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IntroDuctIon
Gene expression microarrays provide accurate and highly acces-
sible experimental data for functional genomics. Microarrays are 
available for a large variety of organisms and are used in a plethora 
of experimental designs. Powerful yet convenient tools for mining 
meaningful biological knowledge out of the raw data are essential 
for successful use of microarrays. Many algorithms were developed 
for various types of microarray data analysis, but most of them are 
inaccessible to nonspecialists, and others require extensive input 
preparation and output processing. Thus, integrative software tools 
that allow easy use of various algorithms within the same package 
are needed.

Expander 5.0 (http://acgt.cs.tau.ac.il/expander) is designed as a 
‘one-stop shop’ tool that gives the user access to a range of microarray 
analysis algorithms covering the complete analysis process: processing 
of raw data, normalization, filtering, clustering, and functional, regu-
latory (i.e., promoter and 3′-untranslated region (UTR)), network 
and location analyses1–10. The high-level analysis layer includes tests 
for enrichment of functionally related genes (based on gene charac-
teristics recorded in Gene Ontology (GO, see Box 1 for glossary)), 
co-regulated genes (using transcription factor (TF) and microRNA 
(miRNA) target predictions) and co-localized genes (i.e., genes that 
are close together in the genome). In addition, Expander implements 
custom enrichment analysis, which allows testing of gene groups 
against user-defined annotations. Finally, networks of protein inter-
actions or signaling can be used for the detection and analysis of 
active gene modules. Expander 5.0 is pre-compiled with up-to-date 
sequence and annotation data for 13 model organisms (Table 1), and 
is freely available for academic users. Altogether, Expander provides a 
powerful software suite for comprehensive analysis of gene expression 
microarray experiments.

Comparison with other microarray data analysis tools
Many excellent alternatives are available for performing basic 
microarray data analysis11–18. Some examples are GenePattern11, 
dChip12, TM413, J-Express14 and GeneSpring. Each such tool  

supports a distinct set of possible analyses, as shown in Table 2, 
but combining together the analysis steps from different tools 
requires considerable expertise and file format manipulation, 
and is error prone. Expander fully supports the entire basic gene 
expression analysis pipeline including normalization, multiple 
clustering algorithms and functional enrichment of small- to 
large-scale gene expression data sets. However, beyond the basics, 
Expander is unique in providing an integrated, comprehensive 
suite of high-level gene expression analysis tools. Using Expander, 
the user can apply state-of-the-art cis-regulatory sequence motif 
finding, miRNA target enrichment, network-based module find-
ing, biclustering, co-location analysis and custom (user-defined) 
enrichment analysis, using unique and proven algorithms all in 
the same application.

The current limitations of Expander include a relatively narrow  
repertoire of normalization methods and the lack of support 
for classification and feature selection (Table 2). In addition, the 
methods for promoter and miRNA analysis currently support only 
known motifs of TF or miRNA binding, and the promoter and 
3′-UTR data that are supplied by Expander. Finally, Expander is 
currently supported only on Windows and Linux platforms. We are 
continuing the development of Expander toward removing these 
limitations as well as adding new features.

This protocol is organized into three modules: loading and organi-
zing expression data, identifying groups of co-regulated genes, and 
uncovering functions and regulatory networks (Fig. 1). Each of these 
analysis steps, as implemented in Expander, has proved useful in mul-
tiple studies, such as analysis of mRNA from yeast19, Leishmania20, fly21, 
mouse7 and human22–24 and analysis of human miRNA data25. Two 
murine microarray data sets are provided to illustrate this protocol: 
time course of bone marrow-derived macrophages (BMMs) exposed 
to various stimulators (taken from InnateImmunity-SystemsBiology 
website, http://www.innateimmunity-systemsbiology.org/), which will 
be referred to as EX1, and a comparison between wild-type and miR-
155-deficient Th1 cells26, which we will be referred to as EX2.
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a major challenge in the analysis of gene expression microarray data is to extract meaningful biological knowledge out of the huge 
volume of raw data. expander (eXpression analyzer and Displayer) is an integrated software platform for the analysis of gene 
expression data, which is freely available for academic use. It is designed to support all the stages of microarray data analysis, 
from raw data normalization to inference of transcriptional regulatory networks. the microarray analysis described in this protocol 
starts with importing the data into expander 5.0 and is followed by normalization and filtering. then, clustering and network-
based analyses are performed. the gene groups identified are tested for enrichment in function (based on Gene ontology),  
co-regulation (using transcription factor and microrna target predictions) or co-location. the results of each analysis step can  
be visualized in a number of ways. the complete protocol can be executed in ∼1 h.
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Loading and organizing expression data. This section describes 
the ways in which data can be imported into Expander and then 
organized, normalized and filtered. The basic data representation 

in Expander is a matrix, in which rows correspond to microarray 
probes and columns corresponds to studied conditions (samples). 
There are two ways to import microarray data into Expander.  

 Box 1 | GLoSSARY 
BMM—bone marrow-derived macrophages
CDF—chip description file
CLICK—CLuster Identification via Connectivity Kernels2

FAME—Functional Assignment of MiRNAs via Enrichment (I. Ulitsky and R. Shamir, unpublished data)
GO—Gene Ontology50

MATISSE—Module Analysis via Topology of Interactions and Similarity SEts10

miRNA—microRNA
PCA—principal component analysis32

PPI—protein–protein interaction
PRIMA—PRomoter Integration in Microarray Analysis3

PWM—position weight matrix
RMA—robust multi-array average27

SAM—significance analysis of microarrays54

SAMBA—statistical-algorithmic method for bicluster analysis6

SIF—simple interaction format
SPIKE—Signaling Pathway Integrated Knowledge Engine8

SOM—Self-Organizing Map33

TANGO—Tool for ANalysis of GO enrichments4

TF—transcription factor
TFBS—transcription factor binding site
UTR—UnTranslated Region

table 1 | Species and analyses supported in Expander.

species
name in  
expander Gene IDs supported analyses

Go  
analysis

promoter 
analysis

mirna 
analysis

location 
analysis

network 
analysis

Homo sapiens Human Entrez Gene √ √ √ √ √*

Mus musculus Mouse Entrez Gene √ √ √ √ √*

Rattus norvegicus Rat Entrez Gene √ √ √ √*

Gallus gallus Chicken Ensembl √ √ √ √

Danio rerio Zebrafish Ensembl √ √ √ √

Drosophila melanogaster Fly Flybase √ √ √ √ √*

Caenorhabditis elegans C. elegans Wormbase √ √ √ √ √*

Arabidopsis thaliana Arabidopsis AGI √ √ √ √*

Solanum lycopersicum Tomato Ensembl √ √ √

Listeria monocytogenes Listeria Entrez Gene √ √ √

Schizosaccharomyces pombe S. pombe Entrez Gene √ √ √ √

Saccharomyces cerevisiae S. cerevisiae ORFs √ √ √ √*

Escherichia coli E. coli Ensembl √ √*
Name in Expander: the organism name as it appears in Expander’s ‘Load Study’ dialog (Step 2).
Gene IDs: the gene identifiers used and expected by Expander for each organism. These identifiers must be used in user input data, unless a conversion file is provided (see Step 2).
√*in the network analysis column indicates that a sample protein–protein interaction network for the organism is available as part of Expander installation. Other networks can be loaded by the user.
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The first way is to directly load raw Affymetrix CEL files, which are 
then processed using the robust multi-array average (RMA) or the 
GC robust multi-array average method (utilizing their BioConductor 
implementation)27. The second way is to load a processed text file 
containing the data matrix (Box 2). Expander allows significant flex-
ibility in the structure of this text file. Such files can be obtained 
from low-level analysis programs and edited using any spreadsheet 
editor such as Microsoft Excel. In order to apply the diverse Expander 
annotation capabilities, the microarray probes must be mapped to 
organism-specific gene identifiers. Several mapping files are provided 
on the Expander download page and others can be obtained from 
various web-based services, such as BioMart28.

The analysis of microarray data frequently requires normali-
zation, to remove technical biases present in the data. Expander 
implements two methods for normalization of oligonucleotide 
arrays: nonlinear regression29 and quantile normalization30. Dual-
channel array data loaded into Expander are assumed to be already 

normalized (this is because Expander accepts such data as red/green 
intensity log ratios, while normalization requires separate raw 
intensities for these two channels).

Before running most high-level analysis algorithms, it is impor-
tant to first identify those genes that have meaningful (i.e., non-
static) gene expression patterns and filter out the rest. Expander 
provides several commonly used filters for this task, including 
filters based on fold-change factors, expression pattern variance, 
detection calls (for Affymetrix microarrays) or differential expres-
sion between condition subsets. Guidelines for the choice of a filter 
are described in Box 3. The set of probes that pass the filter can be 
used either directly as a gene group (e.g., if the microarray data 
contain cases and controls, and a t-test filter was applied) or further 
divided into groups using a gene grouping algorithm.

Throughout preprocessing, diverse views of the data are avail-
able, including box-plots, heat maps, hierarchical clustering31 and 
principal component analysis32.

table 2 | Comparison to other tools.

tool expander Gp dchip ep tM4 Gepas Gen cyto ct Gs Je GM

Software type  /        

Free for academic users √ √ √ √ √ √ √ √ √

Free for commercial  
users

√ √ √ √ √ √

CEL file preprocessing √ √ √ √ √ √ √ √ √

Microarray image  
analysis

√ √

Normalization √ √ √ √ √ √ √ √

Principal component 
analysis

√ √ √ √ √ √ √ √ √ √

Clustering √ √ √ √ √ √ √ √ √ √ √

Biclustering √ √

Classification √ √ √ √ √ √ √

GO analysis √ √ √ √ √ √ √ √ √

Chromosomal location 
analysis

√ √ √ √

Network-based analysis √ √ √

Network visualization √ √ √

Promoter analysis √ √

MicroRNA analysis √

Custom enrichment  
analysis

√

Software types: , stand-alone application, , web server. Compared tools: Expander; GP, GenePattern11; dChip12; EP, EBI Expression Profiler15; TM413; GEPAS16; Gen, Genesis17; Cyto, Cytoscape18;  

CT, Cluster/Treeview31 (http://rana.lbl.gov/EisenSoftware.htm); GS, GeneSpring; JE, J-Express14; GM, GeneMaths. Only tools that support multiple types of analyses, including some high-level analysis (e.g., GO 
analysis) were included in the comparison. Partek was not included in the comparison because of license restrictions. Comparisons of the individual algorithms available in Expander (CLICK, MATISSE, FAME, 
etc.) to other extant methods have been reported in detail in the original publications introducing these algorithms.
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Identifying groups of co-regulated genes.  
In this section, we describe how to execute 
algorithms that identify probe/gene groups 
that share similar expression patterns. 
Three basic approaches for gene grouping 
are available in Expander as follows:
Clustering Clustering is the process of 
partitioning the probes into distinct groups 
(clusters) based on the similarity of their 
expression patterns across all the profiled 
conditions. The goal is to assign probes with 
similar expression patterns to the same clus-
ter, and probes with dissimilar patterns to 
different clusters. The quality of the cluster-
ing solution reflects these two criteria, and 
is usually measured in terms of homogene-
ity and separation of the clusters. Expander 
implements some of the most widely used 
clustering algorithms: SOM33, k-means34 
and CLuster Identification via Connectivity 
Kernels (CLICK), a graph-theoretic cluster-
ing algorithm that we developed1,2. CLICK 
was shown to be superior to several other 
methods according to several figures of 
merit2. In addition, Expander contains an 
implementation of hierarchical clustering, 
which organizes the probes (or the condi-
tions) into a tree structure based on expres-
sion pattern similarities31.
Biclustering The basic assumptions of 
clustering algorithms are that co-expressed 
genes exhibit a global expression pattern 
similarity across the entire condition set, and 
that each gene belongs to only one group. 
This assumption becomes too restrictive 
when many diverse conditions (e.g., over 
20) are studied. A bicluster is a set of genes 
that show significant similarity over a subset 
of the conditions. A biclustering algorithm 
can detect a collection of biclusters in a 
large gene expression data set. In this collection, genes or conditions 
can take part in more than one bicluster. Expander implements the 
Statistical-Algorithmic Method for Bicluster Analysis (SAMBA 2.0) 
biclustering algorithm, which can handle data sets with hundreds 
to thousands of conditions5,6,35. Detailed examples of analysis using 
SAMBA have been described previously4,5, and it is not included in 
the protocol presented here.
Network-based gene grouping Gene networks, such as protein–
protein interaction (PPI) networks, can improve the interpretation 
of microarray data9,10,36–39. In particular, by combining network and 
expression data, it is possible to identify network modules: con-
nected subnetworks with similar expression patterns9,10,36–38. Such 
modules are frequently more insightful than co-expression clus-
ters, as they account also for the network relationships between the 
genes. Furthermore, the genes in such a module are more likely to 
be functionally related10. Expander contains an implementation of 
Module Analysis via Topology of Interactions and Similarity SEts 
(MATISSE), a graph-theoretic algorithm that detects significant 
co-expressed connected subnetworks9,10.

In addition, it is also possible to load user-defined gene  
groups directly into Expander.

Uncovering functions and regulatory networks. This section 
describes how gene groups, identified in the previous section, or 
imported directly into Expander, can be analyzed and connected 
to functions and to regulatory networks. The following methods 
are available in Expander:
Functional analysis Successful analysis of microarray experiments 
is facilitated by the association of gene sets with biological func-
tions. For example, when a cluster of co-expressed genes contains 
an unusually high proportion of genes sharing some annotation 
(e.g., a GO category), the other genes in the cluster can also be 
predicted to share this function. A major concern when testing 
functional enrichment for a gene set using GO is the thousands 
of repeated and related statistical tests that are performed for each 
gene group. Expander implements Tool for ANalysis of GO enrich-
ments (TANGO)4, which addresses this problem by computing 
empirical P-values corrected for multiple testing and also filters 
similar annotations from the reported results (Box 4). TANGO 
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Figure 1 | Flow chart of the Expander workflow. The steps in green are included in this protocol, 
whereas the steps in blue represent additional Expander capabilities. Red rectangles indicate input 
files and the algorithms names are written in orange. Numbers next to arrows and rectangles indicate 
protocol step numbers.



nature protocols | VOL.5 NO.2 | 2010 | 307

  
p

u
or

G  
g

n i
h si l

b
u

P er
u ta

N 010 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc. e r

ut a
n .

w
w

w / /:
pt t

h

protocol

allows functional testing using the entire GO hierarchy and  
provides reliable and parsimonious results.

Promoter analysis Microarray experiments hold great potential 
for revealing the regulatory networks that determine the expres-
sion patterns of individual genes. As co-expressed genes are 
likely to be co-regulated, computational analysis of the promoter 

sequences of co-expressed genes can identify the signatures of 
TFs that regulate specific transcriptional programs. Several algo-
rithms for detecting overrepresented TF binding sites (TFBSs) have  
been successfully used to delineate transcriptional networks  
in organisms ranging from yeast to human3,34,40. Expander uses  
PRomoter Integration in Microarray Analysis (PRIMA)3 for pro-
moter analysis. Given the promoter sequences of the genes in each 

 Box 2 | DATA FoRMATS USED IN ExPANDER 
tabular expression data
The most common input to Expander is a tabular text file, in which entries are separated by tab delimiters. Other formats can also be 
loaded using the ‘Advanced Input Dialog,’ which can be accessed by clicking the Advanced button in the ‘Load Tabular Data’ dialog box 
(Step 2A).

The data in the file should be in a matrix format, where rows correspond to probes and columns to studied conditions. The first row 
provides the header, which contains condition names (these could be any string). The first column provides the probe IDs and the  
second column provides the gene symbols. If gene symbols are not available from the software used to generate the file, this column 
can be omitted, and Expander will automatically assign gene symbols using Entrez Gene. In the first row, by default, the first two  
columns are ignored and can contain any string. For example, these are the first eight columns of the first four lines in BMM.txt: 

Using the ‘Advanced Input Dialog’ (Figure 3a), it is possible to specify that gene symbols appear in a different column or that the file 
does not contain a symbol column at all. In the latter case, measurements should start from the second column. It is also possible to 
specify that the header appears in a different row. In that case, the measurements should start from the row following the header row. 
Missing values should be presented as blank entries, dashes, ‘〈NA〉’ or ‘NA.’

For Affymetrix oligonucleotide microarrays, the file may also contain information about the detection call for each measurement. 
If this is the case, one has to select the File contains detection calls (A, M, P flags) option in the ‘Load Tabular Data’ dialog box 
(Step 2A). The format of such a file is similar to the standard tabular file, but each condition is represented by two columns: the first 
containing the measurement and the second containing the detection call. In the header row, the title of each condition should be 
followed by the title of its detection column (which is ignored). A sample input file with detection calls, ‘expressionWithDetection.txt,’ 
appears in the Expander home directory under sample_input_files.
Identifier (ID) conversion files
A conversion file is a tab-delimited file containing two columns. The first column should contain the probe ID exactly as it appears in 
the data file and the second column should contain the corresponding gene ID (e.g., an Entrez Gene ID for mouse and human genes). 
If no conversion is available for a probe, the second column can be either left blank or the probe can be omitted from the file. Note 
that several probe IDs can be mapped to the same gene ID. Several conversion files are available in the organisms directory under 
Expander home directory. This directory contains a separate subdirectory for each species, and within these directories the  
conversion files can be found in the converionFiles subdirectory. supplementary Data 1 contains a sample conversion file,  
MG430_2.0_Probe2EntrezGene.txt.
Gene groups, clustering solutions and annotation files
The same format is used for loading gene groups (Step 2B) or annotation data, and for loading and saving clustering solutions. These 
files are tab-delimited files that contain two columns. The first column contains the probe/gene identifier (supported in Expander) 
and the second column the gene group/cluster (unique name or index). Network node IDs have to match the gene IDs supported by 
Expander (table 1). Note that for a clustering solution, cluster 0 is reserved for probes that are left unclustered (singletons). A sample 
gene groups file, geneSetsData1.txt, is found in the sample_input_files directory under the Expander home directory.
sIF network file format
The SIF format is a straightforward and widely used format for definition of network data. A SIF file is a tab-delimited file,  
containing three columns. Each row represents a single network edge. The first column contains the ID of the source node and  
the third column contains the ID of the target node. The middle column specifies the interaction type. For a full list of possible  
interaction types see http://www.cytoscape.org/manual/Cytoscape2_5Manual.html. Expander currently distinguishes between  
edge types only for visualization purposes. Protein→DNA edges (denoted by ‘pd’ in SIF files) appear as directed edges, whereas  
all other interactions appear as undirected ones. Note that the network node IDs have to match the gene IDs supported by  
Expander (table 1).

probeset Gene symbol cpG_0 cpG_20 cpG_40 cpG_60 cpG_80 cpG_120

1415670_at Copg 9.25 9.10 9.24 9.112 9.20 8.94

1415671_at Atp6v0d1 11.17 11.25 11.16 11.10 11.07 10.91

1415672_at Golga7 10.97 10.94 11.01 11.01 10.93 10.80
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target set (e.g., co-expression cluster) and of a background set 
(typically, all the genes represented on the microarray), PRIMA 
performs statistical tests aimed at identifying TFBS signatures  
that are significantly more prevalent in any of the target sets than 
in the background set. Expander provides promoter sequences  
for most of its supported species (Table 1) and the length of the 
promoter can be defined by the user.

miRNA analysis miRNAs are believed to have a major impact 
on mRNA expression41,42. Analysis of 3′-UTR sequences of co-
expressed genes can provide evidence of miRNA regulation41,43. 
The Functional Assignment of MiRNAs via Enrichment (FAME) 
algorithm (I. Ulitsky and R. Shamir, unpublished observations), 
implemented in Expander, evaluates empirically the significance 

of over- or underrepresentation of miRNA binding sites in the  
3′-UTRs of gene group members. FAME uses TargetScan 5.0 pre-
dictions of the target sites of miRNA families44, and utilizes target 
site context scores, which quantify the strength of the regulation 
conferred by each site45. Importantly, FAME accounts for possible 
biases owing to 3′-UTR sequence length (Box 5).

Changes in transcription levels in the cell are determined by 
the activity of diverse signaling pathways that regulate the TF and 
miRNA activity. The analysis of gene expression in the context of 
these pathways can thus be insightful. To address this, Expander 
is integrated with the Signaling Pathway Integrated Knowledge 
Engine (SPIKE) knowledge base8, which contains diverse and  
rich information on human signaling pathways (Box 6). By 
invoking SPIKE from within Expander, it is possible to view the  

 Box 3 | FILTERING PRoBES USING ExPANDER 
Probe filtering allows one to extract a set of informative probes from large gene expression studies. Filtering often facilitates more 
rapid and accurate downstream analysis. In addition, in many common scenarios, the set of all the genes passing a filter (e.g., t-test) 
is of interest by itself and can be used as an input into various Expander group analyses (e.g., Step 38).

Six probe filtering methods are available in Expander under the Preprocessing→Filter Probes menu. The selection of the filter  
depends on the experimental design used to generate the data (and on the level of statistical rigor desired from this initial step in 
the analysis):
a. two or more subsets of conditions (and each subset contains at least two conditions) are compared. This scenario occurs  
if the experiment was designed for:
 1. comparison of samples before and after some treatment (and replicates are available for both cases);
 2. comparison of specimen from different genetic backgrounds. For example, mir155.txt in supplementary Data 1 represents a  
comparison between five WT and five mir-155-deficient Th1 cells; and
 3. comparison of cohorts of cases and controls (e.g., in disease studies).

In this case, the t-test and SAM filters are appropriate. Expander allows the user to partition conditions in the data into subsets, and 
these filters test, for each probe, whether its expression levels differ among the condition subsets. During parameter setting (Step 9B), 
it is possible to specify whether the filter should be one-sided (looking for genes that are only upregulated or only downregulated in 
one subset compared with the other) or two-sided (retaining all differentially expressed genes). The t-test filter supports comparisons 
of two group subtypes, whereas SAM can be used to compare any number of condition subsets. For details on additional differences 
between SAM and t-test, see the SAM manuscript54.
b. Data contain several time points after a specific treatment
In such cases, informative probes are those that show a considerable change relative to a reference time point (usually time point 0). 
For such data, the Fold change filter is appropriate. The fold change can be calculated in relation to (a) a selected baseline condition, 
(b) the minimal expression level of the probe, (c) the reference value, when working on relative intensities data in which a biologically 
meaningful reference sample was used in one of the channels, or on absolute intensities data that have already been divided before by 
some reference condition.

The fold-change filtering scheme is usually not statistically controlled. However, as the number of replicates in microarray  
experiments is typically very low, rigorous statistical tests usually have limited power only in detecting genes whose expression is  
significantly changed in the examined data set. Therefore, in many cases, applying fold-change filter gives better results, and  
statistical rigor of the entire analysis comes from subsequent enrichment tests.
c. Data compare different individuals, tissues or treatments
In this case, informative probes are those that show significant variance among conditions. In this case, there are two possible filters:
 1. The Variation filter, which extracts the genes with the most variant patterns (variation is defined as variance for relative  
intensities data and as coefficient of variation for absolute intensity data).
 2. The Fold change filter, in which the reference is defined as the minimal expression level of the probe (i.e., for each probe the 
maximum and the minimum values are compared).
D. Data were obtained using affymetrix microarrays, and contain detection calls
In this case, it is possible to use the detection calls to filter out probes for which the fraction of conditions in which they were called 
as present (‘P’) is below a certain threshold. It is recommended to follow the application of this filter by one of the filtering steps 
described above.
e. custom filter
Finally, the user can load any custom filtering file (a simple text file containing a probe name in each row) using Preprocessing→Filter 
Probes→Load Probes Subset.
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signaling interactions among the genes in a specific group and 
identify enrichment of specific pathway maps in gene groups. As 
we are currently working on significantly expanding the interface 
between Expander and SPIKE, these features will not be described 
as part of the protocol.

Finally, Expander also supports location analysis, in which gene 
groups can be tested for exhibiting unusually high concentration 
in their genomic locations (chromosome, chromosome arm or 
band), and custom enrichment analysis, in which gene groups can 
be tested using any user-defined annotations.

MaterIals
EQUIPMENT SETUP

PC with an internet connection
Hardware requirements. Expander hardware requirements depend on  
the size of the expression data and on the organism that is analyzed.  
For a typical expression data set of 22,000 probes in 20 conditions,  
we recommend a ≥2 GHz CPU, 500 MB of available hard disk space,  
at least 1 GB of free physical RAM and a minimum screen resolution  
of 1,024 × 768.
Operating system. Expander is currently supported on the Windows XP  
or Vista and Linux operating systems.

•
•

•

Java 2 Runtime Environment (JRE) version 5.0 or higher (http://java.sun.
com/javase/downloads/index.jsp).
R Software (R Project for Statistical Computing46). It should be installed  
if the user wants to import CEL files or use the SAM filter.
Expander. It has to be installed on a local computer by following the steps in Box 7.
Pre-compiled data for different organisms. Pre-compiled data on gene  
symbols, genomic positions, functional annotations, promoter sequences 
and miRNA target predictions are available in organism-specific bundles. 
These data for the analyzed organism can be downloaded from within 
Expander, as described in Box 7.

•

•

•
•

 Box 4 | DETECTING FUNCTIoNAL ENRICHMENT USING TANGo 
Expander’s functional enrichment analysis places the gene groups (such as the results of a clustering analysis) in a biological con-
text. This is done by looking for statistically significant large intersection between a target group of genes and sets of genes that are 
annotated with some function. The standard statistical test for enrichment of a group for genes annotated with a particular function 
employs the hypergeometric (HG) distribution. According to this test (also called Fisher’s exact test for independence), we are observing 
a background set of n genes, m of which are annotated with a certain function (the set A). Given a gene group T with m′ genes, the 
probability that the intersection of T and A is of size k is 

HG n m m k
m

k

n m

m k

n

m
( , , , )′ =







−
′ −
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The P-value for intersection of size k or larger between A and T is HG n m m j
j k

( , , , )′
≥
∑ . TANGO uses this formula to identify significant 

enrichments (and PRIMA uses a generalized version of it).
When testing several sets Ai corresponding to different terms, and especially when the number of terms is large (e.g., when using 

the GO database), the P-values we derive have to be corrected, as we test many hypotheses and can obtain low P-values even if T is 
a random set of genes. If the sets Ai were independent, one could have applied a standard correction procedure (e.g., Bonferroni or 
FDR55). However, when the sets Ai are highly dependent (e.g., GO terms ‘cell cycle’ and ‘cell cycle regulation’), such correction may 
be too stringent. To cope with this problem, TANGO takes a simple approach, and computes the empirical distribution of the minimal 
enrichment P-value by sampling a large number of random gene sets and computing their P-values versus each of the annotation sets. 
When annotating several gene sets Ti in a single analysis (e.g., all the clusters identified in a data set), TANGO also corrects for the 
additional multiple testing that takes place.

In practice, TANGO computes corrected P-values for a collection of gene sets Tj and an annotation database Ai by estimating the 
distribution of enrichment P-values in permuted genes sets of the same sizes. The idea is that we keep all of the relations among  
annotation sets Ai and among target sets Tj, but we decouple any dependency between them by applying a random permutation on  
the gene IDs used by the Tis.
Filtering redundancies
GO is designed for maximum flexibility and provides a rich biological vocabulary that can support diverse species. As a result, when 
testing functional enrichment, one can detect several annotation terms with significant corrected P-values, such that all of the terms 
reflect essentially the same function or process. To avoid reporting such redundant terms, TANGO performs a greedy redundancy filtering 
procedure based on an approximated conditional HG test. Formally, given a target set T that is enriched with genes from the set A′,  
we test if T is enriched with genes from another set A, assuming we already know the size of intersection between A′ and T and  
between A and A′: 

CondP T A A HG A A A T A k HG n A
k T A A

( , | ) (| |,| |,| |, ) ( |
| |

′ = ′ ∩ ′ ∩ ′ × − ′
≥ ∩ ∩ ′

∑ ||,| |,| |, )
|( ) |

A A T A l
l T A A

− ′ − ′
≥ − ′ ∩

∑

TANGO starts with all annotation terms that got a significant enrichment for a certain target set, sorted by their P-values Ai1, Ai2,…,Aik. 
Then, the list is traversed and only sets Ai for which CondP(T,Ai | Aj)  <  pmin for all j < i are reported, where pmin is a pre-defined cutoff.

We note that if the analysis generating the target sets included only part of the genome (e.g., the ensemble of genes present on  
the microarray), one should perform all the analysis with an appropriately chosen background set, which can be specified in the  
Background Set panel in the TANGO, PRIMA and FAME configuration dialogs. Finally, note that TANGO tests for the significance  
of the overlap between gene groups and GO categories, unlike GSEA56, which tests for enrichment of annotation sets in ranked  
lists of genes.
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Data files. This protocol begins with an expression data set to be  
analyzed. Expander installation is accompanied by several sample files, 
which are described in the Expander manual. Loading new data into 
Expander is described in Step 2. Several data files are available in  
Supplementary Data 1–4 for readers wishing to follow this protocol  
as a tutorial:

BMM.txt contains a microarray data set constructed by the Innate  
Immunity Systems Biology project, in which expression profiles  
were recorded in murine BMMs at several time points after exposure  
to six agents. We will refer to this data set as EX1 (Supplementary  
Data 1).
MG430_2.0_Probe2EntrezGene.txt contains a mapping of Affymetrix 

•

•

•

Murine Genome (MG) U430 2.0 probes to Entrez Gene identifiers, taken 
from BioMart28 (Supplementary Data 2).
Mir155.txt contains a microarray data set developed by Rodriguez et al.26, 
in which five repeats of Th1 cells deficient for mir-155 are compared with 
five controls (obtained from the ArrayExpress database, accession number 
E-TABM-232). We will refer to this data set as EX2 (Supplementary Data 3).
mouse.IntAct.sif, a mouse PPI network taken from the IntAct database47 
in simple interaction format (SIF) (Supplementary Data 4) (see Box 2 for 
format specifications).
Additional data files and accompanying step-by-step tutorials are available 
at Expander homepage (http://acgt.cs.tau.ac.il/expander) under the heading 
‘Hands on.’ 

•

•

•

 Box 5 | TESTING FoR MIRNA TARGET ENRICHMENT oR DEPLETIoN USING FAME 
Expander’s miRNA target enrichment tests help linking groups of co-expressed genes with possible miRNA regulation41,57. In addi-
tion, if a miRNA’s targets are underrepresented in such a group, it is likely that the genes have evolved to avoid miRNA targeting, 
e.g., because the miRNA and the group are highly expressed in some of the same conditions41,58. A large number of algorithms for 
sequence-based prediction of miRNA targets have been described in the literature59. Expander uses TargetScan 5.0 predictions of 
miRNA targets44, as they were recently shown to be more accurate than other tools60. These predictions are used to test whether 
the targets of some miRNA families (as defined in TargetScan) are enriched or depleted in any of the analyzed gene groups. The 
standard statistical method for identifying such enrichment or depletion is the hypergeometric test (used also in TANGO and 
PRIMA). However, this test treats equally all the predicted miRNA targets, while in reality target sites can be quite diverse in 
their efficacy. Several recent studies have shown that specific features of the 3′-UTR can influence the efficacy of individual  
miRNA target sites45,61. These features can be combined into ‘context scores’ that can be used to assign confidence to the  
predicted targets of each miRNA. In addition, the hypergeometric test does not take into account the very uneven distribution  
of 3′-UTR lengths. The 3′-UTRs of genes expressed in some tissues, such as brain and the neural systems, are very long, whereas  
the 3′-UTRs of genes expressed in proliferating cells are much shorter58,62. To identify significant over- or underrepresentation of  
miRNA targets in gene groups, Expander uses FAME (I. Ulitsky and R. Shamir, unpublished observations), a permutation-based 
statistical method that uses the confidence values for individual miRNA-target pairs and accounts for the number of miRNAs 
regulating each target. FAME computes an empirical P-value for each miRNA-gene group pair, which is more accurate than the 
hypergeometric P-value (the ‘raw P-value’, which is also computed by Expander). The accuracy of the FAME P-value is limited by 
the number of random iterations, which is specified by the user (e.g., if 100 random iterations are performed, the P-value cannot 
be below 0.01). The FAME settings dialog box allows the user to specify the following parameters (only parameters not shared by 
TANGO or PRIMA are explained here):
 ● Enrichment direction—as described above, underrepresentation of miRNA targets in a set of genes can often be even more 
informative than over-representation. Select the direction of the enrichment using this dropdown menu.
 ● Use context score—this option specifies whether FAME will use the context scores (confidence scores for individual miRNA target 
sites45) to weight miRNA-target pairs in FAME.
 ● Minimal overlap between targets and group—it specifies the minimum number of predicted miRNA targets that need to appear in 
the group, in order for the miRNA to be considered by FAME.

 Box 6 | SPIKE 
Cellular responses and processes are coordinated by diverse signaling pathways, data on which are constantly accumulating. It is 
frequently desirable to analyze gene expression data in the context of these pathways. Expander installation includes the SPIKE 
knowledge-base of human signaling pathways8. SPIKE includes an extensive database of human signaling interactions curated from 
the literature, with a specific focus on DNA damage response, as well as interactions from other pathway databases, including 
KEGG63 and Reactome64. Using SPIKE, it is possible to analyze either entire gene groups or the subset of a group that shares a  
GO annotation. Several types of analysis are possible for each such set of genes:
 ● View the known signaling interactions among genes in the set. The user can view a map of interactions and explore additional 
signaling interactions involving the genes using SPIKE’s dynamic network exploration capabilities8.
 ● Identify intermediate signaling pathway members that connect the genes in the cell. It is possible to add to the gene set  
additional genes that lie on shortest paths among the selected genes.
 ● Test whether the gene set is enriched for genes from pathway maps defined in SPIKE. If such enrichment is found, it is possible 
to view the pathway and highlight the genes in it that belong to the gene set.

Analysis using SPIKE can be initiated by selecting in the Group Analysis menu Network→SPIKE. Full details on the analysis are  
available in the Expander manual.
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proceDure
Import of expression data
1| Follow the steps in box 7 to install and execute Expander and to download the pre-compiled annotation data for the 
organism that you wish to analyze (mouse, if one would like to follow this protocol as a tutorial).
 crItIcal step Organism-specific annotation data have to be installed and placed at the right directory for successful 
execution of Steps 20–39.
? troublesHootInG

2| After Expander is started, the Expander desktop image (the frame of Fig. 2) can be seen. Before data are loaded, the 
main window remains blank. In the beginning of a session, one has to load data into Expander. Three possible data types 
can be imported: a tabular data file (option A), a collection of CEL files (option B) or a collection of gene groups (option C).
(a) tabular data file
 (i)  A tabular data file is a tab- or space-delimited file describing gene expression measurements (for details on the format, 

see box 2), which can be obtained from various image processing and low-level analysis programs, and edited using 
any spreadsheet editor, such as Microsoft Excel. Data has to be assembled in a tabular file, as described in box 2  
(to follow the protocol as a tutorial, BMM.txt in supplementary Data 1 can be used).

 (ii)  To load the file, select the File menu and then New Session→Expression Data→Tabular Data File. A ‘Load Tabular Data’ 
dialog box will appear.

 (iii) Select the desired species in the Organism pull-down menu. For EX1, select mouse.
 (iv)  In the Raw data file field, specify the location and the name of the tabular text file (specify the full path). To use this 

protocol as a tutorial, load BMM.txt (EX1) or mir155.txt (EX2).
 (v)  For each organism, Expander supports the most common gene identifier type, which is specified in table 1.  

Each row in the data file can correspond either to a microarray probe or to a single gene. If each row in the data  

 Box 7 | ExPANDER INSTALLATIoN 
1. Go to the Expander homepage (http://acgt.cs.tau.ac.il/expander) and click on the Download link.
2. Fill in the details on the registration page. Read carefully the Expander license and accept its terms.
3. Download the Expander installation package for the operating system (Windows or Linux).
4. After downloading, unzip the installation bundle and place its contents in a directory on the computer. When done, make careful 
note of the directory in which Expander is installed: this will be the Expander home directory.
 crItIcal step Owing to a problem in modules that use the R program, the path of the Expander directory should not contain 
spaces.
5. Optional step: Download pre-compiled annotation files for the organisms that will be studied. To follow this protocol as a  
tutorial, one will need to download the annotation files for mouse. The files for each species are available as a separate .zip archive. 
After downloading, place the contents of the .zip files into the organisms subdirectory in the Expander home directory. Alternatively, 
you can download and extract the files automatically from within the software (see Step 9).
6. Optional step: In order to perform CEL file preprocessing and use the SAM filter (both of which are not part of this protocol), one will 
need to install R, a free software environment for statistical computing and graphics. After installing R, do the following to install the 
Bioconductor affy, aroma.affymetrix and samr packages:
 A. Run R.
 B. In the R window, type the following lines:
  i. source(“http://bioconductor.org/biocLite.R”)
  ii. biocLite(“affy”)
  iii. install.packages(“samr”)
  iv. source(“http://www.braju.com/R/hbLite.R”)
  v. hbInstall(“aroma.affymetrix”)
7. If using the Linux operating system, ensure that one has rwx permission for the Expander home directory and for the directory in 
which the data are located. Also ensure that one has rx permissions for all ‘.exe’ files in the Expander directory.
8. Navigate to the Expander home directory. Two execution files are available for Expander. If the PC contains at least 2 GB of RAM, 
double click Expander_2GB.bat (under Microsoft Windows) or use ./Expander_2GB.bat (under Linux). Otherwise, double click 
Expander.bat.
9. If not done so in Step 5, download the annotations files for the species that will be analyzed. In the Help menu, click on Download 
Data for Organism, select an organism and press OK. To follow this protocol as a tutorial with EX1 (BMM.txt) and EX2 (mir155.txt) 
(supplementary Data 1), download the mouse annotation files. Once the annotation data are downloaded, they will remain installed 
and will be available during subsequent executions of Expander.
10. For more information, refer to the manual on the Expander homepage.
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file corresponds to a probe, in 
order to perform the analyses in 
Steps 20–39, one has to load a 
simple two-column file that  
contains a mapping of probes  
to the gene identifiers suppor-
ted by Expander for the ana-
lyzed species (see box 2 for 
file format). For EX1, such a 
mapping file for Affymetrix MG 
U430 2.0 microarray is avail-
able in supplementary Data 1 
(MG430_2.0_Probe2EntrezGene.
txt). Similar files for several 
popular microarrays are available 
for download on the Expander 
download page (see the  
Expander manual for details). 
Select the IDs conversion file  
option and specify the full  
path of the mapping file in the 
corresponding field. Alterna-
tively, if rows in the data file 
correspond to genes rather than 
probes (and the first column 
contains gene IDs), select the 
Use probe IDs as gene IDs option (do not select this option for EX1 or EX2). 
 crItIcal step Failure to properly match probes to gene identifiers will lead to failure in executing Steps 20–39.

 (vi)  Expander supports two types of data files, as described below. When loading data one needs to specify the type of  
array analyzed. Experiments using single-channel technology, usually based on oligonucleotide arrays (such as  
Affymetrix of Illumina arrays), measure the absolute intensities of the probes on the array. These values are always 
positive. If the data describe a single-channel array experiment, select Absolute Intensities option in the Data type 
dropdown menu. The array intensities reported in the file can be either raw or base 2 log-transformed (depending on 
the software that was used to produce the data file). The range of raw intensity values is typically 1–40,000, whereas 
log-transformed values are in the range of 0–15. Select the scale of the data in the Data scale dropdown submenu.  
For EX1 or EX2, select Absolute Intensities as data type and Log2 as data scale. Dual-channel technology is used in 
spotted cDNA arrays as well as most of Agilent arrays. In a data file resulting from dual-channel arrays, each measure-
ment corresponds to the logarithm of the ratio of the intensities of the two channels. These values are both positive 
and negative and usually fall in the range of  − 10 to 10. If the data file describes a dual-channel experiment, select 
Relative Intensities in the Data type dropdown menu. 
 crItIcal step The array type affects various aspects of data visualization and normalization in Expander. The 
specified data scale affects various aspects of data normalization. If the measurements in the file are log-transformed 
and this is not specified, the flooring procedure (see below) is likely to discard most of the measurements,  
significantly affecting all subsequent analyses.

 (vii)  If the data taken from an Affymetrix array, detection calls may appear as separate columns in the tabular file  
(for details, see box 2). If the file contains such columns, select the File contains detection calls option. For EX1 or 
EX2, leave this option unselected.

 (viii)  If the file contains missing values, they will be imputed by Expander upon loading the data. There are two options  
for imputing missing data. First, set the missing values to a specified value by selecting Set missing values to and fill 
the appropriate field. By default, the missing values in ‘Absolute Intensities’ data files are set to 40 (5.3 if the data 
are in log scale). Select this option for EX1 or EX2. Another option is to estimate missing values using the K-Nearest 
Neighbors (KNN) algorithm48 by selecting Estimate missing values with KNN.

 (ix)  For data files containing absolute intensities, a flooring procedure will set all the values below a certain threshold 
(40 for raw values and 5.3 for log2 data by default) to that threshold. Specify the flooring threshold in the Floor value 
field. For EX1 or EX2, use the default parameters.

Figure 2 | Data sheet view. The top left panel contains the description of the loaded data. The bottom 
left panel contains a log of the preprocessing steps that were done. The right panel contains several 
views describing the entire data set. The displayed tab describes the distribution of the intensity values 
in each condition in the raw and in the preprocessed data.
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 (x)  Click on the Advanced button. 
An ‘Advanced Input Dialog’ will 
appear (Fig. 3a). This dialog box 
can be used for loading files that 
deviate from the standard tab-
delimited format (box 2). In the 
bottom part of the dialog, the 
first few rows and columns of 
the data are displayed in a table, 
showing the way the data will 
be parsed by Expander, based on 
the current parameter settings. 
If this table has red background, 
it indicates a problem with 
data input. The row containing 
the header information (from 
which the condition names will 
be taken), the first data row 
and the columns specifying the 
probe/gene IDs and the gene 
symbols can be altered. The 
first data column is automati-
cally set to the column follow-
ing the gene symbols column. 
If additional columns should 
be ignored, specify some part 
of their names in the Ignore 
columns fields. After setting the 
parameters, press the Preview 
button. The preview will be 
updated. Both the sample files, 
EX1 and EX2, follow the standard 
tab-delimited file format, and no 
parameter adjustments are required in order to load them. 
? troublesHootInG

 (xi)  Select the Auto-fill symbols option. This will enable Expander to use its gene database to update the gene symbols  
corresponding to each probe. This option is helpful when the data file does not contain a gene symbol column.  
Gene symbols appear in various Expander visualizations, such as heat maps (Fig. 3b) and probe lists. After finishing 
specifying the file format, press OK to close the Advanced Input Dialog and then press OK again to load the data.

(b) affymetrix cel files
 (i)  Before loading CEL files, ensure that R software along with the Bioconductor ‘affy’ package (box 7) has been installed. 

An open internet connection is also required for this operation.
 (ii)  In the File menu, select New Session→Expression Data→CEL files. A dialog box will appear. Specify the species and the 

type of the microarray for the CEL files.
 (iii)  Enter the folder where the CEL files are located into the Files location field. Specify the name and the location of the 

tabular file that will be generated from the processing CEL files in the Save data into file field.
 (iv)  For new-generation Affymetrix chips, which are not part of the 3′ Gene Expression chip family, the chip description  

file (CDF) has to be provided, which can be obtained from http://bioinf.wehi.edu.au/folders/mrobinson/CDF/ or 
http://www.affymetrix.com/support/technical/libraryfilesmain.affx. It is also possible to use custom CDF files for  
3′ gene expression microarrays (see Expander manual for details).

 (v)  To view the detection calls in Expander, select the Retrieve detection calls option (available only for the 3′ Gene  
Expression chip family).

 (vi) Press OK.
 (vii)  If Expander cannot find the location of the installation of R, specify the location. Browse to the location of the  

R software (the full path of the R.exe file). In Windows, R.exe file is likely to be located in the bin folder of R software. 

a

c

d

b

Figure 3 | Expander views. (a) Advanced data import dialog and (b) hierarchical clustering (partial 
view). Note that the red/green coloring scheme can be changed to blue/yellow using Options→
Settings→Display; (c) normalization relative to reference conditions and (d) t-test configuration.
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In Linux, type ‘which R’ in the terminal to find the R path. If more than one version of R is installed, ensure to point 
Expander to a version in which the relevant R packages have been installed.

 (viii)  Once CEL files preprocessing is complete, quantile normalization will be applied, and a corresponding tabular data file 
is generated and a ‘Load Tabular Data’ dialog box will appear, as described in Step 2A.

(c) custom gene groups
 (i)  Prepare a gene groups file in a two-column tab-delimited format, which maps the probe identifiers to gene group names 

(box 2). A sample gene groups file appears in the Expander home directory under sample_input_files/geneSetsData1.txt.
 (ii) Select the File menu and then New Session→Gene Groups A ‘Load Gene Groups’ dialog box will appear.
 (iii)  Select the desired species in the Organism pull-down menu and specify the file name in the File Name field. Press OK. 

After this step proceed directly to Step 20.

3| Grouping the conditions into subsets improves the heat map visualization and allows easier selection of multiple  
conditions (e.g., when using the t-test filter, Step 9B). In the Data menu, select Define Condition Subsets. In the dialog  
box, for each condition subset, use the condition list on the left to select the conditions that should be grouped, type  
the subset name in the Group name field and then press the  >  >  button. EX1 contains several time series, each describing 
exposure to a different TLR stimulator7. For example, all the conditions starting with ‘LPS’ describe a time series of exposure 
to LPS. Note that each time point is treated by Expander as a separate condition. Group the conditions in each time series 
into a separate condition subset. When analyzing EX2, group the first five conditions into a ‘control’ subset and the rest  
of the conditions into a ‘mir-155’ subset.

4| After expression data are loaded, a new tab, called ‘Data Sheet 1,’ will appear in the main window (Fig. 2). Subsequent 
analyses will open additional tabs, and the active tab can be selected by clicking its name on the lower part of the screen 
(Fig. 2). A data sheet can be closed by right clicking the tab and selecting ‘Close.’ A data sheet tab consists of three  
panels, as shown in Figure 2: (a) The top left panel presents information about the raw data file. (b) The bottom left panel 
is initially blank, and presents information about the preprocessing procedures applied to the raw data. (c) The right panel 
consists of several tabs (selected at the top on the panel), which contain different visualizations of the data set. Initially, 
they include ‘Box Plots,’ a visualization describing the distribution of intensities in each sample and ‘heat maps’ of the raw 
and preprocessed data matrices. In the heat maps, the conditions are grouped and color-coded based on the condition 
subsets that were defined in Step 3. If detection calls are available (for Affymetrix microarrays only), the detection statistics 
for each probe appear in three columns in the raw data heat map, on a 0–1 scale, corresponding to the relative appearance 
frequency of each detection call (P, M and A).

organization and normalization of the data set
5| Optional step: This step is relevant only for the analysis of oligonucleotide arrays. An M versus A plot compares two 
conditions A and B, by plotting the log intensity ratios M = log2(Ai/Bi) versus average log intensities log2(AiBi)/2, where  
Ai and Bi represent the measurements for probe i in conditions A and B, respectively30. View an M versus A plot by selecting 
in the Preprocessing menu Normalization→View Scatter Plots. Select the two conditions that will be compared and select  
the M versus A plot option. Ideally, if the data are properly normalized, the points in the plot should be scattered around  
the horizontal line M = 0. If this is not the case, it is likely that an intensity-dependent bias is present in the data,  
which can be corrected using normalization, as described in the next step.

6| Optional step: Use this step if the raw data are suspected to contain technical biases (based on visual inspection of 
intensity box plots and M versus A plots). If EX1 or E2 is being used, no normalization is needed as the data were already 
normalized. Expander supports two normalization algorithms:
(a) Quantile normalization
 (i)  This method makes the distribution of probe intensities to be the same for all arrays in the data set30. To perform 

quantile normalization, in the Preprocessing menu select Normalization→Quantile.
(b) nonlinear baseline normalization
 (i)  This normalization is based on pseudo-locally weighted scatterplot smoothing (LOESS) regression of the M versus A 

scatter plot29. In the Preprocessing menu, select Normalization→Nonlinear baseline. The other conditions will be  
normalized relative to a reference condition that can be specified in the Select base condition dropdown menu. The 
subset of genes that are used to evaluate the normalization function can be set to ‘all genes’ (recommended when 
most genes in the data set are expected to be constantly expressed) or a ‘rank invariant set’ of genes (recommended 
when it is likely that a large number of genes are differentially expressed).
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7| Optional step: If the data contains technical or biological repeats, it is possible to average them using the  
Merge Conditions option in the Preprocessing menu. Merging is not required when using sample files.

8| It is possible to further normalize the data relative to reference condition(s), by dividing each value by the correspond-
ing value in the reference condition. The time courses in EX1 should each be normalized in relation to time point 0 in each 
time course. In the Preprocessing menu, select Divide by Base. If the data are on a log2 scale, a message box will raise the 
alert that the values in the base condition(s) will be subtracted from each sample (rather than dividing each sample by the 
relative condition). Press OK. Select the checkbox next to each condition subset (Fig. 3c). In the Base dropdown menus, 
select the appropriate time point 0 for each condition subset (Fig. 3c) and press OK. In the Preprocessed Data Box-plot panel 
in the main window, the values in time point 0 of each time course should be always 0. Details on the preprocessing now 
appear in the bottom left panel of the main window.

Filtering probes and conditions
9| Expander implements various filtering methods (box 3). In this protocol, we will describe two filtering options: filtering 
by fold change, which is useful when analyzing time course data, and filtering by t-test, which is appropriate when the data 
compare two groups of samples. If one is following this protocol as tutorial, use option A for analyzing EX1 and option B for 
analyzing EX2.
 crItIcal step Filtering of uninformative expression patterns is crucial for successful application of hierarchical cluster-
ing and gene grouping algorithms. For optimal performance in terms of execution time and solution quality, the number of 
probes passing the filtering step should typically not exceed 5,000.
(a) Filtering by fold change
 (i)  In the Preprocessing menu, select Filter Probes→Fold Change. One can specify the baseline relative to which the fold 

change will be computed. When Step 8 is performed, the data points are already normalized by a reference condi-
tion. In this case, the fold change criterion should be computed relative to time 0; therefore, select the Use reference 
as base value option. When analyzing absolute intensities data, if the data were not divided before by any reference 
conditions, it is possible to compute the fold relative to either the minimum expression level of each probe or by its 
level in a base condition selected by the user. This is done by selecting either the Use minimal value as base value or 
the Select base condition options, respectively.

 (ii)  Specify the fold parameter and the minimal number of conditions in which this fold-change has to be observed.  
For EX1, specify a fold change of 4 in at least one condition.

 (iii)  Note the Preprocessed Data Box-plot, located at the bottom of the right panel. One would see that the values in  
time 0 of each time course are always 0, and the variance increases with time in each time course.

(b) Filtering by differential expression
 (i)  Expander contains two options for filtering by differential expression: T-test and SAM. Using T-test, it is possible to 

compare two groups of conditions, whereas using SAM any number of groups can be compared, while correcting for 
multiple testing. In order to use the T-test filter, in the Preprocessing menu select Filter Probes→T-test. A dialog box 
will appear (Fig. 3d).

 (ii)  Select the type of t-test (one-sided or two-sided) in the Requested type of change dropdown menu. For EX2, select  
Up-regulated.

 (iii)  Press the Select button to specify the conditions in the two groups. In case of a case–control data, group 1 conditions 
are the ‘controls’ and group 2 conditions are the ‘cases.’ For EX2, select the conditions in the ‘control’ subset as  
group 1 and the conditions in the ‘mir- 155’ subset as group 2 (Fig. 3d).

 (iv)  Specify the significance threshold in the Select probes with P-value ≤ field and specify the multiple testing correction. 
Alternatively, one can specify that a fixed number of genes with the most significant P-values will pass the filter.  
For EX2, set the P-value threshold to 0.1 and select FDR as the multiple testing correction. Press OK.

 (v)  Note the Preprocessed Data Box-plot, located at the bottom of the right panel. One would see a clear difference  
between the distributions of the intensity levels in the two condition subsets.

10| Optional step: In the Preprocessing menu, select Filter Conditions. Select the conditions one wants to use in subsequent 
analysis (use the Ctrl and Shift keys to select multiple conditions). When analyzing EX1, select all the conditions except for 
time point 0 in each condition subset (as these time 0 points are not informative after all conditions are divided by their 
matching time point 0 (Step 8)).

11| Perform hierarchical clustering of the conditions. In the Grouping menu, select Hierarchical Clustering. Select the  
clustering method49 in the Linkage dropdown menu (select Average linkage for EX1) and check only the Conditions checkbox. 
Press OK.
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12| A new tab called ‘Hierarchical 1.1’ will now appear in the main window. The panel on the left contains information  
about the clustering and the panel on the right shows the clustered gene expression matrix (Fig. 3b).

13| Save the clustered heat map. In the File menu, select Save As Image. Check only the dendrogram with matrix option. 
Enter the name of the directory where the image file should be placed. Press OK.

Gene grouping
14| General guidelines on the choice of clustering algorithm are available in box 8. Cluster the gene expression patterns  
using the CLICK algorithm. In the Grouping menu, select Clustering→CLICK. Select Default homogeneity and press OK. For  
details on the homogeneity parameter, refer to the CLICK manuscript2. Clustering using CLICK takes a few minutes for data 
sets with several thousands of genes. Note that most advanced analysis algorithms (gene grouping, functional enrichment 
and promoter analysis) have a random component, so results can vary slightly when the same algorithm is repeated.
? troublesHootInG

15| Once clustering is completed, a new tab named ‘CLICK 1.1’ will appear in the main window (Fig. 4). The top left panel con-
tains information about the clustering algorithm, the quality of the results (overall homogeneity and separation), the number of 
clusters and the number of singletons (the number of genes that were not assigned to any cluster). In addition, a table is shown, 
specifying the names of the clusters, their sizes and homogeneity (the average Pearson’s correlation among the expression patterns 
of probes in the cluster). The bottom left panel contains the average expression pattern of each cluster with error bars (±1 s.d.).

16| In the top left panel, click on one of the table rows. The corresponding cluster display will appear on the right.  
It contains a list (shown as a table) of the probes in the cluster, and the genes they correspond to. Click on one of the rows. 
The expression pattern of the probe described in the row that is selected will appear on the bottom. Click on one of the 
Entrez Gene identifiers in the ‘Gene 
ID’ column. This will open an internet 
browser window with the Entrez Gene 
webpage describing the gene.

17| In the cluster display (right 
panel), switch the tab to Expression 
matrix. A heat map of the cluster will 
appear (Fig. 4c). This image can be 
saved by selecting Save as Image in 
the File menu (see Step 13).

18| In the right panel, switch to the 
Positions tab. Chromosomes appear as 
vertical lines, and the genes in the clus-
ter that is selected appear as horizontal 
bars on them, at their genomic locations. 
Zoom in by clicking the magnifying glass 
button and then clicking on the area of 
the panel that one would like to magnify. 
For EX1, in the dropdown menu on the 
toolbar of the right panel, select ‘LPS-
120.’ The length and the direction of the 
bars now correspond to the expression 
levels of the genes in this condition.

 Box 8 | HoW To CHooSE THE GRoUPING ALGoRITHM 
Gene grouping using clustering is a hard task and no single algorithm is superior over others. In the number of clusters is known,  
k-means or SOM have a potential advantage. Otherwise, several values of k can be tried, or CLICK, which does not require tuning  
k can be used. CLICK was shown to outperform the other algorithms on some expression data sets2.

When the number of studied conditions is very large (e.g., over 30), biclustering can have an advantage over clustering, as it does 
not assume that genes belonging to the same group exhibit similar expression across all the conditions6.

a

b

c

Figure 4 | Clustering solution visualization. (a) Statistics of the clustering solution and a table with 
cluster sizes and homogeneities. (b) Average expression patterns in each cluster. Error bars indicate 
1 s.d. (c) A heat map of the cluster currently selected in panel a.
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19| In the Visualizations menu, select Clustered Expression Matrix. A new tab will appear in the main window. In the  
top right panel (Coloring scheme), select ‘CLICK 1.1.’ The rows in the heat map in the left panel are now sorted by the  
assignment of the probes to clusters. The labels of the probes and the gene symbols are now color-coded based on  
their cluster assignment and the color legend appears in the bottom right panel. This view can also be saved using  
File→Save As Image (see Step 13).

Functional enrichment analysis
20| At this point, gene groups have been identified using one of the methods offered in Expander or loaded using Step 2. 
These groups will be tested for enrichment with GO annotations50. If not already done so, the organism-specific pre-compiled 
annotation data should be downloaded, as described in box 7. Expander uses the TANGO algorithm (box 4) to identify GO 
enrichments that are statistically significant after correction for multiple testing. To run TANGO, go to the Group Analysis 
menu and select Functional Analysis→TANGO.
? troublesHootInG

21| The dialog box that will appear specifies the TANGO parameters: (a) In the Perform analysis on dropdown menu, 
select the gene groups that are to be analyzed (select CLICK 1.1 if Step 14 has been followed ). (b) The option  
Include back nodes is visible only if the analysis is performed on MATISSE results (see Step 35 for definition of  
back nodes). (c) In the Focus on option, select the GO subsets that will be used in the analysis. For EX1, select  
only the Process option. (d) The Ignore classes over size of field allows to filter out GO terms that are too general.  
For EX1, set this parameter to 2,000. (e) The Number of iterations by the algorithm option specifies the number of  
randomizations (see box 4 for details). (f) In the Background set panel, specify the background against which  
enrichments will be computed. When analyzing gene expression data, it is recommended to use the set of genes that 
are represented on the microarray as background. To do so, select Original Data. (g) The Corrected P-value threshold 
field specifies the threshold below which enrichment results will be reported. When all the parameters are set,  
press OK. Execution of TANGO can take up to 10 min for large data sets.
? troublesHootInG

22| When TANGO execution is completed, a new tab will appear in the main window. The structure of all the tabs showing  
enrichment results (produced by TANGO, PRIMA and FAME) is the same (Fig. 5). The tab consists of three panels: (a) The  
top left panel, which lists the color codes of the annotations that are significantly enriched in at least one gene group.  
(b) The bottom left panel, which describes the input parameters and the number of gene groups in which significant  
enrichment was found. (c) The right panel, which contains one bar diagram for each gene group in which enrichment has  
been detected. Each chart contains a bar for each significantly enriched GO annotation (after correction for multiple testing).  
The height of the bar is proportional  
to the significance of this enrichment 
(i.e., height =  − log10(raw P-value)).  
The frequency in the group (the  
fraction of the genes in the group  
that were annotated with the GO  
annotation) appears on top of  
the column.
? troublesHootInG

a

b

c

d

Figure 5 | Enrichment analysis results.  
The presented results are for PRIMA analysis. 
TANGO or FAME results are presented in a  
similar way. (a) Legend of the color codes  
for each annotation (TF in this case).  
(b) Summary of the parameters and the results  
of the enrichment algorithm. (c) Bar charts 
showing the enrichment in each cluster.  
Each column indicates the enrichment of a 
different annotation (TF in this case). Bars 
indicate enrichment P-value (base 10 log-scale). 
Numbers above the bars are relative abundance 
in the target versus background sets. (d) TF 
binding site viewer. This viewer that can be 
opened by clicking on the button pointed to by 
the arrow. Each row presents a single promoter.
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23| Click on one of the diagram bars. A dialog box with information about the specific enrichment will appear. The following 
information is available in this dialog box: (a) Raw P-value, the hypergeometric enrichment P-value, not corrected  
for multiple testing. (b) Corrected P-value, the significance level after the correction performed by TANGO (note that the 
smallest possible corrected P-value that can be reported is 1/Nrand, where Nrand is the number of randomizations carried  
out by the algorithm). (c) Number of genes, the number of genes that appear in the gene group and that are also annotated 
with the GO annotation. (d) Frequency in set, the percentage of the genes in the group that are annotated with the  
GO annotation.

24| In the right panel, switch to the Enrichment Table tab. This table lists all the significant enrichments that were  
detected. Click on the header of the Raw P-value column to sort the rows in ascending order of P-values. Clicking on other 
headers will sort the table by the respective columns.

25| Save the results to a text file by selecting Group Analysis→Functional Analysis→Export Results. Specify the name of the 
output file and click OK.

26| Switch to the clustering results tab (e.g., CLICK 1.1) and select one of the clusters in which enrichment was found. 
In the right panel, switch to the new GO Enrich tab (e.g., ‘CLICK 1.1 GO Enrich 1’), which shows a bar chart displaying the 
enrichment found in the selected cluster. Switch to the Expression matrix tab. Columns in the left part of the heat map 
(Enriched functions) correspond to GO terms that were significantly enriched in the gene group. Gray cells in these columns 
indicate the genes annotated with the GO term.

promoter analysis
27| Examine the enrichment of TFBSs in the promoters of genes in each group using the PRIMA algorithm, which performs a 
statistical analysis on the distribution of TFBS motifs in the promoters of genes within each gene group, using a generalized 
hypergeometric test7. In the Group Analysis menu, select Promoter Analysis→PRIMA. Some of the PRIMA parameters  
are identical to the TANGO parameters described in Step 21. The additional parameters are (a) Fingerprint, PWM (position 
weight matrix) and Promoter sequence files, which are pre-compiled files used by PRIMA. The default values of these fields 
are filled automatically, based on the organism that is selected in the beginning of the session. (b) Hits range determines 
which region of the promoter will be analyzed. The relevant ranges vary among the supported organisms (see the Expander 
manual for details). (c) Ignore coding regions if this option is selected, TFBS falling within coding regions will be excluded 
from the analysis. (d) In Multiple testing correction in this dropdown menu, one can specify whether the significance levels 
should be corrected for multiple hypothesis testing. (e) Save results as field allows to specify the name of a file which will 
contain a textual description of the results. When analyzing EX1, set the background set to Original data, P-value threshold  
to 0.05 and multiple testing correction to Bonferroni. Press OK. Note that PRIMA execution can take up to 20 min,  
depending on the number and size of the gene groups.
? troublesHootInG

28| After the analysis is completed, the results appear in a new tab in the main window (Fig. 5). The structure of this tab 
and the operations that can be performed are similar to the functional analysis results tab described in Step 22. Each TF 
PWM is represented by its TRANSFAC database identifier51. Unlike the functional analysis results, this display also contains 
the frequency ratio of TF prevalence (the frequency in the group divided by the frequency in the background set). It is  
displayed on top of the corresponding bar.

29| In the right panel, click on one of the chart bars. A dialog box with details about the specific enrichment and the list  
of genes in the group containing the motif (similar to the dialog in Step 23) will appear.

30| Press the button at the top of the right results panel (Fig. 5d). The View binding sites dialog box will appear.  
In the dialog box, select the set of PRIMA results (e.g., ‘CLICK 1.1 TF enrich.1’) as the Analysis. In the Set dropdown menu, 
select one of the gene groups and press OK. The ‘TFBS View’ frame will be displayed. This view shows the locations of the 
TFBS hits on the promoters of the genes in the group. Each line represents a promoter and each colored rectangle represents 
a putative TFBS. A color index appears on the right, mapping each color to the corresponding TF. Click on the checkbox next 
to each of the entries in the color index to hide/show the sites of the corresponding TF. Click on the radio button next to 
one of the entries in the color index to sort the genes in the display according to the number of hits of the corresponding 
TF. Use the buttons in the toolbar to adjust the display. When the zoom factor allows it, the actual promoter sequence is 
displayed (Fig. 5).
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31| By selecting Promoter Analysis→Export Results from the Group Analysis menu, export the results of promoter analysis  
to a text file.

network-based gene grouping
32| Now load a gene network into Expander. In the Data menu, select Load Network. Specify the location of the network SIF 
file (the SIF format is described in box 2). For EX1, use mouse.IntAct.sif in supplementary Data 1 as a sample murine PPI 
network. Sample networks for several organisms (listed in table 1) are available as part of the pre-compiled data available 
for download (box 7). Press OK. The network statistics are listed.

33| To execute network-based gene grouping, each gene should be related to a unique row in the data matrix. If data rows 
correspond to probes rather than genes (e.g., in EX1), go to the Preprocessing menu and select Merge Probes by Gene ID. 
Select the Open an additional data sheet option and press OK. This operation will create one row per gene by averaging over 
all the probes that are mapped to the gene, and a new Data Sheet 2 with summary information (see Step 4) will appear.

34| The MATISSE algorithm10 identifies connected subnetworks containing genes with highly correlated gene expression 
patterns. Run MATISSE from the Grouping menu by selecting Network→Matisse. In the parameters dialog box, specify the 
MATISSE β parameter10 and the maximal and minimal module size. Use the default parameters for the sample files. Press OK.
? troublesHootInG

35| Once MATISSE execution is completed, a new tab will be added to the main window. The structure of the MATISSE results 
tab is identical to that of a clustering solution (Fig. 4), described in Step 15. In the table in the top left panel, select  
Module 1. The corresponding module display will appear on the right. It contains a list (shown in a table) of gene IDs  
and gene symbols. Subnetworks identified by MATISSE consist of nodes for which expression data are available in the pre-
processed matrix (front nodes) and additional nodes (back nodes), which are added by MATISSE based on their connectivity 
with the front nodes. In the network gene table, back nodes have orange background (Fig. 6a). Switch to the Expression 
Matrix tab. A heat map with the expression patterns of this module will appear. Now switch to the Interactions tab.  
Click on the button at the top of this tab. The subnetwork view will be spread out (see subnetwork examples in Fig. 6b). 
This panel presents all the interactions among the subnetwork genes that appear in the network that has been loaded.  
Once a network is loaded into Expander, an Interactions tab will be added to every gene group display (e.g., in CLICK 1.1). 
Note that for gene groups that were not identified based on network connectivity (e.g., for CLICK clusters), most of the 
genes will be disconnected from all other group members.

36| Save the Expander session by selecting Save Session As in the File menu.

mirna target enrichment analysis
37| Test the gene groups for enrichment of miRNA targets. In the EX1 data set, there are no significant miRNA target  
enrichments in the CLICK clusters. Therefore, to follow the protocol as a tutorial, start a new session and load EX2  
(mir155.txt, supplementary Data 1) 
as a tabular data file, by following 
Steps 1–3 (the organism, ID conver-
sion file, data scale and file format of 
EX2 are the same as those of EX1).  
Follow Step 9B to filter the data set 
using t-test and retain genes that are 
only upregulated in mir-155-deficient 
cells.

38| To test for miRNA target enrich-
ment, select miRNA Analysis→FAME 
from the Group Analysis menu. Select 
the gene groups that will be tested 
from the Perform Analysis On dropdown 
menu. If all the genes that passed the 
filtering step should be considered  
as the tested gene group (e.g., when 
analyzing EX2), select Filtered data  
in this menu. Some FAME parameters 
are identical to TANGO parameters,  
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Figure 6 | MATISSE results. (a) A gene list for a module obtained by MATISSE. An orange background 
in the Gene ID column indicates that the gene is a back node (a gene whose expression pattern was 
not used by MATISSE). (b) Network views. Edges indicate interactions found in the network. Orange 
background indicates back nodes. The leftmost module corresponds to panel a.
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described in Step 21. Other FAME parameters are described in box 5. For analysis of EX2, use the default parameters.  
Execution of FAME can take up to 3 min for large data sets.
? troublesHootInG

39| After FAME execution is over, a new results tab will appear in the main window. The results are presented in the same way 
as the PRIMA results described in Step 28 (Fig. 5). Note that each color represents a different TargetScan 5.0 family (box 5).

● tIMInG
A large fraction of the time required to execute this protocol is taken by the time required to download the Expander  
pre-compiled annotation data (which depends on the internet connection speed). Once the annotation data have been  
downloaded, it will remain installed and will be available during subsequent executions of Expander. The download of the 
mouse annotation data takes about 20 min for a standard home internet connection.

The times of the remaining steps of the protocol depend on the size of the data set analyzed. The clustering algorithms are 
affected by the number of probes that are clustered, and the group analysis methods are dependent on the number of the groups 
and on their sizes. On a PC with 3 GHz CPU and 2 GB of memory, with the sample files EX1 and EX2, execution of hierarchical 
clustering takes 2 min, CLICK 5–10 min, TANGO 1 min, PRIMA ≈20 min and FAME 3 min. The rest of the steps take only a few 
seconds. Once the annotation data are downloaded, an experienced user can execute the full protocol described within 1 h.

? troublesHootInG
Troubleshooting advice can be found in table 3.

table 3 | Troubleshooting table.

step problem possible reason solution

1 Executing Expander.bat or 
Expander_2GB.bat does not 
open the Expander window

Java is not installed properly Check the Java installation. If necessary, reinstall  
Java 5.0 (or higher)

2A(x) When loading tabular data, 
the preview table has red 
background

The data file cannot be read Ensure that the part of the table that contains the  
data contains only numbers or one of the supported 
missing value indicators – ″-″, ″ < NA > ″ or ″NA″

14 and  
34

Execution of gene  
grouping algorithms  
takes a very long time

Preprocessed data contain too  
many probes/genes

Reduce the size of the data set by applying a more  
stringent filtering (Step 9). For optimal performance,  
the number of probes that pass the filtering step  
should not exceed 5,000

All An ‘Out of memory’ error box 
appears

Expander has exhausted all the  
available computer memory

Close unnecessary visualization tabs by right clicking  
the tab name 
If the PC allows it, run Expander with more memory  
(using Expander_2GB.bat) 
If possible, apply filtering to the data and remove  
unnecessary probes/conditions  
Save the session and try re-opening Expander or  
rebooting the computer.

14, 21 
and 27

CLICK, TANGO, SAMBA  
and/or PRIMA fail when  
running on Linux

User permissions are not set  
correctly

Make sure that you have write permission in the 
Expander directory, and execution permissions for  
the files: click.exe, samba.exe, annot_sets.exe and 
analyze Fingerprints.exe, which are under the Expander 
directory

21, 27 
and 38

TANGO, PRIMA or FAME  
produce no results

A problem with the probe→gene 
mapping file

Check that the conversion file maps the probe identifiers 
exactly, as they appear in the data file (e.g., lower case) 
to the gene identifiers supported by Expander (table 1)

The organism field in the input  
dialog is not set correctly (the 
selected organism appears in the top 
left panel in the ‘Data sheet’ tab)

Open a new session with the correct organism specified

The threshold P-value is too rigid or 
no significant enrichments exist

Try increasing the P-value threshold
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antIcIpateD results
If EX1 file (BMM.txt) is loaded properly, it should contain 45,101 probes and 38 conditions. Out of these, 2,038 probes show 
a fourfold change relative to the reference conditions and pass the filtering in Step 9A. Most of the algorithms used in the 
protocol contain some random components and results may vary slightly among runs.

Hierarchical clustering of the conditions shows four main groups of similar conditions: (a) response to LPS after 8 and  
24 h; (b) Response to all the agents after 120 min and LPS, PAM2, PAM3 and PIC after 80 min; (c) Response to CPG and 
R848 after 40, 60 and 80 min, LPS, PAM2 and PAM3 after 40 min and PIC after 60 and 80 min; (d) Response to LPS,  
R848 and PAM2 after 20 min and to PIC after 40 min.

CLICK clustering identifies 8 clusters—three large clusters with more than 100 genes, and five smaller ones (cluster sizes 
are shown in Fig. 4a). Note that the order, exact sizes and number of clusters can vary slightly between runs of CLICK, due 
to stochastic elements in it. Cluster 1 contains ~700 genes up-regulated following treatment with LPS in time points 8 and 
24 h. Cluster 2 also contains ~700 genes down-regulated following treatment with LPS in the same time points. Cluster 3 
contains ~200 genes up-regulated following all six treatments.

TANGO identifies enrichments in the three large clusters. Cluster 1 is enriched with immune response-related terms  
(‘immune response’, ‘defense response’, ‘response to virus’ etc.). Cluster 2 is enriched with cell cycle-related terms  
(‘cell cycle’, ‘mitosis’ etc.), and Cluster 3 is also enriched with immune-response related terms, as well as with cytokine  
production and apoptosis. TANGO also contains a random component (see box 4), and results may vary slightly among runs.

PRIMA identifies significant TFBS enrichments in the three large clusters. The promoters of Cluster 1 are enriched with  
sites corresponding to ISRE, IRF-1 and IRF-7, known regulators of the interferon response. Cluster 2 is enriched with targets 
of cell cycle TFs E2F and NF-Y, and to a lesser extent with targets of Nrf1, ZF5 and ETF. Cluster 3 is enriched with targets  
of NF-κB, another key regulator of the immune response. For a detailed discussion of these results, see our previous  
publication about the TLR signaling transcriptional response7.

MATISSE detects eight modules containing 4–19 genes each. The largest module (Fig. 6) contains eight members of the 
DNA replication initiation machinery (Mcm2-7, Gmnn and Ris2). Two modules contain 10 genes each: one with four genes 
involved in hemopoiesis (Syk, Jak2, Csf1 and Fas) and another with two subunits of DNA polymerase delta (Pold1 and Pold2). 
Another module (8 genes) contains four cyclin genes (Ccna2, Ccnb1, Ccnd1 and Cdc2a). MATISSE thus identifies at least three 
cell-cycle related complexes, all of which are down-regulated as part of the late response to LPS exposure. The hemopoiesis 
module is also interesting, as this function is not enriched in any of the gene expression clusters. The two main hubs in this 
module, Csf1 and Fas, both have known hemopoiesis-related roles in response to LPS52,53. Note that one of the reasons the 
identified modules are rather small is that the mouse PPI network is very limited in scope. Analysis of human or S. cerevisiae 
data typically uncovers larger modules9,10.

In EX2, 33 probes are upregulated with FDR  < 0.05 in cells deficient for mir-155. FAME analysis identifies a significant 
enrichment for mir-155 targets (raw P-value 1.38·10 − 7, corrected P-value 0.004), and a less significant enrichment for  
mir-142-3p.

Note: Supplementary information is available via the HTML version of this article.
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