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Abstract

Genome-wide analysis of cellular transcriptomes using RNA-seq or expression arrays is a major mainstay of
current biological and biomedical research. EXPANDER (EXPression ANalyzer and DisplayER) is a
comprehensive software package for analysis of expression data, with built-in support for 18 different
organisms. It is designed as a “one-stop shop” platform for transcriptomic analysis, allowing for execution of all
analysis steps starting with gene expression data matrix. Analyses offered include low-level preprocessing
and normalization, differential expression analysis, clustering, bi-clustering, supervised grouping, high-level
functional and pathway enrichment tests, and networks and motif analyses. A variety of options is offered for
each step, using established algorithms, including many developed and published by our laboratory.
EXPANDER has been continuously developed since 2003, having to date over 18,000 downloads and 540

citations. One of the innovations in the recent version is support for combined analysis of gene expression and
ChIP-seq data to enhance the inference of transcriptional networks and their functional interpretation.
EXPANDER implements cutting-edge algorithms and makes them accessible to users through user-friendly
interface and intuitive visualizations. It is freely available to users at http://acgt.cs.tau.ac.il/expander/.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The ability to profile entire cellular transcriptomes,
first by expression microarrays and subsequently by
RNA-sequencing (RNA-seq) has transformed bio-
logical research over the last two decades, by
turning the paradigm of systems-level analysis
from a formidable task to one that is readily
accessible to most experimental laboratories [1].
Consequently, transcriptome profiling is one of the
Author. Published by Elsevier Ltd. Th
/licenses/by/4.0/).
most vastly used techniques in biomedical research,
being routinely applied for multiple goals, including
the elucidation of transcriptional networks that drive
different biological processes and cellular responses
to challenges and the identification of expression
signatures for multiple pathological conditions [2–4].
The utility of transcriptomic experiments greatly
depends on the availability of advanced, yet easy
to use, bioinformatics tools for mining meaningful
biological knowledge out of the raw data.
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Fig. 1. A flowchart summarizing the main analysis modules that are implemented in EXPANDER 8.0. (analysis modules
involving ChIP-seq data are detailed in Fig. 3).
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Gene expression (GE) data analysis is a multi-step
process, ranging from low-level analyses that
generate a normalized data matrix to high-level
network-guided analyses that dissect the transcrip-
tional response into functional modules that carry out
specific biological endpoints. While there are many
tools and software packages that perform dedicated
tasks, we reasoned that an integrative platform that
covers the entire analysis pipeline would greatly
boost the ability of nonspecialist experimental
laboratories to effectively mine their transcriptomic
data. With this guiding principle, we are continuously
developing EXPANDER (EXPression ANalyzer and
DisplayER) since 2003 [5,6] as a “one-stop shop”
software tool for GE data analysis. Here we describe
the current version of our tool—EXPANDER 8.0.
Analysis modules provided by EXPANDER 8.0
include low-level preprocessing and normalization,
differential expression analysis, clustering, bi-
clustering, supervised grouping, high-level function-
al and pathway enrichment tests, and networks and
cis-regulatory motif analyses. A variety of estab-
lished algorithms, including many developed and
published by our lab, are offered for many steps.
These algorithms are made accessible to users
through user-friendly interface, and results are
displayed in intuitive and interactive visualizations.
As an interactive tool, by design, EXPANDER avoids
computationally heavy processes. Hence, the ma-
jority of the implemented analysis modules typically
take less than a minute or just a few minutes to
complete on a standard PC.
Recent years also witnessed great advance in the

application of epigenomics techniques, including
genome-wide profiling of physical interactions be-
tween transcription factors (TFs) and the chromatin
using ChIP-seq [7]. The true power of this method for
delineating transcriptional networks lies in its inte-
grated analysis with corresponding transcriptomic
data sets. To meet this challenge, one of the
innovations in EXPANDER 8.0 is the support for
combined analysis of GE and ChIP-seq data.
Another aspect that significantly enhances inference
of biological working models from transcriptomic
data is its analysis in the context of gene and protein
networks [8]. Therefore, in EXPANDER 8.0, we
substantially augmented this analysis feature. The
current version allows streamlined export of
network-based results into the highly popular Cytos-
cape tool [9]. Once imported into Cytoscape, users
can benefit from the multitude of analysis plugins
and network visualization utilities provided by this
platform.
EXPANDER is freely available to users at http://

acgt.cs.tau.ac.il/expander/.
Results and Discussion

EXPANDER covers, under one roof, all the steps
of GE data analysis, starting with GE data matrix
recorded using either GE arrays or RNA-seq. The
analysis modules provided by EXPANDER are
summarized in Fig. 1, and the tools/algorithms
implemented in each module are summarized in
Supplementary Table S1. Some of these modules
require species-specific annotation files [e.g., Gene
Ontology (GO) annotations, promoter sequences],
and EXPANDER 8.0 has a built-in support for 18
different organisms (Table S2). Here, we demon-
strate EXPANDER's analysis pipeline by its appli-
cation to a data set that profiled GE, using RNA-seq,
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in cells treated by ionizing irradiation (IR) at three
time-points (0, 4, and 8 h) using two biological
replicates (of CAL51 breast cancer cell line) [10]
(Table S3). We focus here on the typical analysis
pipeline. Description of alternative ones is given in
EXPANDER's user manual.

Data preprocessing and low-level analysis

AnEXPANDER session typically starts by upload-
ing an expression data matrix (gene or probes in
rows and samples in columns), which contains
estimates for either absolute or relative expression
levels. A matrix of read counts is supported for
analysis of RNA-seq data. The user also indicates at
this stage the organism of the analyzed data set. As
EXPANDER's species annotation files use specific
gene accession IDs (e.g., Entrez Gene IDs forHomo
sapiens), the user should provide a conversion file
that maps the IDs used in the data file to IDs
expected by EXPANDER for that organism. (Con-
version files from probe ids to gene ids are provided
by EXPANDER for selected widely used expression
arrays). The example data file we analyzed here
contains 14,992 genes measured over six biological
samples. As initial preprocessing, EXPANDER
offers multiple normalization schemes. For RNA-
seq data, trimmedmean ofM values [11], relative log
expression [12], and upper quartile normalization
[13] are offered. For microarray expression data or
processed RNA-seq data (e.g., RPKM data) that
requires further normalization, EXPANDER offers
two normalization schemes: quantile [14] and low-
ess [15]. The overall structure of the data can then
be inspected using hierarchical clustering and
principal component analysis. Subsequent analy-
ses are usually performed on a subset of genes that
showed significant expression variation across the
biological condit ions [termed differential ly
expressed (DE) genes]. EXPANDER offers both
generic tests for DE genes (e.g., moderated T test
implemented by limma [16]) and methods specifi-
cally developed for data obtained by expression
arrays (SAM [17]) or RNA-seq read counts data
(edgeR [18] and DESeq2 [12,19]). In the analyzed
Fig. 2. Expression-based gene grouping and enrichment te
genes, detected by CLICK in our example data set, showing
EXPANDER's display, each cluster is represented by the aver
cluster. Error bars indicate ±SD. Conditions are labeled over th
A network module detected by MATISSE in our example data s
that showed a transient decrease in expression upon irradiatio
nodes colored in pink) added by the algorithm to induce conne
analysis (using TANGO) for the cluster shown in panel A. This c
cell proliferation and cell death. (D) Results of motif enrichmen
The promoters of the genes assigned to this cluster were foun
which is a well-known key regulator of the transcriptional respon
Clicking on a bar opens a window that lists the genes in the c
data set, 637 DE genes were identified based on
fold-change criteria.

Gene grouping based on expression patterns

DE genes in a data set exhibit various expression
patterns (induction or repression, different response
kinetics, etc.), where genes sharing an expression
pattern (co-expressed genes) are expected to func-
tion together towards achieving certain biological
endpoints [20]. Therefore, typically, the next step in
the analysis pipeline is the partition of DE genes into
groups according to their expression patterns. EX-
PANDER provides three approaches for this task: (a)
clustering, (b) network-based grouping, and (c)
biclustering.
Clustering divides the DE genes into distinct

clusters such that genes assigned to the same
cluster show highly similar patterns, while those
assigned to different clusters show dissimilar pat-
terns. EXPANDER implements three popular clus-
tering algorithms: K-means [21], self-organizing
maps [22], and CLICK, which was developed in our
laboratory [23]. In the example data set, CLICK
divided the set of DE genes into four clusters (Figs.
S1 and 2A).
Network-based grouping seeks groups of genes

that show highly correlated expression pattern and
are located in close proximity to each other in some
global gene network (e.g., protein–protein interac-
tion network). For this task, EXPANDER provides
protein–protein interaction network files for selected
organisms (Table S2) and contains an implementa-
tion of MATISSE, our graph-theoretic algorithm that
detects significant co-expressed connected subnet-
works (network modules) [24]. Such modules,
whose definition is based on the combined analysis
of network and expression data, are often more
biologically meaningful than co-expression clusters,
as they account also for the network relationships
between the genes. Furthermore, the genes in such
a module are more likely to be functionally related
and act together in the same pathway. Figure 2B
shows a network module of 30 genes detected by
MATISSE in our data set. Each module is composed
of “forward” and “back” nodes. The forward nodes
sts. (A) Average expression patterns of the cluster of 367
a sustained induction of expression upon irradiation. In

age expression pattern calculated over all the genes in the
e X axis. Y axis shows standardized expression levels. (B)
et. This module contains 30 genes, consisting of 17 genes
n (“forward” nodes colored in blue) and 13 genes (“back”
ctivity of the forward nodes. (C) Results of GO enrichment
luster is enriched for genes that function in the regulation of
t analysis (using PRIMA) for the cluster shown in panel A.
d to be enriched for motifs of several TFs, including p53,
ses to irradiation. Each bar corresponds to an enriched TF.
luster whose promoters contain a hit for the TF motif.
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show highly correlated expression pattern in the data
set, while the back nodes are added by the algorithm
to keep high connectivity among the module's
genes. Note that the robustness of network-based
grouping building on correlated expression patterns
tends to increase with the number of samples.
To further augment network-based analysis, EX-

PANDER 8.0 implements a streamlined interface
with the highly popular Cytoscape platform [9], which
provides numerous visualization and analytical
utilities for the combined analysis of expression
and network data. Figure S2 shows the MATISSE
module imported to Cytoscape. Once loaded into
Cytoscape, users can benefit from the plethora of
plugins offered by this rich resource.
Clustering assumes that co-expressed genes

show a global similarity over all the examined
conditions. This assumption is less likely to hold
when a data set contains a large number of different
conditions (e.g., above 20). In such cases, bicluster-
ing is a preferred alternative for grouping genes
according to expression pattern. A bicluster is a set
of genes that show high similarity over a subset of
the conditions. A biclustering algorithm can detect a
collection of biclusters, where genes or conditions
can take part in more than one bicluster. EXPAND-
ER implements the iterative signature algorithm [25]
and our SAMBA biclustering algorithm [26], which
can handle data sets with hundreds to thousands of
conditions.
To increase flexibility, users can upload their own

gene sets and use this partition for subsequent
analyses.

Enrichment tests

Once sets of co-expressed genes are identified,
the next challenge is to ascribe each set with some
biological function and to discover key regulators
that control the observed co-expression. To this end,
EXPANDER implements five enrichment tests (Fig.
1): (a) GO tests using our TANGO algorithm [6],
which takes into account the dependencies between
GO terms that stem from the hierarchical structure of
this ontology; (b) Pathway DB tests (including KEGG
Fig. 3. EXPANDER's modules for ChIP-seq analysis. (A
EXPANDER for analysis of ChIP-seq data. (B) Results of de n
peaks detected in the p53 ChIP-seq data set. Reassuringly, the
of p53 (accession M00272 in Transfac DB). (C) Mapping of th
defined a set of 376 putative p53 target genes. Gene sets d
expression between two selected conditions. Shown here is
compared to the control untreated cells (C0). The putative p53 t
to a background (Bg) gene set in the data set (n = 11,697; p-va
sets derived from ChIP-seq peaks can also be utilized for enrich
based on their expression patterns. In the example shown
induction of expression upon irradiation (shown in Fig. 2A) was
(93 overlapping genes; enrichment factor = 8.35; p = 2.75 × 1
[27] and WikiPathways [28]), which examine, re-
spectively, whether each gene set is enriched for
particular GO terms or canonical pathways (Fig. 2C
shows the results of GO enrichment analysis for the
cluster of genes that were induced in response to IR
in our data set, and Fig. S3A shows the results for all
the clusters; Fig. S3B shows enriched GO terms
found on MATISSE's module; Fig. S4 shows an
enriched KEGG pathway detected in our data set);
(c) Chromosome location tests, evaluating if the
genes in any gene set are enriched for any specific
chromosomal region (this test could, for example,
detect mega-base scale deletions and amplifications
in cancer cells); (d)Motif analysis aimed at detecting
cis-regulatory DNA motifs that are over-represented
in the promoter sequences of the co-expressed
genes, under the assumption that co-expression
implies transcriptional co-regulation. EXPANDER
implements both our PRIMA method [29], which
uses prior information on TF PWMs, and our
AMADEUS algorithm for de novo motif analysis
[30]. Over the last decade, we demonstrated the
power of this reverse engineering approach to reveal
key regulators of numerous biological processes in
human and mouse, including cell-cycle progression
[29], DNA damage response [31], immune re-
sponses [32], and cellular differentiation [33]
(Fig. 2D shows the over-represented motifs detected
by PRIMA in the cluster of IR-induced genes); and
(e) miRNA analysis that searches for enriched
miRNA target sites in 3′ UTRs of co-expressed
genes (reasoning that co-expression could stem not
only from transcriptional co-regulation but also from
co-regulation of mRNA stability controlled by miR-
NAs). EXPANDER implements our FAME algorithm
[6], which uses TargetScan predictions [34], utilizing
target site context scores and accounting for
possible biases owing to 3′-UTR sequence length.
The above enrichment tests are applied to clusters

of genes that passed some test for differential
expression. However, transcriptomic experiments
typically include only a small number of replicate
samples (mostly 1–3 replicates per condition), which
limits the statistical power of tests for DE genes. An
alternative statistical approach provided by
) A flowchart summarizing the modules implemented in
ovo motif analysis (using AMADEUS) applied to the 1830
top enriched motif corresponds to the known binding motif

e p53 peaks to their nearest genes, within a distance limit,
erived from ChIP-seq peaks can be tested for differential
the fold change in expression upon irradiation (IR 8 h)

arget genes (n = 367) show significant induction compared
lue calculated using one-sided Wilcoxon's test). (D) Gene
ment tests applied to gene groups defined by EXPANDER
here, the cluster of 367 genes that showed a sustained
significantly enriched for the 376 putative p53 target genes
0−61 (hypergeometric test)).
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EXPANDER for functional interpretation of transcrip-
tomic data is based on implementation of gene set
enrichment analysis (GSEA) [35]. Instead of focus-
ing on the set of DE genes, GSEA considers all the
genes that are expressed in a data set and ranks
them based on a score of differential expression
between the compared samples (e.g., fold-change
or T score calculated between treated and control
samples). The ranked gene list is then tested against
a large number of curated gene sets, seeking those
whose genes are significantly concentrated at either
end of the expression list (these ends represent,
respectively, induced and repressed genes). This
sensitive method builds on the amplification of weak
signals, achieved by considering the coordinated
response of many genes that function in the same
process, where individually most of them show only
mild change in expression, not sufficient to reach
statistical significance in per-gene tests. Figure S5
shows a few results of GSEA on our data set.

Analysis of ChIP-seq data

One of the main novel features implemented in
EXPANDER 8.0 is the support for integrated
analysis of GE and ChIP-seq data (Table S2). For
this task, users should upload ChIP-seq peaks
(detected by a peak calling tool, e.g., MACS2 [36])
in the standard .bed format, and indicate the version
of the genome assembly in which peak coordinates
are given (e.g., hg19 or hg38 for H. sapiens). As an
example, we uploaded ChIP-seq results for p53
profiled 2 h after irradiation in the same cell line that
was used in the expression data set described
above (Table S4) [10]. A total of 1830 p53 binding
sites were detected in this ChIP-seq experiments.
Once the peaks .bed file is uploaded, EXPANDER
provides three utilities (Figs. 3A; S6A): (a) Enrich-
ment for genomic regions. Based on genome
annotation files, EXPANDER provides statistical
summary for the prevalence of peaks located in
different genomic categories (e.g., intergenic, up-
stream TSS/promoter, introns) and tests for enrich-
ment of the peaks for any category (Fig. S6B–C). (b)
Motif analysis. Enriched DNA motifs are sought in
the peaks' sequences (compared to flanking se-
quences) using AMADEUS. (The sequences of the
peaks and their control flanking regions are extract-
ed from the corresponding genome using our
implementation of twoBitToFa utility from UCSC
(https://github.com/ENCODE-DCC/kentUtils)). This
forms an important quality control step for TF ChIP-
seq experiments, as the called peaks are expected
to be enriched for the motif of the examined TF (and
potentially, also for motifs of its cofactors) (Fig. 3B).
(c) Map peaks to nearest genes. To allow integrated
analysis with GE data, the peaks are mapped to their
putative target genes. Currently, EXPANDER imple-
ments a naïve approach in which each peak is
mapped to its closest k genes located within a
distance of L bp for it (k and L are set by the user; by
default, k = 1 and L = 1 Mbp) (Fig. S6A).
The mapping of ChIP-seq peaks to genes pro-

duces a gene set of putative targets of the analyzed
TF. This gene set can be combined into the analysis
of GE data using two modes (Fig. 3A): (a) differential
expression analysis, which tests if the genes in the
set are significantly up- or down-regulated in the
comparison between two conditions selected by the
user (Fig. 3C), and (b) enrichment tests, which
examine if the gene-set defined by the ChIP-seq
peaks is enriched for any gene cluster detected
based on expression data (as described in the gene
grouping section above) (Fig. 3D). Collectively,
these features enhance users' ability to gain insights
into the function of TFs and delineate the pathways
by which these biological endpoints are mediated
and executed.
In conclusion, the widespread scope of the analysis

modules provided by EXPANDER, the strength of the
algorithms it implements, and the ease of their access
to users make our package a unique software suit for
analysis of transcriptome data.
Methods

EXPANDER is implemented in Java programming
language and makes use of components of the R
statistical language. EXPANDER works under Win-
dows and Linux operating systems (OSs).
EXPANDER requires at least 2 GB RAM in order
to functionally work and offers two options to launch
the application: EXPANDER_2GB.bat (2GB RAM)
and EXPANDER_4GB.bat (4GB RAM). Users are
expected to install the following tools according to
their OS and 32/64-bit computer architecture: (1)
Java run-time environment for running Java appli-
cations (https://www.oracle.com/technetwork/java/
javase/downloads/jre8-downloads-2133155.html),
(2) R statistical language tool (https://cran.r-project.
org/), and (3) Cytoscape tool (https://cytoscape.org/
download-platforms.html). Additional information
can be found in our online user manual: http://acgt.
cs.tau.ac.il/expander/help/ver8.0Help/html/.
Supplementary data to this article can be found

online at https://doi.org/10.1016/j.jmb.2019.05.013.
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