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Genetic interactions (GIs) are fundamental to our understanding of biological processes in the cell. While
GIs have been systematically mapped in yeast, there is scarce information about them in humans.
Recently, we have suggested a state-of-the-art hierarchical method that leverages gene ontology infor-
mation for predicting GIs in yeast. Here, we adapt this method and apply it for the first time to predict
GIs in human. We introduce a web service called G2G for this task that is available at http://bnet.
cs.tau.ac.il/g2g/.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

As genes never work in isolation, their effects are oftentimes
affected by the activity of other genes. Thus, the phenotype of a
certain mutation can be affected by mutations in other genes, such
that the cell’s fitness may be further reduced (negative, synthetic
lethal (SL) interactions) or improved (positive interactions) [1].
Dissecting the genetic interactions of particular genes provides
information about the processes in which the genes participate,
and provides a high-order linkage between cellular processes. A
systematic search for positive and negative genetic interactions
has been carried out in many model organisms, such as E. coli
[2] and yeast [3] providing important information about the wiring
within the prokaryotic and eukaryotic cells.

Genetic interactions (GIs) play an important role in the etiology
of many human diseases [4–8], thus having potential applications
in their diagnosis and treatment. However, systematic genetic
interaction maps are hard to construct and relatively little is
known about the human genetic interactome.

Previous work focused mainly on yeast, where systematic GI
data is available. It includes the use of flux balance analysis to sim-
ulate the impact of gene deletions on cell growth [9]; Guilt-by-
association, which predicts the phenotype of pairwise gene dele-
tions based on the phenotypes of their network neighbors [10];
the Multi-network multi-classifier, a ‘black box’ supervised
learning system which uses many different lines of experimental
evidence as features to predict genetic interactions [11]; and
recently the Ontotype method (sketched below) which leverages
Gene Ontology information to predict genetic interactions [12].

In humans, RNA interference and CRISPR screens were used to
detect GIs either systematically or by targeting specific driver
mutations [13–17]. Computationally, various methods were devel-
oped for GI prediction, including models that prioritize human GIs
based on experimental information on their yeast orthologs
[18,19], the MiSL method for predicting SL partners of specific dri-
ver mutations by searching for genes that are either amplified or
not deleted in the presence of those mutations [20], the discover
SL method which predicts SL interactions from mutation, gene
expression and copy number data [21], similarly a model that pre-
dicts SL interactions based on the absence of co-loss of these genes
in expression or copy-number data [22], and the ISLE method [23],
which screens for gene pairs that: (i) display significantly less fre-
quent co-inactivation than expected in tumor sample, (ii) upon co-
inactivation improve patients’ survival, and (iii) have similar phy-
logenetic profiles as curated from 86 species. Additional prediction
methods are based on matrix factorization [24], network topology
[25] and integration of heterogeneous data sources [26].

Here we present the G2G web service (http://bnet.cs.tau.ac.il/
g2g/) that allows users to predict phenotypes of pairwise gene
deletions in Homo sapiens using a streamlined implementation of
the algorithm described by Yu et al. [12] and a novel extension
of it. The algorithm is based on the concept of an ontotype, an inter-
mediate representation between genotype and phenotype which is
defined by the gene ontology terms associated with the genes that
are mutated in the genotype. By computing the ontotype of a large
set of experimentally measured genetic interactions, one may
construct a supervised learning model using the term columns as
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features and the measurements as target values. Such a model can
predict the expected phenotype of any given pair of genes.

2. Methods

The original algorithm in [12] was designed for Saccharomyces
cerevisiae, where systematic knockout data for over 23 million gene
pairs is available. G2G adapts the algorithm for Homo sapiens, fol-
lowing the same general outline but using random forest classifica-
tion instead of regression. To train its prediction model, we use the
dataset of [17] which has measurements on the deletion pheno-
type of 105,360 gene pairs in the K562 cell line, including 1678
that are classified as ‘‘negative” (synthetic lethal, average GI
score � �3) and 690 that are classified as ‘‘positive” (average GI
score � 3). We construct a training set comprised of the negative
gene pairs and a randomly selected equally-sized set of ‘‘neutral”
(average score between �3 and 3) gene pairs. We use the resulting
ontotypes to train a predictor which can estimate the probability
that a given gene pair is synthetic lethal.

As the training data in Homo sapiens is of small magnitude com-
pared to yeast, we thought to extend the method by enriching the
ontotype vectors with information from proteins that are signifi-
cantly close to the deleted genes in the protein–protein interaction
network. To this end, we added a preprocessing step to the predic-
tion pipeline in which we first transform every genotype vector
Fig. 1. Input parameters for G2G. Source gene, target gene

Fig. 2. G2G graphical outputs for source genes TIMELESS (a) and CTC1 (b). The center nod
the PPI network. Each edge of the graph is labeled with the phenotype predicted score
referred to the web version of this article.)
using network propagation. In this process, the two deleted genes
are viewed as sources of ‘‘heat”, which is iteratively diffused
through the network. As a result, every protein in the network ends
up with a score that reflects its proximity to the initial genes. We
use the approach in [27] to assess the significance of these scores,
and add the proteins which pass an FDR threshold to the genotype
of the initial pair. The computation is performed using the protein–
protein interaction network described in [28] which is based on
the BioGRID [29] and IntAct [30] interaction databases. G2G can
be configured to incorporate the propagation as an additional step
before ontotype generation. The implementation uses a default
propagation alpha of 0.8 and FDR threshold of 0.05.

G2G is implemented as a Flask server in Python using the stan-
dard Pandas and Numpy libraries [31,32] to read the training data
and construct the ontotypes. We used the GOATOOLS library [33]
to work with the gene ontology and gene annotation files. The
supervised learning models are generated using scikit-learn [34].

3. Usage

G2G offers two main modes of operation (see Fig. 1). Users can
submit both a source gene and a target gene to compute the phe-
notype for that pair. Alternatively, they can submit just a source
gene, in which case G2G returns all predicted genetic interactions
between the gene and its direct neighbors in the protein–protein
(optional), propagation toggle and a score threshold.

e, in green, represents the source gene and each of its predicted neighbors, in red, of
. (For interpretation of the references to colour in this figure legend, the reader is
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interaction network. In this mode, users can specify a threshold
between 0.0 and 1.0 in order to filter out pairs whose phenotype
predictions are lower than the threshold. Genes can be entered
using their entrez gene ids, official symbols or synonyms as defined
by NCBI.

G2G returns its results both as a table listing each gene pair
with its phenotype score and as a graph visualization with the
genes as nodes (source in green, targets in red) and the phenotype
scores as edge labels (see Fig. 2).
4. Case study

To illustrate the use of the web-server, we describe two applica-
tions of it to elucidate the genetic interactions of genes for which
some literature knowledge is available. As a first example, we
selected the TIMELESS (Tim) gene. TIMELESS is known for its role
in the circadian clock mechanism in Drosophila [35–37], whereas
in yeast and humans the TIMELESS-TIPIN protein complex has
been reported to be important for replication checkpoint and nor-
mal DNA replication processes [38].

When executing a G2G job with TIMELESS as its source gene, a
threshold of 0.9 and the propagate checkbox indicated, we get the
TIPIN as the target gene with a 0.976 predicted Phenotype score.
Furthermore, the system predicts interactions with a number of
DNA replication checkpoint genes (e.g.: ATR, ATRIP), as well as a
number of DNA replication machinery components, such as
RPA1, PRIMPOL, GINS3 and MCM3. These results are supported
by the reported interaction of TIMELESS with MCM2-7 during
DNA replication [39,40].

As a second example, a search for the telomeric protein CTC1
with a threshold of 0.6 returned other telomeric proteins, such as
STN1, POT1, TPP1 [41] as well as additional proteins that respond
to telomere DNA damage, such as 53BP1 [42] (Fig. 2).
5. Performance evaluation

In addition to the case studies, we systematically evaluated
G2G’s performance by a stratified 6-fold cross-validation test using
the dataset of [17]. We report the area under the ROC curve (AUC)
as this is a commonly used measure for such tasks that is robust to
label imbalance [43].

Over all folds, G2G achieved a mean AUC of 0.76 with a small
standard deviation of 0.04. The results slightly improved when
using the propagation feature, yielding a mean AUC of 0.77 (±0.03).
6. Conclusions

We have presented the G2G web-server for predicting and visu-
alizing human synthetic lethal interactions. We have shown the
agreement of the predictions with the literature across two inde-
pendent case studies, as well as the good performance in cross val-
idation on systematic phenotypic data. G2G can be used to score
specific putative interactions or to prioritize potential GIs that
overlap the protein–protein interactions of a gene of interest. We
expect G2G to assist researchers in the characterization of GIs
and their clinical applications.
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