.mpg.de/proje

cts/cna/repository.html).

To learn logical models for these systems, we used data published by

the above authors on the activity (phosphorylation) levels of certain pro-

teins under different cellular conditions. Specifically, Samaga et al. mea-

sured within the EGFR system the activity levels of 11 proteins under 34

distinct conditions in Hep2G cells. Similarly, Ryll et al. measured within

the IL1 system the activity levels of nine proteins under 14 distinct con-

ditions in primary hepatocytes. Following Ryll et al. (2011) and Samaga

et al. (2009), we focused our analysis on the measurements at the 30 min

time point, representing the early response of each system.

2.2 Experimental design criteria

Previously, an optimal algorithm for learning Boolean models given ex-

perimental data was introduced by Sharan and Karp (2012). However,

because of the sparsity of experimental data, the learning procedure yields

many models, each explaining the data equally well. To overcome this

difficulty in model identification, additional experimental data are

needed. Here, we studied two strategies to elucidate informative experi-

ments: the first based on a maximum entropy criterion and the other

based on a novel criterion, termed maximum difference criterion.

2.2.1 Maximum entropy criterion In information theory, the en-

tropy statistic is a standard scoring method that quantifies the informa-

tion encoded in a given random variable, where higher entropy implies a

more informative distribution. An experimental design scheme based on

the maximum entropy approach has been previously studied in different

settings, such as the identification of regulatory interactions (Ideker et al.,

2000) and regulatory functions downstream to signaling pathways

(Szczurek et al., 2009). We have sketched a maximum entropy-based

strategy for experimental design of Boolean network (Sharan and

Karp, 2012) but did not implement or demonstrate the utility of this

approach.

Here we implement an experimental design strategy based on a max-

imum entropy approach. At the heart of this strategy is the evaluation of

the entropy of a candidate experiment e according to the predicted re-

sponse of different models. Formally, let re be the response vector of some

model to the experimental conditions set in e. Denote by pðreÞ the prob-

ability of observing the response re across all the candidate models. Then,

the entropy of the experiment is given by

EntropyðeÞ=�
X

r

pðreÞ � log pðreÞ ð1Þ

The maximum entropy strategy prioritizes the experiment with the

highest entropy from a set of candidate experiments.

Note that computing the entropy requires the calculation of pðreÞ, the

distribution of responses over all models that fit the currently available

data well. However, enumeration of all such models is intractable.

Previous approaches assumed that a set of possible models is given or

that the model space can be sampled. In this work, we adopt the latter ap-

proach and sample up to a fixed number of best-fit models. Specifically,

we solve an integer linear program (ILP) to infer a best-fit model and use

the ILP solver to enumerate multiple solutions. The actual number of

solutions is varied to study its impact on the performance of our strategy

(see below). Other sampling approaches use Monte Carlo simulations;

however, these are often computationally intensive and require large run-

ning times (Kreutz and Timmer, 2009).

2.2.2 Maximum difference criterion We propose and implement an

intuitive criterion for experimental design strategy based on maximum

difference. This criterion is defined as the Hamming distance between two

Boolean response vectors. Formally, given an experiment e, let rM1;e;
rM2;e be the response vectors of two models to the experimental condi-

tions defined in e. Then, the difference criterion is defined by

DifferenceðeÞ=
Xn

i=1

jrM1;eðiÞ � rM2;eðiÞj ð2Þ

where j�j denotes absolute value. We note that M�elyk �uti et al. (2010) have

previously experimented with an approach based on similar intuition in

the context of ODE models.

The maximum difference strategy prioritizes experiments resulting in

the highest difference between a pair of models that equally agree with the

available experimental data. While considering the difference induced by

only two models, this criterion is amenable to efficient computation via

an integer linear programming formulation, allowing us to learn a de novo

experiment that maximizes this criterion over all optimal models, elim-

inating the need to enumerate models or to suggest candidate experiments

a priori as in the maximum entropy approach.

2.3 Maximum difference learning algorithm

We develop an algorithm to learn an experiment that maximizes the dif-

ference criterion over the entire space of optimal models. The input to the

algorithm consists of a directed acyclic network over a set of nodes V and

a set of experiments E whose outcome is already known.

The algorithm uses the learning algorithm by Sharan and Karp (2012)

as a building block and its outline is as follows (see Fig. 1): (i) Duplicate

the ILP of Sharan and Karp so that each copy holds a distinct model;

these models (M1, M2) are used to evaluate the maximum difference

criterion. (ii) Use the term for the objective as defined in the Sharan

and Karp formulation and its corresponding optimal value (OPT) to

further constrain the copies of the program to describe solutions that

optimally agree with the experimental data. (iii) Add to the resulting

program new variables and corresponding constraints to represent the

experiment to learn (ê) as well as its readouts under each copy

(rM1;ê ; rM2;ê ). Finally, (iv) define a new objective to maximize the differ-

ence between readouts, as per Equation (2). An optimal solution to this

linear program details a maximum difference experiment. Moreover, to

maximize the objective, the corresponding variables of the duplicated

programs describe two different models.

2.3.1 Implementation details We first formulate the problem using

an ILP and subsequently solve it with a dedicated solver. Generally, an

ILP assumes the following form:

min cTx ð3Þ

s:t: Ax � b ð4Þ

x 2 f0; 1g ð5Þ

Given a directed acyclic graph G with a set of vertices V, each repre-

senting a molecular species, Sharan and Karp (2012) learn an optimal

model with respect to a given experimental dataset E using an ILP for-

mulation with variables x=(a,t) where ae,v is a binary variable denoting

the activity level of species v in an experiment e, and tv represent the

Boolean function associated with v. Additionally, their formulation
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uses constraints to ensure that the activity level of a species v is (i) com-

patible with the activity levels of its predecessors and its Boolean func-

tion; or (ii) determined by the experimental conditions so that ae;v=

IeðvÞ 8v 2 Ie, where Ie(v) is the activity level of species v as under the

experimental conditions of e.

To generate a program for learning a maximum difference experiment,

we first duplicate the variables and constraints in the above program and

add the constraint cTx � OPT to each copy, where OPT is the value of

the objective for an optimal solution to the original program. Thus, the

integral variables tð1Þv and tð2Þv represent two models, each of which is

optimal with respect to the available experimental data. We also intro-

duce the variables a
ð1Þ
ê;v; a

ð2Þ
ê;v to represent the activity states under a max-

imum difference experiment ê. Additionally, we introduce integral

variables sv 2 f0; 1; 2g for every species v indicating whether v is main-

tained at an inactive state (0), active state (1) or not perturbed (2) in this

maximum difference experiment.

We then add the following constraints to the ILP: (i) constraints to

maintain the Boolean functions in ê as in the original program and (ii)

constraints to ensure that the activity level of species v matches the

perturbation defined by s. Formally sv=j) a
ðiÞ
ê;v=j; 8j 2 f0; 1g;

i 2 f1; 2g where ‘)’ indicates an ‘if-then’ operator (see below).

Finally, to maximize the difference between the two models the object-

ive for the ILP is given by
P

v2V ja
ð1Þ
ê;v � a

ð2Þ
ê;vj; the expression ja� bj is

modeled using an auxiliary variable dab such that

a4b) dab=a� b ð6Þ

a � b) dab=b� a ð7Þ

The complete ILP is as follows (the constraints for Boolean function

adherence are omitted for brevity):

min
X

v2V

�ja
ð1Þ
ê;v � a

ð2Þ
ê;vj ð8Þ

s:t: AxðiÞ � b i 2 f1; 2g ð9Þ

cTxðiÞ � OPT i 2 f1; 2g ð10Þ

sv=j) a
ðiÞ
ê;v=j i; j 2 f1; 2g ð11Þ

xðiÞ; aðiÞê;v 2 f0; 1g i 2 f1; 2g ð12Þ

sv 2 f0; 1; 2g v 2 V ð13Þ

A restricted version of the algorithm additionally receives a set of ex-

periments Elist=ðe1; . . . ; ekÞ to choose from. In this version, an additional

integral variable � 2 ½1; k� is introduced to the formulation indicating

the chosen experiment. Then, the following constraints are added to

the program:

�=i) sv=Iei ðvÞ 8i=1::k; v 2 Ie ð14Þ

We use the restricted version of the algorithm in the application to the

real datasets where the set of experimental conditions was predefined. We

also note that, in a similar fashion, additional constraints may be imposed

on the algorithm to exclude experiments that are hard or impossible to

conduct in a real setting.

Finally, we solve both the restricted and unrestricted versions of the

ILP using CPLEX.

2.3.2 If-then operator using ILP Our construction uses ‘if-then’

clauses to model relationships between constraints. These may be ex-

pressed as follows:

If aT1 x � b1 then aT2 x � b2 ð15Þ

or, equivalently, by

aT1 x4b1
� �

∨ aT2 x � b2
� �

ð16Þ

To express this operator using ILP, let y 2 f0; 1g be a binary vari-

able and C1, C2 be two large constants and consider the following con-

straints:

aT1 x4b1 � C1 � y ð17Þ

aT2 x � b2+C2 � ð1� yÞ ð18Þ

when y=0, the first constraint holds while aT2 x is, in practice, free to

assume any feasible value; similarly, when y=1, the second constraint

must hold, and aT1 x is not constrained.

In practice, we model ‘if-then’ operators and absolute value terms

using the CPLEX built-in facilities.

Fig. 1. Overview of the experiment learning algorithm. We start from an

ILP (Sharan and Karp, 2012) that learns a Boolean network model M

whose readouts have OPT disagreements with the experimental data. In

our formulation, this program is duplicated so that two models M1 and

M2 are learned simultaneously. The models are further constrained so

that: they both have at most OPT disagreements with the experimental

data and are therefore optimal and that they both simulate an unknown

experiment ê. The objective optimizes the difference between the readouts

of the models (rM1;ê ; rM2;ê , resp.) as per Equation (2)
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2.4 Simulation process

For a given signaling system, let m* be a Boolean model that is known in

advance, and let Ev be a set of experiments for validation. Given an

experimental design strategy and some initial subset of experiments E0,

we measured the performance of the strategy by the number of additional

experiments it used until a model whose predictions perfectly match the

validation dataset (Ev) was learned. We call such a model an optimal

model. We summarize our results using the third quartile (75th percentile)

of the additional experiments distribution, which is robust to outliers in

the data.

To generate the simulated datasets, we started with the known model

m* and a subset of the nodes whose function we wished to learn. We

repeatedly simulated experimental data by randomly setting the experi-

mental conditions, i.e. assigning random binary values to a random

subset of the nodes and calculating the readouts according to m*. As

mentioned above, the validation set, Ev, was generated independently

from the other sets. Additionally, we generated a different set of experi-

ments, Elist, to prioritize out of which the set of initial experiments, E0,

was selected. The entire set of experiments in Elist, but not their readouts,

was available to design schemes that prioritize experiments (such as the

maximum entropy scheme), whereas only E0 was available to methods

that infer experiments de novo, namely, to the maximum difference

scheme and then random control scheme. To ensure a fair comparison

between the different methods Elist was sufficiently large to uncover an

optimal model.

To study the different approaches in heterogeneous, yet realistic set-

tings, we varied number of unknown functions in the range 10, 15, 16, 17,

18 and 20 species (the original data contained 16 unknown functions).

Similarly, the sets of perturbed and measured species were constrained to

a subset of the species of equal size.

For our evaluation, we used initial subsets, E0, ranging in size from 1

to 8 to account for different amounts of prior knowledge pertaining to the

system at hand. Initial subsets for which the learned model performed as

well as a model that was derived from the entire dataset were omitted.

For each size of the initial subset, up to 30 random subsets were repeat-

edly sampled from Elist, and the third quartile of the number of additional

experiments required to construct an optimal model was reported. We

repeat these analyses with 10 simulated datasets.

To study the effect of the number of available models on the perform-

ance of the maximum entropy design, we fixed the number of unknown

species to 16 while increasing the number of available models over 10, 30,

50, 70, 100 and up to 200. To evaluate the stopping criteria, once an

experiment was chosen, we enumerated such multiple models for all ex-

perimental design strategies and stopped when at least one optimal model

was found.

2.5 Significance assessment

We assess the significance of the hypothesis that one strategy requires less

experiments relative to another to arrive at an optimal model using a one-

sided Wilcoxon paired test as implemented in R.

2.6 Quartiles standard error

We estimate the standard error using Maritz–Jarrett standard error esti-

mation method (Maritz and Jarrett, 1978).

3 RESULTS

3.1 Experimental design schemes for Boolean models

We propose and implement two experimental design schemes for

Boolean network models. The first scheme is based on maximum

entropy approach, an accepted information theoretic criterion

for model selection. Despite its appealing theoretical properties,

computing the entropy depends on the challenging task of esti-

mating the distribution of the responses across candidate models

and on the availability of a list of candidate experiments.
The second scheme, termed maximum difference, is an intui-

tive and novel criterion maximizing the disagreement between

two candidate models. Using an ILP formulation, we optimally

solve this model and uncover a de novo experiment maximizing

this criterion. Unique to our approach is its ability to implicitly

consider all candidate models and experiments alleviating the

need to specify them a priori.

3.2 Evaluation with simulated data

Given a known Boolean model for a signaling system, an experi-

mental design strategy and an initial set of experiments, we meas-

ure the performance of the strategy by the number of additional

experiments it uses until an optimal model is learned and report

the third quartile of the additional attempts in each dataset.

Here, an optimal model is one agreeing with the known model

on a set of experiments that were not initially available to the

experimental design strategy. The simulation procedure (see

Section 2) generated experimental conditions uniformly at

random to provide an unbiased sample of the experimental

space. In contrast, in real published datasets, the choice of ex-

perimental conditions is guided and may impact the relative per-

formance of design schemes.
We compared the running times of the maximum difference

and maximum entropy strategies when suggesting a single experi-

ment to be conducted (Fig. 2). Expectedly, the time of the max-

imum entropy approach grew with the number of models being

enumerated, whereas the performance of the maximum
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Fig. 2. Runtime comparison. A comparison of the running times of the
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difference approach was not affected by it, underscoring its ad-

vantage in handling complex problems that admit (for a given

experimental dataset) many optimal solutions.
We used the EGFR Boolean model by Samaga et al. and the

IL1 model by Ryll et al. to compare the performance of four

design strategies: (i) a naive approach choosing experiments at

random, (ii) a maximum entropy approach based on a sample of

models, (iii) a minimum entropy approach serving as a control

and (iv) a maximum difference approach.

First, we sought to study the effect that the number of avail-

able models has on the performance of the maximum entropy-

based strategy. Therefore, we applied the above evaluation

scheme while increasing the number of models.

When the simulated data were generated from the EGFR

Boolean network model, we found that when only a handful

of models were available, the maximum entropy approach per-

formed worse than randomly choosing an experiment, requiring

two additional experiments. However, as more models were

available the performance relative to the random approach im-

proved. With 200 models available for the evaluation of the en-

tropy, the performance of this approach was comparable with

the maximum difference scheme. In our tests, the maximal

margin relative to random was obtained when 50 models were

available, leading to an improvement of three experiments (see

Fig. 3A). The minimum entropy approach performed worse than

all other methods; the performance of the method did not

vary much when using 30 models or more. Remarkably, the

maximum difference approach significantly outperformed all

other methods, across the parameter space (P53:72� 10�16

relative to maximum entropy, the next best method, on 70

models). Notably, the advantage in implicitly considering all op-

timal models was evident as the performance of the method was

constant across the parameter range.

We obtained similar results when the simulated datasets were

generated using the IL1 signaling model (Fig. 3B). In this case,

the maximum entropy approach performed better than the

random approach even when only few models were available.

Again, only when 200 models where available for the estimation

of the entropy criterion the performance of the method was com-

parable with that of the maximum difference approach. In this

dataset, a maximal margin of five experiments relative to random

was obtained when 200 models were available. Again, the max-

imum difference approach outperformed all other methods

across the entire parameter space (P51:73� 10�18 relative to

maximum entropy on 100 models).

Next, we examined the effect of the size of the learning task

(i.e. the number of Boolean functions that need to be learned) on

the performance of the different methods. To this end, we

applied our evaluation scheme while fixing the number of

models and varying the number of unknown functions in the

range of 10–20, guided by the 16 unknown functions in the

EGFR model.
When simulating the datasets through the EGFR model, the

performance of the maximum entropy approach was closer to

the random scheme than to the maximum difference design

scheme (Fig. 4A). Still, maximum entropy designs were consist-

ently better than random (P51:75� 10�3 for 18 unknown func-

tions) with a margin of two experiments. Additionally, with

higher uncertainty, the number of additional experiments grew.

For 10 unknown functions the maximum entropy strategy also

performed similar to random. However, in this case, the space of

possible models was greatly reduced to a point where even the

random selection required four experiments for convergence,

thus, room for improvement was limited to begin with.
Notably, the maximum difference approach significantly

outperformed all other methods while increasing the marginal
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Fig. 3. Sensitivity to the number of available models. The estimation of entropy was dependent on the number of available models. In contrast, the

maximum difference learning algorithm optimized over all candidate models. In both panels, the x-axis denotes the number of available models for

entropy estimation, and the y-axis denotes the third quartile of the number of experiments required to obtain an optimal model (lower is better). Error

bars denote standard error. (A) Simulation with EFGR signaling. (B) simulation with IL1 signaling
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gap as the number of functions increased (P59:32� 10�26

relative to maximum entropy for 15 unknown functions). For

example, the reduction in required experiments relative to max-

imum entropy, which was the next best-performing method

increased from one experiment for 15 unknown functions to

five experiments for 18 unknown functions.

A similar behavior was observed when simulating the datasets

through the IL1 model. Again, the maximum entropy approach

performed significantly better than the random design scheme

(P57:71� 10�25 for 20 unknown functions). Still the maximum

difference approach was superior to the maximum entropy

scheme in all but a single scenario where 17 functions were pre-

dicted. Notably, the maximum difference approach required as

little as half of the experiments required by the maximum en-

tropy approach, which was the next best method, to converge

when running the simulation with 10, 16, 18 and 20 missing

functions. Furthermore, the performance of the maximum dif-

ference approach was nearly constant regardless of the size of the

learning task.

3.3 Application to real data

To examine the utility of the different approaches in a more

realistic setting, we applied them to the available datasets of

phosphorylation measurements under different experimental

conditions for the EGFR (34 experiments) and IL1 (14 experi-

ments) systems. We ran the different design strategies with

increasing subsets of the data as starting points and measured

the number of experiments needed to obtain a model that was as

good as the one learned from all the available experiments. The

results are depicted in Figure 5.

In this setting, we could not apply the maximum

difference and random strategies in a straightforward manner,

as we cannot simulate de novo experiments. Instead, we

applied restricted versions of these strategies, allowing them

to choose only experiments that were included in the available

data. A key difference between the maximum difference

and maximum entropy strategies in this setting is that the

former implicitly considered all possible models where the later

required a sample of models to evaluate the maximum entropy

criterion.

In both datasets, the maximum difference approach performed

best, regardless of the number of initial experiments. On the

EGFR dataset, maximum difference performed best with a sig-

nificant advantage over the maximum entropy approach

(P55:6� 10�118; 1.75 average difference between third quar-

tiles). Both methods significantly outperformed the random se-

lection with margins of 1:5 ðP51:4� 10�44Þ experiments for

maximum entropy and 3:25 ðP55:3� 10�191Þ experiments for

the maximum difference design.
Similar results were obtained for the IL1 system, where data

for only 14 experimental conditions were available. Even with

this small amount of data the reduction in the number of add-

itional experiments that were required by the maximum differ-

ence strategy was statistically significant. Specifically, the

maximum difference approach required on average 1.25 less ex-

periments than both the maximum entropy approach ðP51:5�
10�73Þ and the random approach ðP55:1� 10�71Þ. Interestingly,

the maximum entropy design performed comparably with the

random approach in this dataset.

The analyses of the real datasets revealed that the max-

imum difference approach required less than three experiments
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Fig. 4. Sensitivity to the number of unknown functions. Increasing the number of unknown functions led to increment in the number of experiments

that are required to uncover the underlying model in all but the maximum difference strategy, which retained an almost constant performance.

In both panels, the x-axis denotes the number of unknown functions, and the y-axis denotes the third quartile of the number of experiments

required to obtain an optimal model (lower is better). Error bars denote standard error. (A) Simulation with EGFR signaling. (B) Simulation with

IL1 signaling
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to learn an optimal model, achieving a 5–11-fold improvement

over the respective sets of available experiments.

4 DISCUSSION

In this article, we studied two approaches for experimental

design in Boolean networks. Our main contribution is in the de-

velopment of an algorithm to optimally solve the maximum dif-

ference design criterion while exploring the space of all

optimal models under all possible experiments. In addition, we

implemented a method based on the well-studied criterion

of maximum entropy and demonstrated its utility over a

random selection of experiment as well as its limitations under

varying conditions. Our evaluation of these schemes indicated

that under many conditions, especially in the face of scarce

data and increasing complexity of the underlying system, our

novel maximum difference approach outperforms the maximum

entropy scheme.
Our findings suggest that current studies might suffer from

redundant experimentation with respect to the available models

of the systems at hand. Furthermore, results on simulated data

suggest that by adopting an experimental design scheme, much

of the redundancy may be eliminated. Thus, our approach

should be beneficial for the study of systems whose underlying

model is sufficiently detailed and may be formalized as a Boolean

network.
On the methodological side, the maximum difference ap-

proach is limited to considering the differences between pairs

of models, calling for a generalized approach that considers mul-

tiple models. Additionally, in our current sampling procedure,

we rely on the ILP solver to retrieve a diverse family of models.

Maximum entropy and similar approaches should benefit from

the development of other strategies that better sample the

model space.
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