
AnAlysis
https://doi.org/10.1038/s43018-020-00169-2

1Department of Medicine, University of California San Diego, La Jolla, CA, USA. 2Department of Computer Science, Purdue University, West Lafayette, 
IN, USA. 3Department of Bioengineering, University of California San Diego, La Jolla, CA, USA. 4Department of Computer Science, University of Illinois at 
Urbana-Champaign, Urbana, IL, USA. 5Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 6Department 
of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA. 7Division of Molecular Carcinogenesis, Oncode 
Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands. 8Faculty of Electrical Engineering, Mathematics and Computer Science, Delft 
University of Technology, Delft, the Netherlands. 9Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA, 
USA. 10Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel. ✉e-mail: tideker@ucsd.edu

Translating biomarkers from basic research to clinical utility 
involves transfer of information across a series of contexts in 
which data are progressively harder to obtain. In vitro platforms 

such as human cell culture are amenable to high-throughput screen-
ing, yielding large datasets characterizing the molecular profiles of 
thousands of cell lines and their responses to millions of chemical 
compounds, genetic interventions or environments1,2. Promising 
indications may progress to advanced culture systems and animal 
models3,4, few of which are further evaluated in human cohorts and, 
ultimately, used in diagnosis and treatment of individual patients.

It is well known that drug-response predictions learned in 
cell-line or animal models do not always transfer to clinical con-
texts in a straightforward manner5–7. For example, dual inhibition 
of epidermal growth factor receptor (EGFR) and vascular epider-
mal growth factor receptor (VEGFR) had been found to induce 
sustained tumor regression in a mouse model of EGFR-mutant, 
nonsmall-cell lung cancer8, whereas follow-up clinical studies failed 
to replicate such an effect9. Similarly, upregulation of the insulin-like 
growth factor 1 receptor gene (IGF1R) had been noted as a prom-
inent marker of tamoxifen resistance in breast cancer cell lines10, 
whereas the seemingly opposite behavior—reduced IGF-1R protein 
levels—was observed in tamoxifen-resistant patients11. It remains 
unclear whether such failures are caused by fundamental irreconcil-
able differences between biological contexts or missed opportuni-
ties to identify the correct markers that are likely to translate. A key 
challenge in marker selection is that the common signal is easily 
overwhelmed by context-specific patterns, especially given the very 
limited amounts of data available in patients relative to cell lines.

To improve biomarker transfer across contexts, we formulated 
a neural network model, translation of cellular response predic-
tion (TCRP), using the technique of few-shot learning12,13. Few-shot 
learning is an emerging method of transfer learning, a field that 
postulates that prior knowledge acquired in one problem domain 
can be reused and applied to solve different but related prob-
lems14–16. Transfer learning has proven instrumental in fields such as 
linguistics, where people (and machines) can learn to speak a new 
language much more quickly if they have extensive prior knowledge 
of a related tongue, which can be transferred efficiently to the new 
one17. Recent applications in biomedicine include an improved abil-
ity to identify chemical compounds with biological activity18 or to 
classify tissue type and tumor grade in histopathological images19.

Few-shot learning aims to identify widely applicable input fea-
tures by optimizing their transferability rather than their over-
all prediction accuracy as in conventional learning approaches 
(Methods). In an initial ‘pretraining’ phase (Fig. 1, top), the model 
is exposed to a variety of different predefined contexts, each of 
which is represented by numerous training samples. In a second 
‘few-shot learning’ phase (Fig. 1, bottom), the model is presented 
with a new context not seen previously, and further learning is  
performed on a small number of new samples. Neural networks 
trained by this two-phase design have been shown to learn surpris-
ingly rapidly in the new context relative to models trained by con-
ventional means20–23.

In the present study, we applied the few-shot learning paradigm 
to three context-transfer challenges of high interest in predictive 
medicine: (1) transfer of a predictive model learned in one tissue 
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type to the distinct contexts of other tissues; (2) transfer of a pre-
dictive model learned in tumor cell lines to patient-derived tumor 
cell (PDTC) cultures in vitro; and (3) transfer of a predictive model 
learned in tumor cell lines to the context of patient-derived tumor 
xenografts (PDXs) in mice in vivo (Fig. 1 and Table 1).

Results
Challenge 1: transfer across tissue types. For the first challenge, we 
evaluated the ability of our TCRP model to predict the growth rates 
of tumor cell lines from a target tissue for which very few samples 
were available for learning. Data were taken from a recent survey 
of 335 human cell lines from 19 tissues, in which cell growth rates 
had been measured across a genome-wide panel of gene disruptions 
using clustered, regularly interspaced, short palindromic repeats 
(CRISPR). This resource has been called the Dependency Map, 
or DepMap (ref. 1; Methods and Table 1). For each cell line, this 
same survey had summarized the binary genotype status of genes 

(0 = unmutated or synonymous mutation; 1 = nonsynonymous 
mutation) and their quantitative messenger RNA abundance levels 
during nominal growth. For each CRISPR gene disruption (focus-
ing on 469 genes with demonstrated tumor growth dependencies; 
Extended Data Fig. 1), we trained TCRP alongside a collection of 
conventional learning models to predict the growth responses of all 
cell lines. During this process, 1 of the 19 tissues was designated as 
the target. A training set was then created that included all cell lines 
from the other 18 tissues but only a small number of cell lines from 
the target tissue; the remaining target cell lines constituted the test 
set. TCRP was trained in two phases, first on the large number of 
cell lines from the 18 tissues (pretraining phase), and then on the 
small number of cell lines available from the target tissue (few-shot 
learning phase; Fig. 1 and Methods). Conventional models were 
trained using a standard one-phase training procedure, by pool-
ing all samples designated as training, after which the model was 
evaluated on all samples designated a test. Key questions were how 
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quickly a predictive model transfers to the new tissue, having been 
trained mainly on others, and to which tissues the model transfers 
worst/best.

Models displayed a range of prediction accuracies during pre-
training, as assessed by fivefold cross-validation, with conven-
tional random forests performing best (Extended Data Fig. 2a and 
Methods). However, when testing on the target tissue, no model 
performed better than random, demonstrating the difficulty posed 
by new contexts (Fig. 2a). We then entered into the few-shot learn-
ing phase. For conventional models, accuracy improved very 
slowly as samples from the new tissue were added to the training 
set. In contrast, TCRP improved rapidly, with an average gain of 
829% in performance after examining only 5 additional samples  
(Fig. 2a). Tissues with the most improvement were the kidney, uri-
nary tract and pancreas (Fig. 2b). For example, we observed a very 
high accuracy when predicting the response to CRISPR knockout 
of the gene encoding hepatocyte nuclear factor 1β (HNF1B), for 
which TCRP achieved a performance of 0.60 (Pearson’s corre-
lation) in contrast to the second best approach (random forests, 
0.19). The importance of HNF1B to tumor growth has been veri-
fied in multiple cancer types, including hepatocellular carcinoma, 
pancreatic carcinoma, renal cancer, ovarian cancer, endometrial 
cancer and prostate cancer24.

We also conducted a related challenge 1b, in which cell growth 
response data were drawn from a high-throughput pharmacoge-
nomic screen of 255 anti-cancer drugs (including both US Food 
and Drug Administration–approved and experimental compounds; 
Methods and Table 1) administered to each of 990 cancer cell lines 
encompassing 30 tissues. This dataset has been called the Genomics 
of Drug Sensitivity in Cancer (GDSC1000) resource2. Similar to 
challenge 1a, but for each drug, TCRP was trained alongside con-
ventional learning models to predict the growth sensitivity of cell 
lines using their molecular markers. As before, TCRP learned rap-
idly when switching to the target tissue, with the largest improve-
ments seen when learning from the first few cell-line samples  
(Fig. 2c,d and Extended Data Fig. 2b). We found that the accuracy of 
drug predictions was correlated with the accuracy of CRISPR pre-
dictions across the tissues examined (Spearman’s ρ = 0.73, P = 0.01), 
with tissues such as the urinary tract generating highly accurate 
predictions in both settings, and tissues such as the central nervous 
system, skin and lung generating poor predictions.

Challenge 2: transfer to PDTCs. Next, we studied whether models 
of drug response trained on cell lines could be transferred to pre-
clinical contexts (challenge 2; Fig. 3a). For this challenge we used 
data on breast cancer PDTCs made available by Project Biobank4 
(Methods and Table 1). In this previous study, tumors (n = 83) were 
biopsied, subjected to whole-exome and mRNA sequencing to gen-
erate molecular profiles, and implanted in immunodeficient mice. 
PDTCs were then isolated from the host mice and tested for drug 
responses in vitro. From these data we selected 50 drugs for which 
the protein targets were well characterized, with drugs administered 
to 15–19 PDTCs each. For each drug, TCRP was pretrained using 

the cell-line drug-response data from challenge 1b before switching 
context to PDTCs.

As observed with earlier challenges, all models performed 
poorly when switching contexts, achieving accuracies near or below 
zero (Extended Data Fig. 2c). However, once again we observed 
that TCRP improved substantially after exposure to each new 
patient sample: the average performance was r = 0.30 at 5 samples, 
reaching r = 0.35 at 10 samples versus r < 0.10 for the runner-up  
(Fig. 3b,c and Extended Data Fig. 3a). Nearly all drug predictions 
were improved by the few-shot paradigm. For example, the ATM 
inhibitor KU-55933 had the top performing drug-response pre-
dictions, with Pearson’s correlation of 0.56 between predicted and 
actual growth response measurements (top row of Fig. 3c, average 
performance over 5–10 samples). KU-55933 also represented the 
largest improvement over conventional approaches, where the best 
performing conventional model, the random forest, obtained cor-
relations of approximately 0.12.

Challenge 3: transfer to PDXs in mice. Finally, in challenge 3 
we went a step further, moving from PDTCs tested against drugs 
in vitro to PDXs tested against drugs in live mice (Fig. 4a, and 
Extended Data Figs. 3b and 4). For this purpose we obtained data 
for 228 PDX mouse models from the PDX Encyclopedia25, where 
each model was exposed to 1 of the 5 drugs on which TCRP had 
been trained in cell lines (cetuximab, erlotinib, paclitaxel, tamoxifen 
and trametinib; Table 1). Genotype and mRNA transcriptomes of 
each PDX were also provided, from which we obtained the molecu-
lar features used by TCRP to make drug-response predictions. In 
cell lines, the predicted output from TCRP was the area under the 
dose–response curve (AUC); for PDXs, the analogous measurement 
was the percentage change in tumor volume resulting from drug 
treatment in vivo (Δvol). Therefore, these predicted and measured 
values were each normalized to a standard normal distribution to 
translate between the two (z-score; Methods).

Although TCRP models pretrained on cell-line data initially 
performed poorly in predicting PDX responses, we observed sig-
nificant improvements during training on the first few PDX samples 
(Fig. 4a). Such improvements were seen for all five drugs and led 
to a range of final prediction accuracies from r = 0.50 for erlotinib 
to r = 0.18 for paclitaxel (Spearman’s correlation between predicted 
and actual drug response after training on ten PDX samples; Fig. 4a 
and Extended Data Fig. 3b). We also explored the effect of translat-
ing the continuously valued drug-response predictions to discrete 
treatment outcomes, as are typically assigned in a clinical setting, by 
designating each response as progressive disease (PD, Δvol ≥ 30%) 
or stable disease (SD) or better (Δvol < 30%). We found that these 
predicted binary classifications were strongly associated with the 
observed PD/SD outcomes, with a range of odds ratios from 3.0 
(cetuximab) to 10.5 (tamoxifen) (Fig. 4b,c). For cetuximab, pacli-
taxel, tamoxifen and trametinib, but not erlotinib, we found that the 
predicted PD/SD designations also showed significant differences 
in progression-free survival, depending on how many PDX samples 
had been used for few-shot learning (Fig. 4d–g).

Table 1 | Summary of datasets used for challenges

Pretraining phase Few-shot learning phase

Agent Platform Tissue Source Agent Platform Tissue Source

1a CRISPR Cell line 19 types DepMap CRISPR Cell line 1 of 9 typesa DepMap

1b Drug Cell line 30 types GDSC1000 Drug Cell line 1 of 19 typesa GDSC1000

2 Drug Cell line 30 types GDSC1000 Drug PDX-derived cell lines Breast PDTC BioBank

3 Drug Cell line 30 types GDSC1000 Drug Xenograft 4 of 6 types PDX Encyclopedia
aAll available tissue types used for pretraining; only types with >14 samples used for few-shot learning.
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Interpreting the predictive models. A common critique of 
machine-learning systems is that they produce ‘black boxes’, the pre-
dictions of which are difficult to interpret26,27. In the present study, 
as we had focused on drugs with known specific targets, we found 
that model predictions typically could be explained by molecular 
markers within that target’s pathway (using models constrained to 
these features; Methods and Extended Data Fig. 5). For example, 
a top feature in predicting the response of PDTCs to PD-0332991 
(palbociclib; Fig. 5a,b) was the expression of the gene encoding 
RB-like factor (RBL2), a cell-cycle transcriptional repressor inac-
tivated by CDK4/6. RBL2 expression was associated with palboci-
clib resistance (third from top in Fig. 5c; r = 0.47), suggesting that 
high RBL2 protein activity masks upstream inhibition of CDK4/6 
by the drug. Another important feature was somatic mutation of 
SMAD4, encoding a transcriptional modulator repressing CDK4 
transcription28 (Fig. 5d). SMAD4 inactivation may release CDK4 to 
drive the cell cycle29, with CDK4 repression counteracting this effect  
(Fig. 5b). Although SMAD4 mutation was rare in PDTCs (1/19 sam-
ples), it was much more common in cell lines (43/811 samples). The 
model had learned to strongly rely on the SMAD4 mutation dur-
ing pretraining, where the large number of SMAD4 mutant samples 
is strongly associated with drug response. When switching to the 

PDTC dataset, this prior information was combined with the effect 
of SMAD4 mutation in the new dataset to jointly estimate its impor-
tance to the drug response.

As a second example, a top feature in the response to ATM 
inhibition (KU-55933; Fig. 5e,f) was the expression of RNF8, for 
which the protein is recruited to DNA double-stranded breaks 
(DSBs) after activation of ATM by DNA damage30–32. RNF8 expres-
sion was correlated with KU-55933 resistance (third from top in  
Fig. 5g; r = 0.54), suggesting that, when RNF8 activity is high, ATM 
is not limiting for DSB repair. Also correlated with drug resistance 
was mutation of CHD4 (Fig. 5h), encoding the chromodomain–
helicase–DNA-binding subunit of NuRD, a complex essential for 
chromatin relaxation at DSBs33. Disabled NuRD may interfere with 
DNA repair, masking the effects of ATM inhibition. Alternatively, 
it may dampen the impact of ATM on CHD4-dependent cell-cycle 
progression34.

A notable third example involved BRAF inhibition, to which 
tumors tend to be sensitive in the context of a BRAF-activating muta-
tion. It is well established that some tissue types respond to BRAF 
inhibition more strongly than others; for instance, BRAF-mutant 
melanomas are generally responsive whereas BRAF-mutant colorec-
tal tumors are not, for reasons that are not fully understood but are 
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accuracy (x axis) is displayed separately for each tissue in challenge 1a (y axis). Accuracy is the average achieved when training includes five to ten samples 
of the target tissue. The accuracy s.d. is shown over all CRISPR gene knockouts (point size). c, As for a for models trained on perturbations with n = 199 
targeted drugs and n = 1,001 cell lines. d, As for b for models trained on perturbations with targeted drugs.
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partially explained by expression of EGFR35. As expected from these 
previous observations, the TCRP model predicted significant sensi-
tivity to the BRAF inhibitor dabrafenib in BRAF-mutant cells, but 
not in wild-type cells, with a much more pronounced effect in mela-
noma than in colorectal cancer (CRC) (Fig. 6a). Of note, the drug 
response predicted by TCRP was significantly more accurate than 
the response predicted solely based on BRAF mutation and EGFR 
expression status (Fig. 6b), raising the question of which features 
TCRP had used to achieve higher accuracy. Further examination 
indicated that the model drew from a combination of novel features 
(Fig. 6c–f). These included expression of MRAS, which has been 
shown to function as a RAF phosphatase36, expression of 14-3-3 
genes YWHAE and YWHAH, which interact with RAF proteins 
in signal transduction37, and mutation of RAPGEF1 (Rap guanine 
nucleotide exchange factor 1), a gene central to activation of the 
Ras/Raf/MEK/ERK signal transduction pathway.

Discussion
Recently an abundance of tumor response data has been generated 
for targeted perturbations in numerous contexts. The usual way of 
analyzing these data is to pool all samples, under the assumption 
that accruing the maximal amount of data will result in a predictive  

model with the greatest statistical power. In the present study, 
we have identified a more efficient means of building predictive 
models, using the technique of few-shot learning. The two-phase 
learning procedure overlays naturally on the process of translat-
ing observations from basic research in vitro to predictive mark-
ers in tumors (Fig. 3a). First, in a basic research phase, a general 
predictive model is pretrained from extensive data generated in 
high-throughput, cell-based screens. Second, in a preclinical or 
clinical phase, few-shot learning is used to tune the general model 
to make predictions for a specific type of human tumors, by testing 
drugs with high predicted sensitivity in settings such as PDTCs and 
PDXs and, ultimately, patients. Thus far, few-shot learning shows 
encouraging performance in multiple datasets and translation sce-
narios where conventional learning fails. In all three challenges we 
examined, the initial pretraining phase was the same: optimizing the 
model for transfer across cell lines of different tissue types. Notably, 
this particular transfer task was sufficiently general to enable pre-
dictive models to transfer from cell lines to the settings of PDTCs 
and PDXs.

Models such as TCRP may have compelling applications in clini-
cal contexts seeking to implement precision medicine, in which the 
task is to match a patient’s specific molecular profile to an optimal 
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Fig. 5 | Model interpretation to identify predictive markers. a, Measured versus predicted resistance to the CDK4/6 inhibitor palbociclib after few-shot 
learning on five PDTC samples treated with this drug on n = 19 test PDTC models. The error bars indicate the minimum/maximum value of the predictions 
across ten randomizations. b, Schematic of CDK pathway with palbociclib targets and selected molecular markers. c, Left: mRNA expression profiles for 
the top expression-based features of palbociclib. Right: Pearson’s correlation of palbociclib resistance and mRNA expression for the top expression-based 
features. d, Left: somatic mutation profiles for the top mutation-based features of palbociclib. Right: increase of palbociclib resistance when comparing 
mutated and wild-type samples for each top feature. e, Same as a for the response to ATM inhibitor KU-55933 on n = 19 PDTC models. f, Schematic of 
ATM pathway with selected predictive markers. g,h, Same as c and d for the response to ATM inhibitor KU-55933. Numbered sample labels in a and e  
correspond to PDTC sample numbers in c,d,g and h, in which molecular profiles for the six most sensitive and six most resistant samples are shown 
(PDTC1-6 and PDTC14-19, respectively) within n = 19 PDTC models.
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course of therapy. For this purpose, molecular tumor boards have 
been established in many cancer centers, where clinical experts 
must often make treatment decisions for a patient based on just a 
few precious cases with matching histopathology and molecular 
profiles. A second compelling application is in the pharmaceuti-
cal industry, in which a key goal is to select patients who are most 
likely to respond to a targeted agent. In both cases, classic predic-
tive models have been hampered by lack of access to large numbers 
of well-characterized clinical samples, that is, samples for which 
molecular profiles have been coupled to precise information on 
treatment outcomes.

In this regard, an important question for future exploration con-
cerns the degree to which an approach such as TCRP is ready for 
use in clinical or pharmaceutical settings. There are many uncer-
tainties when deciding on treatment, and how the predictive value 
of the models built here compare with other molecular and clinical 
markers, and their predictive values, will need to be determined for 
each disease setting. In terms of absolute predictive performance, we 
observed a range of accuracies across the drugs examined, with some 
drugs yielding promising results. For example, in the PDX analysis 
of paclitaxel (Fig. 4b,c,e), a drug nonresponse was predicted for 23 
tumors, of which 20 were in agreement with the actual observa-
tions of tumor growth in mice, a very high success rate by any stan-
dard (20/23 = 87% correct predictions of PD). As another example, 
nonresponse of PDX tumors to tamoxifen was correctly predicted 
in 23/24 of cases (96%). In these analyses, a nonresponse (PD) was 
called if the change in tumor volume was ≥30%, the standard thresh-
old implemented by the PDX Encyclopedia25,38. Given more data 
and a focused clinical study, one could probably tune the prediction 
threshold to drive performance higher. For example, at a threshold 
value >60%, TCRP predicts paclitaxel nonresponse with 100% accu-
racy given the current PDX dataset (14/14 patients). Future investi-
gations with larger cohorts of PDX models or patients will be able to 
shed further light on the best clinical uses of few-shot learning.

In our analysis of both the PDTC (Fig. 3b) and the PDX (Fig. 
4a) datasets, we noted that the performance of few-shot learning 
improves quickly and then appears to saturate. Further inspection 
reveals that the reason for this phenomenon relates to the balance of 
training versus test samples during evaluation. Given a fixed num-
ber of tumor samples, as the number of few-shot training samples 
increases, the number of testing samples decreases proportionally. 
In turn, a fewer number of testing samples means that the statistical 
power used to evaluate the prediction performance gets weaker, with 
a concomitant increase in variance. For most drugs in the PDTC 
dataset, a total of 19 tumor samples was available to be split between 
training and validation. To evaluate performance for 1-shot learning, 
18 of these samples were therefore available as a test set, whereas, for 
10-shot learning, only 9 samples were available for testing.

We also observed that drug responses were better predicted in 
some tissues than in others (Fig. 2b,d). Although the poor predic-
tive power in some tissues is in need of further investigation, a 
potential factor relates to the substantial molecular heterogeneity 
observed within some cancer tissue types. For example, cell lines 
of lung tumors have been organized into as many as nine subtypes 
based on their transcriptomic profiles, in contrast to pancreatic 
tumor cell lines which appear far more homogeneous39. These find-
ings are superficially in agreement with those of our study, in that 
drug-response predictions in lung cancer lines are less predictive 
than those of the pancreas (Fig. 2b,d).

Although the results demonstrated in the present study were 
obtained with gene mutation and mRNA expression features, the 
TCRP framework is general with potential relevance to many other 
data types, such as copy-number variants, features extracted from 
histopathological images or data transferred from disease models in 
other species. Furthermore, although each perturbation by CRISPR 
(challenge 1a) or drugs (all other challenges) was considered a  

separate machine-learning task, a worthy future direction would be 
to explore the extent to which information can be transferred from 
one perturbation to another. If important information is shared, one 
might pursue a single unified model with predictive capacity across 
many or all drugs rather than training models separately.

A final future direction is to better understand the relationship 
between the predictability of a drug and its pharmacological proper-
ties, including its number of recognized targets and off-target effects 
(that is, polypharmacology). This relationship is difficult to study with 
the present TCRP, for which features are selected from the pathway of 
each known target, yielding a tendency to include more features for 
drugs that have more known targets (Methods). On the other hand, 
our understanding of drug-target genes and pathways is far from 
complete, and the protein network we used for feature selection is not 
cancer specific. Future model configurations using the same numbers 
of biomarkers across drugs will potentially shed light on the complex 
interactions between drug response and polypharmacology.

Methods
Challenge 1a. Overview. The first challenge was based on the Cancer Dependency 
Map (DepMap), which used CRISPR/Cas9 gene editing to disrupt nearly all 
(~17,700) human genes in each of 335 cancer cell lines (19 tissues), in each case 
measuring the relative cellular growth response1. The machine-learning task was 
to use molecular features of each cell line to predict its growth response to the 
gene disruptions. Each gene disruption was considered as a separate learning task, 
in which cell lines represent learning samples. We studied 469 gene disruptions 
that had been reported by DepMap to have demonstrated the ability to influence 
cellular growth, as evidenced by the presence of at least one cell line for which the 
response was at least 6 s.d.s away from the mean across cell lines1. Even though 
there is a modest difference between the distribution of fitness values for all genes 
versus the selected genes (Extended Data Fig. 1a), we did not observe a strong 
relationship between the overall fitness effect of a gene knockout and model 
predictive performance (Extended Data Fig. 1b).

Task-specific features. Features for learning were based on gene somatic mutations 
and expression levels for each cell line, as reported in the Cancer Cell Line 
Encyclopedia (CCLE) project40 and downloaded from the DepMap website 
(https://depmap.org/portal/download). For each learning task (CRISPR gene 
disruption, see above) we selected genes reported as having either a protein–
protein interaction (PPI) or an mRNA co-expression relationship (|r| > 0.4) with 
the disrupted gene. The PPI data were taken as the union of the InBioMap41, 
PathwayCommons42 and CORUM43 databases. The co-expression relationship is 
calculated over all the cell lines from the feature mRNA expression data. Such a 
feature-selection strategy, based on the molecular network neighborhood of the 
disrupted gene, was similar to that adopted earlier by the DepMap project. We 
further removed gene expression features for which the s.d.s fell into the lowest 
10% over all genes and excluded genes with fewer than 10 somatic mutations across 
cell lines. The somatic mutations and mRNA expression levels of the remaining 
genes were applied to construct the input feature vector for each cell line.

Labels. Sample labels were taken as the growth response of a cell line to the 
CRISPR disruption of interest (see above) using the CERES-corrected single-gene 
disruption scores downloaded from DepMap (https://depmap.org/portal). 
These scores are calculated by comparing the abundances of guide RNAs for the 
disrupted gene between the starting plasmid pool and the end of the CRISPR 
disruption experiment. The CERES method44 then processes these scores by 
removing effects due to copy-number variation.

Few-shot design. For each gene disruption learning problem, the 19 tissues 
represented by DepMap cell lines were split such that 18 tissues were used in the 
pretraining phase and the remaining tissue was held for the few-shot phase. To 
ensure sufficient samples for performance evaluation, this held-out tissue was 
selected from among the 9 tissues having ≥15 cell lines. In the few-shot phase, 
we randomly selected k cell lines as the few-shot samples to fine tune the model 
(k = [0 … 10], plotted along the x axis of Fig. 2a) and used the remaining cell lines 
as testing data. For each k, the selection of few-shot samples was random, so we 
repeated this selection 20 times and reported the average and s.d. of the prediction 
performance over these replicates (y axis of Fig. 2a).

Challenge 1b. Overview. This challenge was based on the dataset collected 
by the GDSC1000 project2, which systematically tested the cellular growth 
responses elicited by a panel of 265 drugs applied to each of 1,001 tumor cell lines 
(representing 30 tissues). The machine-learning task was to use molecular features of 
each cell line to predict its growth response to a drug. Each drug was considered as 
a separate learning task, in which cell lines represent learning samples. We focused 
on 199 drugs for which the mechanism of action was at least partially characterized, 
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that is, with a documented protein target or pathway. Drug target and pathway 
information was obtained from Table S1G of the original GDSC1000 paper2.

Task-specific features. Task-specific features were constructed for each drug by 
selecting genes having PPI or mRNA co-expression relationships (|r| > 0.4) with 
the documented drug targets, with the PPI and mRNA co-expression networks 
defined as per challenge 1a above. For drugs with multiple targets, we included all 
PPI/co-expressed neighbors of these targets. As above, we further removed gene 
expression features for which the s.d.s fell into the lowest 10% over all genes and 
excluded genes with <10 somatic mutations across cell lines. Somatic mutations 
and mRNA expression levels of the remaining selected genes were applied to 
construct the input feature vector for each cell line.

Labels. Sample labels were taken as the growth response of a cell line to the drug 
of interest, using the AUC as the measure of drug response. All drug response data 
were downloaded from the GDSC1000 website: https://www.cancerrxgene.org/
gdsc1000/GDSC1000_WebResources.

Few-shot design. For each drug, the tissues were split such that one tissue was 
held out for the few-shot phase, and the remaining tissues were used in the 
pretraining phase. We required the held-out tissue to have data for ≥15 cell lines 
to provide sufficient samples for the few-shot learning phase. A consequence of 
this requirement was that the number of held-out tissues differed from drug to 
drug, because drugs had a variable number of cell lines for which drug responses 
had been measured2. Similar to challenge 1a, in the few-shot phase we randomly 
selected k cell lines from the held tissue as few-shot samples to fine tune the model 
(k = [0 … 10], plotted along the x axis of Fig. 2c) and used the remaining cell 
lines as testing data. For each k, the selection of few-shot samples was random, 
so we repeated this selection 20 times and reported average and s.d. of prediction 
performance over all of these replicates (y axis of Fig. 2c).

Challenge 2. Overview. In this second challenge, we pretrained TCRP to predict 
drug responses in the GDSC1000 dataset (see Challenge 1b) and then subjected 
this model to few-shot learning using a study of PDTCs4. This previous study 
obtained 83 human breast tumor biopsies and, using mice as an intermediary, 
established distinct human cell cultures from these tumors. Each of these human 
cell cultures was exposed to a panel of drugs, from which we considered the 50 
drugs with known protein targets and for which cell-line responses had also been 
measured in the GDSC1000 dataset. The machine-learning task was to use the 
pretrained model to predict the growth response of these PDTCs to each drug. 
Each drug was considered as a separate learning task, in which PDTCs represent 
learning samples.

Features. We considered gene expression and mutation features that had been 
characterized in both the PDTC and the GDSC1000 datasets. Both drug-specific 
features and mini-cancer genome features were evaluated. Expression and 
somatic mutation data of the PDTC dataset were downloaded from https://
figshare.com/articles/Bruna_et_al_A_biobank_of_breast_cancer_explants_
with_preserved_intra-tumor_heterogeneity_to_screen_anticancer_compounds_
Cell_2016/2069274.

Labels. For the PDTC responses, we used the AUC as the measure of drug 
response, similar to the GDSC1000 dataset in challenge 1b. These data were 
downloaded from the same site as above: https://figshare.com/articles/Bruna_
et_al_A_biobank_of_breast_cancer_explants_with_preserved_intra-tumor_
heterogeneity_to_screen_anticancer_compounds_Cell_2016/2069274.

Few-shot design. In the few-shot learning phase, we randomly selected k PDTCs 
as the few-shot samples to fine tune the model (k = [0 … 10], plotted along the x 
axis of Fig. 3b), and used the remaining cell lines as testing data. For each k, the 
selection of few-shot samples was random, so we repeated this selection 20 times 
and reported the average and s.d. of prediction performance over all of these 
replicates (y axis of Fig. 3b).

Challenge 3. In this third challenge, we pretrained TCRP to predict drug responses 
in the GDSC1000 dataset (see Challenge 1b) and then used few-shot learning to 
transfer it to make drug-response predictions in a study of PDXs25. This previous 
study created a large collection of mouse xenografts of human tumor biopsies, all 
characterized for tumor somatic mutations and mRNA expression levels. PDXs 
were exposed to a panel of drug treatments (one PDX per animal per treatment) 
during which in vivo tumor growth was measured. Here the machine-learning task 
was to use the pretrained TCRP to predict tumor growth in vivo. In particular, we 
used data for 228 PDX mouse models, where each model was exposed to one of 
the five drugs on which TCRP had been trained in cell lines (cetuximab, erlotinib, 
paclitaxel, tamoxifen and trametinib).

Mini-cancer genome features. Expression and somatic mutation data for all PDX 
samples were downloaded from Supplementary Table 1 of the original paper25. 
Most drugs in the PDX dataset do not have known drug targets, a requirement 

for feature selection in previous challenges (see above). Therefore, we adopted an 
alternative means of selecting features that does not require knowledge of drug 
mechanism of action, as introduced in recent work45. These features were based 
on the ‘mini-cancer genome panel’, a set of known cancer-related genes collected 
by the Center for Personalized Cancer Treatment (CPCT, The Netherlands)46. 
From this panel, we first removed gene expression and mutation features that had 
not been characterized in both the PDX and the GDSC1000 datasets. Second, 
we removed gene expression features for which the s.d.s fell into the lowest 10% 
over all genes in GDSC1000, and we removed gene mutation features with <10 
somatic mutations across GDSC1000 cell lines. The somatic mutations and mRNA 
expression levels of the remaining selected genes were applied to construct the 
input feature vector for each cell line. In this scenario, all learning tasks (drugs) 
shared the same feature set.

Labels. PDX drug response was measured by the minimum change in tumor 
volume in comparison to baseline, over the period from 10 d post-treatment until 
completion of the study (Δvol in the main text). This measure captures the speed, 
strength and durability of the in vivo response; all values were downloaded from 
Supplementary Table 1 of the original paper25. When comparing TCRP predictions 
to Δvol measurements, both were normalized to a standard normal distribution to 
translate between the two (that is, z-score).

Few-shot design. In the few-shot learning phase, we randomly selected k PDXs as 
the few-shot samples to fine tune the model (k = [0 … 10], plotted along the x axis 
of Fig. 4a) and used the remaining PDX samples as testing data. For each k, the 
selection of few-shot samples was random, so we repeated this selection 20 times 
and reported average and s.d. of prediction performance over all of these replicates 
(y axis of Fig. 4a).

TCRP neural network model. We trained a multilayer neural network model to 
predict the phenotype of a tumor sample using its molecular features. For each 
sample i, the output of the j + 1th layer hðjþ1Þ

i
I

 is defined as a nonlinear function of 
the output of the jth layer hðjÞi

I
 as follows:

hðjþ1Þ
i ¼ Relu Linear hðjÞi

� �� �
ð1Þ

where Linear hðjÞi

� �

I

 is a linear function of hðjÞi
I

 defined as WðjÞ ´ hðjÞi þ bðjÞ

I
. W(j) is 

the weight matrix and b(j) is the bias vector. Relu is the rectified linear activation 
function47 which thresholds values <0 to exactly 0. The first layer hð1Þi

I
 is the input 

molecular feature of sample i and the last layer hðNÞ
i
I

 acts as its final prediction 
p̂iðθÞ
I

, where θ is a parameter containing W(j) and b(j) from all the linear layers. For 
each machine-learning task, we scan all combinations of layers = {1,2} and hidden 
neurons = {5,10,15,20}, and determine the architecture of the neural network by 
crossvalidation. All parameters are trained by minimizing the mean square error 
function, L, which is a function of sample set, C, and parameters, θ:

L C; θð Þ ¼ 1
M

Σci2C pi � p̂i θð Þð Þ2 ð2Þ

where pi is the measured label for sample i and M is the number of samples in C.

Model pretraining phase. In the pretraining phase, the aim is to train a neural 
network model that can quickly adapt to a new learning task with only a few 
additional training samples. The rationale is to acquire prior knowledge from 
a set of related tasks where training samples are abundant. In the present study, 
we adopted an established computational framework called the Model Agnostic 
Meta-Learning (MAML) algorithm19. Meta-learning approaches such as MAML 
seek to identify universal knowledge across multiple conditions and then to 
transfer this knowledge to make robust predictions in a new condition. In recent 
studies, the MAML technique has shown superior performance in comparison to 
other meta-learning frameworks19, and it is a flexible and model agnostic such that 
it can be applied to any gradient-based learning algorithm.

For each training iteration, we first sample a subset Si of 12 tissue types 
from the pool S of all types available. Si is then randomly partitioned into two 
nonoverlapping sets of six cell lines T and six cell lines V. A loss function adapted 
from equation (2) is defined as follows with respect to S:

ESi2S E<T;V>2Si L V ; θ � α
∂LðT; θÞ

∂θ

� �� �� �
ð3Þ

Here L is a mean square error function with respect to V. The second argument 
of the loss function is a one-step gradient descent that seeks a better regression 
loss for cell-line set T. We then optimize equation (3) using the gradient descent 
algorithm Adam48. Note that using the gradient descent requires calculation of a 
second-order gradient-of-loss function L. The intuition is that, for each training 
iteration of minimizing equation (3), we seek parameters θ that can achieve a 
smaller regression loss on cell-line set V after performing one iteration of the 
gradient descent on a distinct cell-line set T. A total of 200 training iterations were 
performed, sampling different Si values, with each Si including 20 partitions.
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Few-shot learning phase. In the second training phase, we observe a task Q with 
only a few training samples (for example, cell lines, PDTCs or PDX models). We 
perform only one iteration of gradient descent to achieve θfew–shot suitable for the 
new task (for example, new tissue or mouse models):

θfew�shot ¼ θpretraining � α
∂LðQ; θÞ

∂θ
jθ¼θpretraining

ð4Þ

Here θpretraining is the TCRP model trained in the pretraining phase. In theory, 
one can perform multiple iterations of gradient descent using equation (4) until 
convergence. However, one of the unsolved problems in the field of meta-learning 
is that the few-shot model can be easily overfit on a new task, given its very few 
samples. Therefore, we chose to update parameters only once. Note that α in 
equations (3) and (4) refers to the same hyperparameter. The structure of the 
neural network was defined as in equation (1).

Nested crossvalidation. The appropriate architecture of a neural network is 
dependent on the particular problem and datasets. For drug-prediction problems 
(challenges 1b, 2 and 3), all hyperparameters, including mini-batch size and the 
size of T and V, were determined by the technique of nested crossvalidation as 
previously described49. For challenge 1a, we used regular crossvalidation due to the 
greater number of prediction tasks.

Interpreting TCRP model predictions. We used the framework of local 
interpretable model-agnostic explanations (LIME)50 to generate locally faithful 
explanations for the TCRP neural network model. LIME works by taking the 
feature vector of a query sample of interest and perturbing it randomly, resulting 
in many perturbed samples around this query. Subsequently, it trains a much 
simpler interpretable model on this perturbed neighborhood (Extended Data Fig. 
5). In this way, LIME can select important features specific for sample i, which 
is the major difference from conventional feature selection methods that act 
globally over all samples, not locally to a sample of interest. More formally, for the 
molecular feature vector fi of each sample i, we generated N (=10,000) perturbed 
samples. Each of these perturbed samples j was created by adding to the original 
features of independent Gaussian noise with mean 0 and s.d. 1. For each perturbed 
sample, we made a prediction gij using the TCRP neural network. A second, 
simpler model, regularized linear regression, was then trained to fit the perturbed 
samples to their corresponding neural network predictions {gij}. Empirically, 
we applied both Elastic Net51 and Lasso52 regularization methods with different 
sparsity parameters (={0.1,0.01,0.001,0.0001}). The final ranking of features was 
averaged from the rankings produced by Elastic Net and Lasso over all sparsity 
parameters and over all tested samples. LIME was chosen over alternative model 
interpretation techniques, such as layer-wise relevance propagation53, because 
these other techniques do not generate sample-specific explanations. LIME is an 
approximation of gradient-based methods54 and could be used interchangeably 
with those methods in our work.

Implementation details of competing methods. We used the Python package 
‘scikit-learn’ (http://scikit-learn.org/stable/index.html) to implement four 
conventional machine learning methods: random forests, conventional neural 
networks, K nearest neighbors (KNN) and linear regression, as follows.

Random forests. For random forests, we chose the maximum depth for each of the 
learning tasks based on fivefold crossvalidation.

Conventional neural networks. Conventional neural network models were 
implemented using the PyTorch library (https://pytorch.org), selecting the 
number of hidden neurons (={5, 10, 20, 30, 40, 50, 100}), layers (={1, 2}) and 
learning rates (={0.1, 0.01, 0.001}) based on fivefold nested crossvalidation. For 
each machine-learning task (for example, drugs and gene perturbations), there 
are approximately (or fewer than) 1,000 cell-line examples (+ <20 PDTC/PDX 
models in some cases); thus, the data do not support a very deep neural network 
architecture with many parameters. Therefore, we focused on exploration of 
small neural network architectures in the present study. The number of hidden 
layers (={1, 2}) and the number of hidden neurons (={5, 10, 15, 20}) of the neural 
network were also determined by crossvalidation. We implemented the algorithm 
using the PyTorch library (https://pytorch.org) running on Tesla K20 graphics 
processing units. The nonlinear transformation was the same as equation (1) and 
optimized using Adam48. Notice that both TCRP and this baseline method rely 
on a neural network model; however, the two models are trained in different ways 
and with potentially different network architectures (no. of hiddens, layers) due to 
separate crossvalidation processes.

K nearest neighbors. For the KNN algorithm, to evaluate the accuracy of a sample i 
in the training data, we ruled out sample i when making its prediction. Otherwise, 
KNN will achieve a zero prediction error on the training set. The best ‘K’ for KNN 
was selected using fivefold crossvalidation.

Linear regression. For the final conventional method, we implemented linear 
regression with the regular least squares loss of function and without regularization.

Statistics and reproducibility. Sample size, data exclusion criteria and randomization 
on the test data are extensively explained in Methods. The investigators were not 
blinded to allocation during experiments or outcome assessment.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are all 
public data: CCLE: https://depmap.org/portal; CERES-corrected CRISPR gene 
disruption scores: https://depmap.org/portal; GDSC1000 dataset: https://www.
cancerrxgene.org/gdsc1000/GDSC1000_WebResources; PDTC dataset: https://
figshare.com/articles/Bruna_et_al_A_biobank_of_breast_cancer_explants_
with_preserved_intra-tumor_heterogeneity_to_screen_anticancer_compounds_
Cell_2016/2069274; PDX dataset: https://www.nature.com/articles/nm.3954. Other 
miscellaneous datasets that support the findings of the present study are available at 
http://github.com/idekerlab/TCRP. Source data are provided with this paper.

Code availability
The software implementation of TCRP, along with all supporting code, is available 
at http://github.com/idekerlab/TCRP. Other supporting software is available as 
follows: Scikit-learn v.0.20.2: http://scikit-learn.org/stable/index.html; PyTorch 1.0: 
http://pytorch.org.
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Extended Data Fig. 1 | Analysis of fitness versus predictive performance for the panel of gene knockouts in our study. a, Distribution of relative growth 
values after CRISPR gene knockout, median for all n = 341 cell lines. Blue: pooling knockouts of all n = 17670 genes; Pink: pooling n = 469 knockouts 
of genes selected in our study. Fitness is corrected by the Copy Number Variation by the CERES algorithm. b, For each knockout of a selected gene, 
predictive performance (y axis) is computed as the Pearson correlation between predicted and actual growth measurements over all n = 341 cell lines. 
This performance is displayed as a function of the median growth fitness of that knockout (x axis). Growth fitness is binned according to percentiles, 
for example the first bin (0-10%) represents the top 10% of selected genes with the strongest median effects on growth. The distribution of predictive 
performance for each bin is shown with a violin plot. Error bars represent 95% confidence interval.
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Extended Data Fig. 2 | Training accuracy of TCRP and other baseline models for all challenges.
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Extended Data Fig. 3 | Alternative calculation of model performance using Spearman correlation. While Pearson correlation is used to calculate model 
performance in the main text, this supplemental figure provides equivalent performance calculations using the non-parametric rank-based Spearman 
correlation. a, Related to Fig. 3b on n = 83 PDTC models. b, Related to Fig. 4a on n = 228 PDX models.
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Extended Data Fig. 4 | Comparison of transferability of different machine learning models to patient-derived xenografts. Predictive models were 
pre-trained using responses of cancer cell lines to perturbations with drugs, one model per drug. Few-shot learning was then performed on 0-10 PDX 
breast tumor samples exposed to that drug (x-axis), and model accuracy (y-axis) was measured by a, Pearson correlation or b, Spearman correlation on 
the remaining held-out PDX samples. Results averaged across five drugs (see main text). This experiment considers n = 228 PDX models.
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Extended Data Fig. 5 | Interpreting the TCRP model with the framework of Local Interpretable Model-Agnostic explanations (LIMe). See Methods.
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