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Abstract

The problem of inferring haplotypes from
genotypes of single nucleotide polymor-
phisms (SNPs) is essential for the under-
standing of genetic variation within and
among populations, with important appli-
cations to the genetic analysis of disease
propensities and other complex traits. The
problem can be formulated as a mixture
model, where the mixture components cor-
respond to the pool of haplotypes in the
population. The size of this pool is un-
known; indeed, knowing the size of the pool
would correspond to knowing something sig-
nificant about the genome and its history.
Thus methods for fitting the genotype mix-
ture must crucially address the problem of
estimating a mixture with an unknown num-
ber of mixture components. In this paper
we present a Bayesian approach to this prob-
lem based on a nonparametric prior known
as the Dirichlet process. The model also in-
corporates a likelihood that captures statisti-
cal errors in the haplotype/genotype relation-
ship. We apply our approach to the analy-
sis of both simulated and real genotype data,
and compare to extant methods.

1. Introduction

The availability of a nearly complete human genome
sequence makes it possible to begin to explore individ-
ual differences between DNA sequences on a genome-
wide scale, and to search for associations of such
genotypic variation with disease and other pheno-
types (Risch, 2000). The largest class of individual
differences in DNA are the single nucleotide polymor-
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phisms (SNPs). Millions of SNPs have been detected
thus far out of an estimated total of ten million com-
mon SNPs (Sachidanandam et al., 2001).

A SNP commonly has two variants, or alleles, in the
population, corresponding to two specific nucleotides
chosen from {A,C,G, T}. A haplotype is a list of al-
leles at contiguous sites in a local region of a single
chromosome. Assuming no recombination in this local
region, a haplotype is inherited as a unit. Recall that
for diploid organisms (such as humans) the chromo-
somes come in pairs. Thus two haplotypes go together
to make up a genotype, which is the list of unordered
pairs of alleles in a region. That is, a genotype is
obtained from a pair of haplotypes by omitting the
specification of the association of each allele with one
of the two chromosomes—its phase. Common biolog-
ical methods for assaying genotypes typically do not
provide phase information; phase can be obtained at a
considerably higher cost (Patil et al., 2001). It is desir-
able to develop automatic methods for inferring haplo-
types from genotypes and possibly other data sources
(e.g., pedigrees). With a set of inferred haplotypes in
hand, associations to disease can be explored.

From the point of view of population genetics, the ba-
sic model underlying the haplotype inference problem
is a finite mixture model. That is, letting H denote the
set of all possible haplotypes associated with a given
region (a set of cardinality 2k in the case of binary
polymorphisms, where k is the number of heterozy-
gous SNPs), the probability of a genotype is given by:

p(g) =
∑

h1,h2∈H

p(h1, h2)I(h1 ⊕ h2 = g) (1)

where I(h1 ⊕ h2 = g) is the indicator function of the
event that haplotypes h1 and h2 are consistent with g.
Under the assumption of Hardy-Weinberg equilibrium
(HWE), an assumption that is standard in the litera-
ture and will also be made here, the mixing proportion
p(h1, h2) is assumed to factor as p(h1)p(h2).

Given this basic statistical structure, the simplest



methodology for haplotype inference is maximum like-
lihood via the EM algorithm, treating the haplotype
identities as latent variables and estimating the param-
eters p(h) (Excoffier & Slatkin, 1995). This methodol-
ogy has rather severe computational requirements, in
that a probability distribution must be maintained on
the (large) set of possible haplotypes, but even more
fundamentally it fails to capture the notion that small
sets of haplotypes should be preferred. This notion
derives from an underlying assumption that for rela-
tively short regions of the chromosome there is limited
diversity due to population bottlenecks and relatively
low rates of recombination and mutation.

One approach to dealing with this issue is to formulate
a notion of “parsimony,” and to develop algorithms
that directly attempt to maximize parsimony. Sev-
eral important papers have taken this approach (Clark
et al., 1998; Gusfield, 2002; Eskin et al., 2003) and
have yielded new insights and algorithms. Another ap-
proach is to elaborate the probabilistic model, in par-
ticular by incorporating priors on the parameters. Dif-
ferent priors have been discussed by different authors,
ranging from simple Dirichlet priors (Niu et al., 2002)
to priors based on the coalescent process (Stephens
et al., 2001) to priors that capture aspects of recom-
bination (Greenspan & Geiger, 2003). These models
provide implicit notions of parsimony, via the implicit
“Ockham factor” of the Bayesian formalism.

We also take a Bayesian statistical approach in the
current paper, but we attempt to provide more ex-
plicit control over the number of inferred haplotypes
than has been provided by the statistical methods pro-
posed thus far, and the resulting inference algorithm
has commonalities with the parsimony-based schemes.

Our approach is based on a nonparametric prior known
as the Dirichlet process (Ferguson, 1973). In the set-
ting of finite mixture models, the Dirichlet process—
not to be confused with the Dirichlet distribution—is
able to capture uncertainty about the number of mix-
ture components (Escobar & West, 2002). The basic
setup can be explained in terms of an urn model, and a
process that proceeds through data sequentially. Con-
sider an urn which at the outset contains a ball of a
single color. At each step we either draw a ball from
the urn, and replace it with two balls of the same color,
or we are given a ball of a new color which we place in
the urn, with a parameter defining the probabilities of
these two possibilities. The association of data points
to colors defines a “clustering” of the data.

To make the link with Bayesian mixture models, we
associate with each color a draw from the distribution
defining the parameters of the mixture components.

This process defines a prior distribution for a mixture
model with a random number of components. Multi-
plying this prior by a likelihood yields a posterior dis-
tribution. Markov chain Monte Carlo algorithms have
been developed to sample from the posterior distribu-
tions associated with Dirichlet process priors (Escobar
& West, 2002; Neal, 2000).

The usefulness of this framework for the haplotype
problem should be clear—using a Dirichlet process
prior we in essence maintain a pool of haplotype candi-
dates that grows as observed genotypes are processed.
The growth is controlled via a parameter in the prior
distribution that corresponds to the choice of a new
color in the urn model, and via the likelihood, which
assesses the match of the new genotype to the available
haplotypes.

To expand on this latter point, an advantage of the
probabilistic formalism is its ability to elaborate the
observation model for the genotypes to include the
possibility of errors. In particular, the indicator func-
tion I(h1 ⊕ h2 = g) in Eq. (1) is suspect—there are
many reasons why an individual genotype may not
match with a current pool of haplotypes, such as the
possibility of mutation or recombination in the meio-
sis for that individual, and errors in the genotyping
or data recording process. Such sources of small dif-
ferences should not lead to the inference procedure
spawning new haplotypes.

In the current paper we present a statistical model for
haplotype inference based on a Dirichlet process prior
and a likelihood that includes error models for geno-
types. We describe a Markov chain Monte Carlo proce-
dure, in particular a procedure that makes use of both
Gibbs and Metropolis-Hasting updates, for posterior
inference. We present results of applying our method
to the analysis of both simulated and real genotype
data, comparing to the state-of-the-art PHASE algo-
rithm (Stephens et al., 2001).

2. The Statistical Model

The input to a phasing algorithm can be represented
as a genotype matrix G with columns corresponding to
SNPs in their order along the chromosome and rows
corresponding to genotyped individuals. Gi,j repre-
sents the information on the two alleles of the i-th
individual for SNP j. We denote the two alleles of a
SNP by 0 and 1, and Gi,j can take on one of four val-
ues: 0 or 1, indicating a homozygous site; 2, indicating
a heterozygous site; and ’?’, indicating missing data.1

1Although we focus on binary data here, it is worth
noting that our methods generalize immediately to non-



We will describe our model in terms of a pool of ances-
tral haplotypes, or templates, from which each popula-
tion haplotype originates (Greenspan & Geiger, 2003).
The haplotype itself may undergo point mutation with
respect to its template. The size of the pool and its
composition are both unknown, and are treated as ran-
dom variables under a Dirichlet process prior. We be-
gin by providing a brief description of the Dirichlet
process and subsequently show how this process can
be incorporated into a model for haplotype inference.

2.1. Dirichlet process mixtures

Rather than present the Dirichlet process in full gener-
ality, we focus on the specific setting of mixture mod-
els, and make use of an urn model to present the essen-
tial features of the process. For a fuller presentation,
see, e.g., Ishwaran and James (2001). We assume that
data x arise from a mixture distribution with mixture
components p(x|φ). We assume the existence of a base
measure G(φ), which is one of the two parameters of
the Dirichlet process. (The other is the parameter τ ,
which we present below). The parameter G(φ) is not
the prior for φ, but is used to generate a prior for φ,
in the manner that we now discuss.

Consider the following process for generating samples
{x1, x2, . . . , xn} from a mixture model consisting of an
unspecified number of mixture components, or equiv-
alence classes:

• The first sample x1 is sampled from a distribution
p(x|φ1), where the parameter φ1 is sampled from
the base measure G(φ).

• The ith sample, xi, is sampled from the distribu-
tion p(x|φci

), where:

– The equivalence class of sample i, ci, is drawn
from the following distribution:

p(ci = cj for some j < i|c1, . . . , ci−1) =
ncj

i − 1 + τ
(2)

p(ci 6= cj for all j < i|c1, . . . , ci−1) =
τ

i − 1 + τ
, (3)

where nci
is the occupancy number of class ci—the

number of previous samples belonging to class ci.

– The parameter φci
associated with the mixture

component ci is obtained as follows:

φci
= φcj

if ci = cj for some j < i
(i.e., ci is a populated equivalence class)

φci
∼ G(φ)

if ci 6= cj for all j < i
(i.e., ci is a new equivalence class)

Eqs. (2) and (3) define a conditional prior for the
equivalence class indicator ci of each sample during

binary data, and accommodate missing data.

a sequential sampling process. They imply a self-
reinforcing property for the choice of equivalence class
of each new sample—previously populated classes are
more likely to be chosen.

It is important to emphasize that the process that we
have discussed will be used as a prior distribution. We
now embed this prior in a full model that includes a
likelihood for the observed data. In Section 3 we de-
velop Markov chain Monte Carlo inference procedures
for this model.

2.2. The model

We present a probabilistic model for the generation
of haplotypes in a population and for the generation
of genotypes from these haplotypes. We assume that
each individual’s genotype is formed by drawing two
random templates from an ancestral pool, and that
these templates are subject to random perturbation.
To model such perturbations we assume that each lo-
cus is mutated independently from its ancestral state
with the same error rate. Finally, we assume that we
are given noisy observations of the resulting genotypes.
The model is displayed as a graphical model in Fig-
ure 1.

Hi1

Gi

Hi0

C i1

C i0

γτ

A k,2 A k,JA k,1

...Hi  ,2 Hi  ,J0 0
Hi  ,10

...Hi  ,2 Hi  ,J1 1
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I
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...Gi,1

θk
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G0
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Figure 1. The graphical model representation of the hap-
lotype model with a Dirichlet process prior. Circles rep-
resent the state variables, ovals represent the parameter
variables, and diamonds represent fixed parameters. The
dashed boxes denote sets of variables corresponding to the
same ancestral template, haplotype, and genotype, respec-
tively. The solid boxes correspond to i.i.d. replicates of sets
of variables, each associated with a particular individual,
or ancestral template, respectively.

Let J be an ordered list of loci of interest. For
each individual i, we denote his/her paternal haplo-
type by Hi0 := [Hi0,1, . . . , Hi0,J ] and maternal haplo-
type by Hi1 := [Hi1,1, . . . , Hi1,J ]. We denote a set
of ancestral templates as A = {A1, A2, . . .}, where



Ak := [Ak,1, . . . , Ak,J ] is a particular member of this
set.

In our framework, the probability distribution of the
haplotype variable Hit

, where the sub-subscript t ∈
{0, 1} indexes paternal or maternal origin, is mod-
eled by a mixture model with an unspecified num-
ber of mixture components, each corresponding to an
equivalence class associated with a particular ances-
tor. For each individual i, we define the equivalence
class variables Ci0 and Ci1 for the paternal and mater-
nal haplotypes, respectively, to specify the ancestral
origin of the corresponding haplotype. The Cit

are
the random variables corresponding to the equivalence
classes of the Dirichlet process. The base measure G
of the Dirichlet process is a joint measure on ances-
tral haplotypes A and mutation parameters θ, where
the latter captures the probability that an allele at a
locus is identical to the ancestor at this locus. We
let G(A, θ) = p(A)p(θ), and we assume that p(A) is a
uniform distribution over all possible haplotypes. We
let p(θ) be a beta distribution, Beta(αh, βh), and we
choose a small value for βh/(αh + βh), corresponding
to a prior expectation of a low mutation rate.

Given Cit
and a set of ancestors, we define the condi-

tional probability of the corresponding haplotype in-
stance h := [h1, . . . , hJ ] to be:

p(Hit
= h|Cit

= k,A = a,θ)

= p(Hit
= h|Ak = a, θk = θ)

=
∏

j

p(hj |aj , θ), (4)

where p(hj |aj , θ) is the probability of having allele hj

at locus j given its ancestor. Eq. (4) assumes that
each locus is mutated independently with the same
error rate. For haplotypes, Hit,j takes values from
a set B of alleles. We use the following single-locus
mutation model :

p(hj |aj , θ) = θI(hj=aj)
( 1 − θ

|B| − 1

)I(hj 6=aj)

(5)

where I(·) is the indicator function.

The joint conditional distribution of haplotype in-
stances h = {hit

: t ∈ {0, 1}, i ∈ {1, 2, . . . , I}}
and parameter instances θ = {θ1, . . . , θK}, given the
ancestor indicator c of haplotype instances and the
set of ancestors a = {a1, . . . , aK}, can be written
explicitly as:

p(h,θ|c,a) ∝
∏

k

θmk+αh−1
k

( 1 − θk

|B| − 1

)m′

k[

1 − θk

]βh−1

(6)
where mk =

∑

j

∑

i

∑

t I(hit,j = ak,j)I(cit
= k) is the

number of alleles that were not mutated with respect

to the ancestral allele, and m′
k =

∑

j

∑

i

∑

t I(hit,j 6=
ak,j)I(cit

= k) is the number of mutated alleles. The
count mk = {mk,m′

k} is a sufficient statistic for the
parameter θk and the count m = {mk,m′

k} is a suf-
ficient statistic for the parameter θ. The marginal
conditional distribution of haplotype instances can be
obtained by integrating out θ in Eq. (6):

p(h|c,a) =
∏

k

R(αh, βh)
Γ(αh + mk)Γ(βh + m′

k)

Γ(αh + βh + mk + m′
k)

( 1

|B| − 1

)m′

k

(7)
where Γ(·) is the gamma function, and R(αh, βh) =
Γ(αh+βh)
Γ(αh)Γ(βh) is the normalization constant associated

with Beta(αh, βh). (For simplicity, we use the abbre-
viation Rh for R(αh, βh) in the sequel).

We now introduce a noisy observation model for the
genotypes. We let Gi = [Gi,1, . . . , Gi,J ] denote the
joint genotype of individual i at loci [1, . . . , J ], where
each Gi,j denotes the genotype at locus j. We assume
that the observed genotype at a locus is determined
by the paternal and maternal alleles of this locus as
follows:

p(gi,j |hi0,j , hi1,j , γ)

= γI(hi,j=gi,j)[µ1(1 − γ)]I(hi,j

1

6=gi,j)[µ2(1 − γ)]I(hi,j

2

6=gi,j)

where hi,j , hi0,j ⊕ hi1,j denotes the unordered pair

of two actual SNP allele instances at locus j; “
1

6=” de-
notes set difference by exactly one element (i.e., the
observed genotype is heterozygous, while the true one

is homozygous); “
2

6=” denotes set difference of both el-
ements (i.e., the observed and true genotypes are dif-
ferent and both are homozygous); and µ1 and µ2 are
appropriately defined normalizing constants. We place
a beta prior Beta(αg, βg) on γ. Assuming independent
and identical error models for each locus, the joint con-
ditional probability of the entire genotype observation
g = {gi : i ∈ {1, 2, . . . , I}} and parameter γ, given
all haplotype instances is:

p(g, γ|h) =
∏

i

p(gi, γ|hi0 , hi1)

= γαg+u−1
[

1 − γ
]βg+u′+u′′−1

µu′

1 µu′′

2 ,(8)

where the sufficient statistics u = {u, u′, u′′} are com-

puted as u =
∑

i,j I(hi,j = gi,j), u′ =
∑

i,j I(hi,j

1

6=

gi,j), and u′′ =
∑

i,j I(hj,i

2

6= gj,i), respectively. Note
that u + u′ + u′′ = IJ . To reflect an assumption that
the observational error rate is low we set βg/(αg +βg)
to a small constant (0.001). Again, the marginal con-
ditional distribution of g is computed by integrating
out γ.



Having described our Bayesian haplotype model, the
problem of phasing individual haplotypes and estimat-
ing the size and configuration of the latent ancestral
pool can be solved via posterior inference given the
genotype data.

3. Markov chain Monte Carlo for

Haplotype Inference

In this section, we describe a Gibbs sampling algo-
rithm for exploring the posterior distribution under
our model, including the latent ancestral pool. We
also present a Metropolis-Hastings variant of this al-
gorithm that appears to mix better in practice.

3.1. A Gibbs sampling algorithm

The Gibbs sampler draws samples of each random vari-
able from a conditional distribution of the variable to
be sampled given (previously sampled) values of all
the remaining variables of the model. The variables
needed in our algorithm are: cit

, the index of the an-
cestral template of a haplotype instance t of individual
i; ak,j , the allele pattern at the j-th locus of the k-th
ancestral template; hit,j , the t-th allele of the SNP at
the j-th locus of individual i; and gi,j , the genotype
at locus j of individual i (the only observed variables
in the model). All other variables in the model—θ
and γ—are integrated out. The Gibbs sampler thus
samples the values of cit

, ak,j and hit,j .

Conceptually, the Gibbs sampler alternates between
two coupled stages. First, given the current values of
the hidden haplotypes, we sample the cit

and subse-
quently ak,j , which are associated with the Dirichlet
process prior. Second, given the current state of the
ancestral pool and the ancestral template assignment
for each individual, we sample the hj,it

variables in the
basic haplotype model.

In the first stage, the conditional distribution of cit
is:

p(cit
= k |c[−it],h,a) ∝ p(cit

= k |c[−it])p(hit
|ak, c,h[−it])

=

{ n[−it],k

n−1+τ
p(hit

|ak,m[−it],k) if k = ci′
t′

for some i′t′ 6= it
τ

n−1+τ

∑

a′ p(hit
|a′)p(a′) if k 6= ci′

t′
for all i′t′ 6= it

(9)

where [−it] denotes the set of indices excluding it;
n[−it],k

represents the number of ci′
t′

for i′t′ 6= it that are
equal to k; n represents the total number of instances
sampled so far; and m[−it],k denote the m sufficient
statistics associated with all haplotype instances orig-
inating from ancestor k, except hit

. This expression is
simply Bayes theorem with p(hit

|ak, c,h[−it],) playing
the role of the likelihood and p(cit

= k |c[−it]) playing
the role of the prior. The likelihood p(hit

|ak,m[−it],k)

is obtained by integrating over the parameter θk, as in
Eq. (7).

The conditional probability for a newly proposed
equivalence class k that is not populated by any previ-
ous samples requires a summation over all possible an-
cestors: p(hit

) =
∑

a′ p(hit
|a′)p(a′). Since the gamma

function does not factorize over loci, computing this
summation takes time that is exponential in the num-
ber of loci. To skirt this problem we endow each locus
with its own mutation parameter θk,j , with all parame-
ters admitting the same prior Beta(αh, βh). This gives
rise to a closed-form formula for the summation and
also for the normalization constant in Eq. (9). It is
also, arguably, a more accurate reflection of reality.

Now we need to sample the ancestor template ak,
where k is the newly sampled ancestor index for cit

.
When k is not equal to any other existing index ci′

t′
,

a value for ak needs to be chosen from p(A|hit
), the

posterior distribution of A based on the prior p(A)
and the single dependent haplotype hit

. On the other
hand, if k is an equivalence class populated by previ-
ous samples of ci′

t′
, we draw a new value of ak from

p(A|hit
, s.t. cit

= k). If after a new sample of cit
, a

template is no longer associated with any haplotype
instance, we remove this template from the pool. The
conditional distribution for this Gibbs step is there-
fore:

p(ak,j |hit,j s.t. cit = k) ∝






























p(hit,j |ak,j) =
(

αh

αh+βh

)

I(hit,j=ak,j)( βh

(|B|−1)(αh+βh)

)

I(hit,j 6=ak,j)

if k is not previously instantiated

p(hit,j s.t. cit = k|ak,j) =
Γ(αh+mk,j)Γ(βh+m′

k,j)

Γ(αh+βh+nk)·(|B|−1)
m′

k,j

if k is previously instantiated,

(10)

where mk,j (respectively, m′
k,j) is the number of allelic

instances originated from ancestor k at locus j that are
identical to (respectively, different from) the ancestor,
when the ancestor has the pattern ak,j .

We now proceed to the second sampling stage, in which
we sample the haplotypes hit

. We sample each hit,j ,
for all j, i, t, sequentially according to the following
conditional distribution:

p(hit,j |h[−(i,j)], hit̄,j , c,a,g)

∝ p(gi|hit,j , hit̄,j ,u[−(i,j)])p(hit,j |ak,j ,m[−(it,j)],k)

= Rg

Γ(αg + u)Γ(βg + (u′ + u′′))

Γ(αg + βg + IJ)
[µ1]

u′

[µ2]
u′′

×

Rh

Γ(αh + mj,k)Γ(βh + m′
k,j)

Γ(αh + βh + nk) · (|B| − 1)m′

k,j

(11)



where [−(it, j)] denotes the set of indices excluding
(it, j) and mk,j = m[−(it,j)],k + I(hit,j = ak,j) (and
similarly for the other sufficient statistics). Note that
during each sampling step, we do not have to recom-
pute the Γ(·), because the sufficient statistics are either
not going to change (e.g., when the newly sampled hit,j

is the same as the old sample), or only going to change
by one (e.g., when the newly sampled hi1,j results in
a change of the allele). In such cases the new gamma
function can be easily updated from the old one.

3.2. A Metropolis-Hasting sampling algorithm

Note that for a long list of loci, a uniform p(A) of all
possible ancestral template patterns will render the
probability of sampling a new ancestor infinitesimal,
due to the small value of the smoothed marginal likeli-
hood of any haplotype pattern hit

, as computed from
Eq. (9). This could result in slow mixing.

An alternative sampling strategy is to use a par-
tial Gibbs sampling strategy with the following
Metropolis-Hasting updates. For the proposal distri-
bution for the equivalence class of hit

we use:

q(c∗it
= k|c[−it]) =

{

n[−it],k

n−1+τ
: if k = ci′

t′
for some i′t′ 6= it

τ
n−1+τ

: if k 6= ci′
t′

for all i′t′ 6= it

(12)
Then we sample ac∗

it
sequentially according to

Eq. (10). For target distribution p(cit
= k|c[−it],h,a),

the proposal factor cancels when computing the accep-
tance probability ξ, leaving:

ξ(c∗it
, cit

) = min
[

1,
p(hit

|ac∗
it

,h[−it])

p(hit
|acit

,h[−it])

]

. (13)

In practice, we found that the above modification
to the Gibbs sampling algorithm leads to substan-
tial improvement in efficiency for long haplotype lists,
whereas for short lists, the Gibbs sampler remains bet-
ter due to the high (100%) acceptance rate.

4. Experimental Results

We validated our algorithm by applying it to simulated
and real data and compared its performance to that
of the state-of-the-art PHASE algorithm (Stephens
et al., 2001) and other current algorithms. We re-
port on the results of both variants of our algo-
rithm: The Gibbs sampler, denoted DP(Gibbs), and
the Metropolis-Hasting sampler, denoted DP(MH).
Throughout the experiments, we set the hyperparam-
eter τ in the Dirichlet process to be roughly 1% of the
population size, i.e., for a data set of 100 individuals,
τ = 1. We used a burn-in of 2000 iterations (or 4000

for datasets with more than 50 individuals), and used
the next 6000 iterations for estimation.

4.1. Simulated data

In our first set of experiments we applied our method
to simulated data (“short sequence data”) from
Stephens et al. (2001). This data contains sets of
2n haplotypes, randomly paired to form n genotypes,
under an infinite-sites model with parameters η = 4
and R = 4 determining the mutation and recombina-
tion rates, respectively. We used the first 40 datasets
for each combination of individuals and sites, where
the number of individuals ranged between 10 and 50,
and the number of sites ranged between 5 and 30.

To evaluate the performance of the algorithms we used
the following error measures: errs, the ratio of in-
correctly phased SNP sites over all non-trivial het-
erozygous SNPs (excluding individuals with a single
heterozygous SNP); erri, the the ratio of incorrectly
phased individuals over all non-trivial heterogeneous
individuals; and ds, the switch distance, which is the
number of phase flips required to correct the predicted
haplotypes over all non-trivial heterogeneous SNPs.
The results are summarized in Table 1. Overall, we
perform slightly worse than PHASE on the first two
measures, and slightly better on the switch distance
measure (which uses 100,000 sampling steps). Both al-
gorithms provide a substantial improvement over EM.

4.2. Real data

We applied our algorithm to two real datasets and
compared its performance to that of PHASE (Stephens
et al., 2001) and other algorithms.

The first dataset contains the genotypes of 129 indi-
viduals over 103 polymorphic sites (Daly et al., 2001).
In addition it contains the genotypes of the parents of
each individual, which allows the inference of a large
portion of the haplotypes as in Eskin et al. (2003).
The results are summarized in Table 2. It is appar-
ent that the Metropolis-Hasting sampling algorithm
significantly outperforms the Gibbs sampler, and is
to be preferred given the relatively limited number of
sampling steps (∼ 6000). The overall performance is
comparable to that of PHASE and better than both
HAP (Halperin & Eskin, 2002; Eskin et al., 2003) and
HAPLOTYPER (Niu et al., 2002).

It is important to emphasize that our methods also
provide a posteriori estimates of the ancestral pool of
haplotype templates and their frequencies. We omit a
listing of these haplotypes, but provide an illustrative
summary of the evolution of these estimates during



DP(MH) PHASE EM
#individuals errs erri ds errs erri ds erri

10 0.060 0.216 0.051 0.046 0.182 0.054 0.424
20 0.039 0.152 0.039 0.029 0.136 0.046 0.296
30 0.036 0.121 0.038 0.024 0.101 0.027 0.231
40 0.030 0.094 0.029 0.019 0.071 0.026 0.195
50 0.028 0.082 0.024 0.019 0.072 0.025 0.167

Table 1. Performance on data from Stephens et al. (2001). The results for the EM algorithm are adapted from Stephens
et al. (2001).

DP(Gibbs) DP(MH) PHASE HAP HAPLOTYPER
block id. length errs erri ds errs erri ds errs erri ds errs errs

1 14 0.223 0.485 0.229 0 0 0 0.003 0.030 0.003 0.007 0.039
2 5 0 0 0 0.007 0.026 0.007 0.007 0.026 0.007 0.036 0.065
3 5 0 0 0 0 0 0 0 0 0 0 0.008
4 11 0.143 0.262 0.128 0 0 0 0 0 0 0.015 -
5 9 0.020 0.066 0.020 0.011 0.033 0.011 0.011 0.033 0.011 0.027 0.151
6 27 0.071 0.191 0.074 0.005 0.043 0.005 0 0 0 0.018 0.041
7 7 0.005 0.018 0.005 0.005 0.018 0.005 0.005 0.018 0.005 0.068 0.214
8 4 0 0 0 0 0 0 0 0 0 0 0.252
9 5 0.029 0.097 0.029 0.012 0.032 0.012 0.012 0.032 0.012 0.057 0.152
10 4 0.007 0.025 0.007 0.007 0.025 0.007 0.008 0.025 0.008 0.042 0.056
11 7 0.010 0.034 0.005 0.005 0.017 0.005 0.011 0.034 0.011 0.033 0.093
12 5 0.010 0.037 0.020 0 0 0 0 0 0 0 0.077

Table 2. Performance on the data of Daly et al. (2001), using the block structure provided by Halperin and Eskin (2002).
The results of HAP and HAPLOTYPER are adapted from Halperin and Eskin (2002). Since the error rate in Halperin
and Eskin (2002) uses the number of both heterozygous and missing sites as the denominator, whereas we used only the
non-trivial heterozygous ones, we rescaled the error rates of the two latter methods to be comparable to ours.

sampling (Figure 2).

The second dataset contains genotype data from four
populations, 90 individuals each, across several ge-
nomic regions (Gabriel et al., 2002). We focused on
the Yoruban population (D), which contains 30 trios
of genotypes (allowing us to infer most of the true
haplotypes) and analyzed the genotypes of 28 individ-
uals over four medium-sized regions (see below). The
results are summarized in Table 3. All methods yield
higher error rates on these data, compared to the anal-
ysis of the data of Daly et al. (2001), presumably due
to the low sample size. In this setting, over all but
one of the four regions, our algorithm outperformed
PHASE for all three types of error measures. A pre-
liminary analysis suggests that our performance gain
may be due to the bias toward parsimony induced by
the Dirichlet process prior. We found that the num-
ber of template haplotypes in our algorithm is typically
small, whereas in PHASE, the haplotype pool can be
very large (i.e., region 7b has 83 haplotypes, compared
to 10 templates in our case and 28 individuals overall).

5. Conclusions

We have proposed a Bayesian approach to the model-
ing of genotypes based on a Dirichlet process prior. We
have shown that the Dirichlet process provides a nat-
ural representation of uncertainty regarding the size
and composition of the pool of haplotypes underly-

DP(MH) PHASE
region length errs erri ds errs erri ds

16a 13 0.185 0.480 0.141 0.174 0.440 0.130
1b 16 0.100 0.250 0.160 0.200 0.450 0.180
25a 14 0.135 0.353 0.115 0.212 0.588 0.212
7b 13 0.105 0.278 0.066 0.145 0.444 0.092

Table 3. Performance on the data of Gabriel et al. (2002).

ing a population. Using Markov chain Monte Carlo
algorithms, we have shown that this model leads to
effective inference procedures for inferring the ances-
tral pool and for haplotype phasing based on a set of
genotypes. The model accommodates growing data
collections and noisy and/or incomplete observations.
The approach also naturally imposes an implicit bias
toward small ancestral pools during inference, reminis-
cent of parsimony methods, doing so in a well-founded
statistical framework that permits errors.

Our focus here has been on adapting the technology
of the Dirichlet process in the setting of the standard
haplotype phasing problem. But an important un-
derlying motivation for our work, and a general mo-
tivation for pursuing probabilistic approaches to ge-
nomic inference problems, is the potential value of
our model as a building block for more expressive
models. In particular, as in Greenspan and Geiger
(2003) and Lauritzen and Sheehan (2002), the graph-
ical model formalism naturally accommodates various
extensions, such as segmentation of chromosomes into
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Figure 2. The top ten ancestral templates during Metropolis-Hasting sampling for block 1 of the data of Daly et al. (2001).
(The numbers in the panels are the posterior means of the frequency of each template). (a) Immediately after burn-in
(first 2000 samples). (b) 3000 samples after burn-in. (c) 6000 samples after burn-in.

haplotype blocks and the inclusion of pedigree rela-
tionships. The Dirichlet process parameterization also
provides a natural upgrade path for the consideration
of richer models; in particular, it is possible to incorpo-
rate more elaborate base measures G into the Dirich-
let process framework—the coalescence-based distri-
bution of Stephens et al. (2001) would be an interest-
ing choice.
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