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Abstract

Background: Understanding the genetic basis of disease is an important challenge in biology and medicine. The
observation that disease-related proteins often interact with one another has motivated numerous network-based
approaches for deciphering disease mechanisms. In particular, protein-protein interaction networks were
successfully used to illuminate disease modules, i.e., interacting proteins working in concert to drive a disease. The
identification of these modules can further our understanding of disease mechanisms.

Methods: We devised a global method for the prediction of multiple disease modules simultaneously named
GLADIATOR (GLobal Approach for DIsease AssociaTed mOdule Reconstruction). GLADIATOR relies on a gold-
standard disease phenotypic similarity to obtain a pan-disease view of the underlying modules. To traverse the
search space of potential disease modules, we applied a simulated annealing algorithm aimed at maximizing the
correlation between module similarity and the gold-standard phenotypic similarity. Importantly, this optimization is
employed over hundreds of diseases simultaneously.

Results: GLADIATOR’s predicted modules highly agree with current knowledge about disease-related proteins.
Furthermore, the modules exhibit high coherence with respect to functional annotations and are highly enriched
with known curated pathways, outperforming previous methods. Examination of the predicted proteins shared by
similar diseases demonstrates the diverse role of these proteins in mediating related processes across similar
diseases. Last, we provide a detailed analysis of the suggested molecular mechanism predicted by GLADIATOR for
hyperinsulinism, suggesting novel proteins involved in its pathology.

Conclusions: GLADIATOR predicts disease modules by integrating knowledge of disease-related proteins and
phenotypes across multiple diseases. The predicted modules are functionally coherent and are more in line with
current biological knowledge compared to modules obtained using previous disease-centric methods.
The source code for GLADIATOR can be downloaded from http://www.cs.tau.ac.il/~roded/GLADIATOR.zip.

Keywords: Disease gene prediction, Disease modules, Disease pathways, Graphs and networks, Protein-protein
interaction network, Hyperinsulinism

Background
A grand challenge of genetics and medicine is to further
our understanding of the molecular basis of disease. Par-
tial collections of disease-related proteins, obtained
using traditional and emerging high-throughput tech-
nologies, are available in public databases such as the
Online Mendelian Inheritance in Man (OMIM) [1] and
Genome-Wide Association Studies (GWAS) catalogs [2].
The increasing knowledge regarding these disease-

causing genes facilitates the development of new infer-
ence methods, harnessing the available information to
suggest new candidate causal genes.
Computational methods for associating genes with dis-

eases often employ integrative approaches, exploiting
different data sources such as Gene Ontology (GO) an-
notations [3], protein sequence [4], phenotypic data [5],
gene expression data [6, 7], or protein-protein inter-
action (PPI) information [8, 9]. The latter is increasingly
used to reveal novel disease-related proteins based on
the observation that genes related to the same disease
tend to physically interact in the protein network [9, 10].
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For example, Köhler et al. [11] performed a random
walk on the PPI network, starting at the known disease
genes, and ranking candidate genes by the steady-state
probabilities induced by the walk. Xu and Li [12] trained
a classifier based on topological network properties to
identify genes that are likely to be involved in hereditary
diseases. Liu et al. [7] created a statistical framework for
constructing a sample-specific network describing an in-
dividual’s disease state. The method compared gene ex-
pression correlations of a specific cell line to a
background set and highlighted all edges in a PPI net-
work in which gene expression correlation was dramat-
ically altered. The resulting subnetwork captured a set of
interacting genes which are dysregulated in the disease
state. Mazza et al. [13] developed an integer linear pro-
gramming framework for the prediction of disease-
related complexes, based on a seed set of known causal
proteins. Their method ranked proteins according to
their proximity in a PPI network to the seed proteins.
It then identified dense network regions of highly
ranked proteins.
A recent study by Menche et al. [14] suggested that

disease-causing genes create a connected module in the
PPI network and, furthermore, that the distance in the
PPI network between disease modules is correlated with
their phenotypic similarity. In particular, the study illus-
trated that disease pairs with overlapping modules ex-
hibit higher phenotypic similarity and co-morbidity
values [14]. A follow-up work [15] proposed the DIseAse
MOdule Detection (DIAMOnD) algorithm, where the
topological structure of the PPI network is used to
expand a seed of disease-related proteins into a wider
disease module. The method greedily added proteins
according to the significance of their connections to the
proteins of the growing module, starting from a seed of
known proteins. Another approach, suggested by Leiser-
son et al. [16], attempted to reveal significant cancer
modules. Their method, called HotNet2, searched for
connected subnetworks by diffusing heat from a seed set
of mutated genes; the heat was diffused across the edges
of a PPI network until equilibrium was reached. Subnet-
works containing nodes that both send and receive a
significant amount of heat (strongly connected compo-
nents) were identified as disease modules.
The use of phenotypic properties to derive disease-

associated genes has been facilitated in recent years by
the emergence of publicly available disease-phenotype
databases. The new wealth of data promotes the examin-
ation of molecular mechanisms underlying disease phe-
notypes. Xu et al. [17] presented an automatic approach
to extract disease-phenotype pairs from biomedical lit-
erature, obtaining more than 100,000 such pairs. Their
study revealed that the number of shared genes between
diseases increases directly with the number of shared

phenotypes. The human symptoms-disease network [18]
utilized biomedical literature to construct a symptom-
based human disease network and to study the relation
between the clinical phenotypes of a disease and its
underlying molecular mechanism. Using this network,
the authors demonstrated that disease phenotypic simi-
larity strongly correlates with both shared genetic associ-
ations and the extent to which their associated genes
interact. The Human Phenotype Ontology (HPO) pro-
ject [19] annotated thousands of diseases obtained from
OMIM [1], Orphanet [20], and the Database of Chromo-
somal Imbalance and Phenotype in Humans Using
Ensembl Resources (DECIPHER) [21] to a structured
phenotype ontology. The Phenopolis open data source
[22] utilized the HPO database, together with genetic
data sources, for both prioritizing disease-causal genes
and uncovering gene-phenotype relationships. Freuden-
berg and Propping [5] devised a ranking algorithm for
disease-related genes by combining disease phenotypic
similarity, obtained from OMIM, and protein functional
similarity, obtained from the GO [23]. Their algorithm
clustered diseases according to their phenotypic similar-
ity and then ranked candidate proteins for a disease ac-
cording to their GO similarity to proteins known to
associate with diseases in the corresponding cluster. Wu
et al. [24] devised a method that integrates PPI with dis-
ease phenotypic similarity to predict disease genes. Their
results further demonstrated the global concordance be-
tween the PPI network and the phenotypic network.
Similarly, Li and Patra [25] constructed a hybrid gene
and phenotype network by integrating a gene network
and a phenotype network using gene-phenotype rela-
tionships. The resulting network was used to prioritize
gene-phenotype relations and further to predict disease-
disease associations. However, all of the above methods,
though they were able to prioritize disease- and
phenotypic-related genes, did not provide a coherent
connected module in the PPI; thus, their ability to de-
scribe disease underlying mechanisms is limited.
Here, we present GLobal Approach for DIsease Asso-

ciaTed mOdule Reconstruction (GLADIATOR), a global
approach for module detection. GLADIATOR leverages
on phenotypic similarity information and a protein-
protein interaction network to predict disease modules
for hundreds of diseases simultaneously. To this end, it
utilizes a crowd-sourcing approach, not only considering
disease-related genes but also borrowing knowledge
from similar diseases to infer relevant proteins poten-
tially mediating shared phenotypes. For each disease,
GLADIATOR starts from a small set of connected pro-
teins (seed proteins) that are known to associate with
that disease, and systematically expands the seeds into
connected modules. The expansion aims at minimizing
the squared distance between the gold-standard disease

Silberberg et al. Genome Medicine  (2017) 9:48 Page 2 of 14



similarity to the module similarity, based on the observa-
tion that diseases that share common phenotypes are
likely to share common molecular mechanisms [14, 17,
18]. A schematic overview of GLADIATOR is given in
Fig. 1. The identified modules significantly capture
known gene-disease associations and are highly enriched
with known biological pathways, allowing GLADIATOR
to outperform previous methods.

Methods
The GLADIATOR algorithm
The main objective of our method is to identify a collection
of disease modules, i.e., a collection of sets of proteins that
are connected in the network, whose membership similar-
ity (computed via the Jaccard index) is strongly correlated
with a gold-standard phenotypic similarity. We define the
membership similarity between two modules (ModuleSim)
as the size of the intersection between their associated pro-
teins over the size of the union of those sets such that:

ModuleSimi;j ¼ Jaccard Modulei;Modulej
� �

¼ Modulei∩Modulej
�� ���� ��

Modulei∪Modulejj jj j
Gold-standard phenotypic similarity was retrieved

from the human symptom-disease network [18] and

denoted by cosine similarity of the disease-associated
symptoms vector as follows:

PhenSimi;j ¼ Cos Pheni;Phenj
� �

¼
X

x
Pheni;x; Phenj;x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x
Phen2i;x

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
Phen2j;x

q

where Pheni is the vector of symptoms associated with
disease i. Given the external phenotypic-based similarity
(PhenSim), our objective is to minimize the sum of
squared differences between the two similarities:

min
X

i<j
PhenSimi;j−ModuleSimi;j
� �2�

ð1Þ

where i and j represent disease indices, ranging over
the 24,753 disease pairs obtained for the 223 analyzed
diseases. We applied a simulated annealing algorithm to
traverse the search space of disease-related proteins
starting from a connected Seed Protein Set (SeedPS) and
expanding it to the final disease module according to the
objective function (1). To obtain connected disease
modules, we first calculated the largest connected com-
ponent (LCC) for each disease from its set of Known
Disease Protein Set (KnownDisPS) and used it as the ini-
tial starting point, or seed, for the annealing process.

Fig. 1 The algorithmic pipeline. Known disease-related proteins (KnownDisPS) are projected into the PPI network. The largest connected compo-
nent (LCC) is obtained for each disease. A simulated annealing procedure simultaneously expands all LCCs to disease modules while minimizing
the squared Euclidean distance between the module-based similarities of the diseases to a given phenotypic-based similarity
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Ties in the LCC size were broken arbitrarily by selecting
the LCC with the smallest index value returned by the con-
nected_components function using the Python NetworkX
package. Re-executing GLADIATOR with the set of alter-
native LCCs of the same sizes returned similar results in
terms of the final objective function value and the enrich-
ment of the resulting modules vs. external data sources.
KnownDisPS was obtained from [14] (see “Data sources”
for full details). Next, in each annealing step we chose a
random disease and a random protein to either add or re-
move. Protein addition was done by choosing a random
protein from the set of neighbors available for the current
module, while protein removal was done by choosing a ran-
dom non-seed protein from the current disease module,
followed by the removal of additional proteins which were
consequently disconnected from the SeedPS. The module
similarity matrix was then updated and compared to the
gold-standard phenotypic similarity (Eq. (1)), leading to the
acceptance or rejection of the module perturbation. The
annealing pseudo-code is given in Algorithm 1.

The annealing procedure takes four parameters: (1)
the initial annealing temperature (MaxTemp), (2) the
final annealing temperature (MinTemp), (3) the
temperature decrease rate (Alpha), and (4) the number
of steps to perform in each temperature (Steps). We
tested each of these parameters separately while keeping
the other three parameters fixed (Fig. 2) and found that
for each parameter a tradeoff exists between the object-
ive and running time. For example, when increasing the
number of steps, the final difference score decreases,
while the running time increases. Moreover, the final
score was highly dependent on the cooling schedule. As
shown in Fig. 2c, as alpha increases toward 1 (slower
cooling), the final energy decreases and reaches satur-
ation around 0.95. However, there was no observable ef-
fect of the starting energy on the final results. More
importantly, we noticed that the algorithm reaches a sat-
uration point at squared Euclidean distance ≈ 290, after
which different parameter configurations increase the
running time, while the improvement obtained in the re-
sults is negligible (Fig. 2). Based on this analysis, we
chose the following parameters: MaxTemp = 5, Min-
Temp = 1e-25, Alpha = 0.995, Steps = 200, balancing be-
tween running time and minimal distance obtained.
Additional files 1 and 2 demonstrate the robustness of
the algorithm to fine tuning of the parameters and ran-
dom seed, respectively. We tested the GLADIATOR al-
gorithm with 40 different seeds and 25 parameter
configurations, obtaining different modules for each run.
We found that all runs resulted in similar objective
values with an average = 294 ± 3.5 (307 ± 37) for different
seed (parameter) configurations. Moreover, all parameter
and random seed configurations yielded highly enriched
modules compared to known disease-associated genes
obtained from DisGeNET [26] (see ”Performance evalu-
ation’), with enrichment vs. ‘Curated’ ranging between
8.1e-58 to 3.5e-85 for different seed configurations, and
between 1.7e-26 to 3.2e-89 for different parameter config-
urations; see Additional files 1 and 2. The source code
for GLADIATOR is given in Additional file 3 and also
can be downloaded from http://www.cs.tau.ac.il/~roded/
GLADIATOR.zip.

Performance evaluation
To evaluate the agreement of the predicted modules
with current knowledge, we performed three types of
tests. First, cross-validation was performed by repeating
the following process on each disease separately. The
disease’s SeedPS was pruned by randomly selecting a
protein and removing it and all subsequently discon-
nected proteins until at least 10% of the original SeedPS
proteins were removed. Subsequently, GLADIATOR was
executed, and the recovery rate for this cross-validation
set was evaluated. Diseases with a SeedPS of size 1 were
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dismissed from the analysis, resulting in 209 diseases
tested with an average of 30% of the association removed
in each disease and a total of 17% of disease-SeedPS as-
sociations tested across all diseases. We repeated the
cross-validation test with the pruned SeedPS obtained
by this procedure to evaluate the recovery rate of the
competing methods.
Next, we evaluated the recovery rate of KnownDisPS

which were not a part of the LCC forming the SeedPS in
the predicted modules.
Last, we compared the association between Predicted

Protein Sets (PredictedPS) and their corresponding dis-
eases to an external data source of disease-gene associ-
ation obtained from DisGeNET. PredictedPS was
obtained from the resulting Modules Protein Set (Modu-
lePS) excluding the SeedPS. Three types of disease-gene
associations exist in DisGeNET: (1) associations ex-
tracted from the literature (specifically associations ex-
tracted from BeFree, the Genetic Association Database
(GAD), and the Literature-derived Human Gene-Disease
Network (LHGDN)), termed ‘Literature’; (2) curated as-
sociations extracted from UniProt and the Comparative
Toxicogenomics Database (CTD), termed ‘Curated’; and
(3) associations obtained by text mining MEDLINE ab-
stracts using the BeFree system, termed ‘BeFree’, repre-
senting a subset of the literature associations. For each
association type we constructed a gold-standard association
matrix of disease proteins. Each association matrix included
diseases found in both the DisGeNET data source and in
our ground set of diseases and proteins available in DisGe-
NET and in the PPI network (see Data sources). Overall, we

obtained 5486 associations for 204 diseases in the ‘Curated’
matrix, 57,496 associations for 215 diseases in the ‘Litera-
ture’ matrix, and 45,576 associations for 194 diseases in the
‘BeFree’ matrix, with an average of 26.9, 267.4, and 234.9
associations per disease, respectively.
Next, to evaluate the biological attributes of the pre-

dicted modules, we examined their functional coherence
with respect to the Gene Ontology (GO) and their en-
richment with known biological pathways. To compare
the predicted modules to known biological pathways, we
downloaded pathway annotations from the Molecular
Signatures Database (MSigDB) [27], which integrates
pathway annotations from multiple data sources. Out of
4726 pathways, we focused on 674 pathways obtained
from Reactome [28], 186 pathways obtained from the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
[29], and 217 pathways obtained from BioCarta. For
each pathway we computed the hypergeometric enrich-
ment score for the SeedPS, KnownDisPS, and Modu-
lePS. Next, a false discovery rate (FDR) correction was
performed for each disease separately vs. all pathways.
To evaluate the coherence of the predicted modules with
the enriched pathways in the SeedPS or KnownDisPS,
we counted the number of proteins in the PredictedPS
which participated in an enriched pathway in the SeedPS
or KnownDisPS. We then performed hypergeometric en-
richment for the number of true hits in the space of Pre-
dictedPS, and the number of proteins participating in all
SeedPS or KnownDisPS enriched pathways.
GO [23] was used to examine the biological coherence

of our modules. The GO annotations were downloaded in

Fig. 2 Parameter settings. Final squared Euclidean distance obtained by the algorithm as a function of number of steps to perform at each
temperature (a), maximal temperature (b), temperature decrease rate alpha (c), and minimal temperature (d)
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March 2016. To avoid circularity, we eliminated annota-
tions inferred from physical interactions (evidence coded
inferred from physical interaction (IPI)). We used the R
package csbi [30] to calculate semantic similarity scores
between all protein pairs according to the Resnik similar-
ity metric [31]. The similarity score was calculated for bio-
logical process, molecular function, and cellular
component separately, resulting in three protein-similarity
matrices. To evaluate significance, we constructed for
each disease 100 random modules, starting from the same
disease SeedPS, and while keeping the module connected,
we randomly added or removed proteins until the module
size reached the predicted size by GLADIATOR for that
disease. Protein addition was done from the set of neigh-
bors available for the expanding module, while protein re-
moval was done by removing a random protein from the
module as well as all proteins which were disconnected
from the SeedPS as a result. Empirical p values were ob-
tained by comparing the average Resnik similarity of the
predicted ModulePS to the distribution score of the aver-
age Resnik similarity across the 100 random modules for
the corresponding disease.

Comparison to previous methods
We compare our method to two current state-of-the-art
methods: the DIAMOnD algorithm and HotNet2. DIA-
MOnD takes four inputs: network, seed proteins, desired
number of DIAMOnD proteins, and seed weights. We
evaluated DIAMOnD by using the same network and
two forms of seed proteins: one considering Known-
DisPS and the other considering only SeedPS. The seed
weight was set to the default value as suggested by the
authors. The number of desired proteins in each module
was set, for comparison purposes, to the number of Pre-
dictedPS obtained by GLADIATOR for that disease.
HotNet2 requires an initial heat score for all proteins

in the graph. Following Mazza et al. [13], we tested two
configurations of initial input heat for SeedPS, InitHeat
= 100 and 1000, and assigned a heat of 1 to all other
proteins. A subnetwork produced by HotNet2 was con-
sidered significant if the empirical p value reported for it
was smaller than 0.05. As only a small fraction of dis-
eases achieved significant modules (32 diseases for
InitHeat = 1000 and 17 for InitHeat = 100), we consid-
ered two variances of the HotNet2 solution, one consid-
ering only the significant modules predicted for a subset
of diseases and the second when considering the largest
obtained module for all diseases regardless of its signifi-
cance score. We thus obtained four variants of HotNet2,
termed HotNet2, Heat 1000/100, and Significant/All.
The average module size obtained by HotNet2 for in-

put InitHeat = 1000 was 72.5 and 144.4 proteins per
module, considering only significant modules and all
modules, respectively. When altering the initial input

heat to 100, the numbers increased to 118.5 and 197.4,
respectively. The enrichment scores reported in the Re-
sults section correspond to InitHeat = 1000. The com-
parison to all four variants of HotNet2 is given in
Additional file 4: Figure S1.

Data sources
Disease-gene associations were retrieved from Menche
et al. [14]; this work focuses on associations obtained
from the Mendelian Inheritance in Man (OMIM) [1]
and the Genome-Wide Association Study (GWAS) Cata-
log [2] databases, resulting in a corpus of 299 diseases.
Disease-related phenotypes and phenotypic similarity
were obtained from Zhou et al. [18]. Overall, disease-
phenotypic similarity was obtained for 1596 diseases
from which 223 existed in our dataset, enabling the ap-
plication of our method to this disease set. Finally, we
used a comprehensive set of protein-protein interactions
obtained from [14], which was compiled from 15 data
sources including regulatory interactions [32], binary
protein interactions (e.g., [33]), metabolic interactions
[34], complex interactions [35], kinase interactions [36],
signal interactions [37], and curated interactions (e.g.,
[38]); see [14] for full details.

Results
Overview of GLADIATOR
We devised a novel method for inferring disease mod-
ules for multiple diseases simultaneously. It is based on
inferring modules so that the resulting module similarity
is as close as possible to a given phenotypic disease-
disease similarity. To motivate this approach, we tested
the correlation between disease phenotypic similarity
and disease genetic similarity as reflected in our dataset.
Phenotypic similarity was retrieved from the human
symptoms-disease network [16] and represents the co-
sine similarity between the vectors of disease-associated
phenotypes (see “Methods”). The “genetic” module simi-
larity was defined using a Jaccard score, which is the
number of genes shared by the disease modules over the
size of the union of these sets. Disease-related proteins
(referred to throughout as Known Disease Protein Set,
or KnownDisPS) were obtained from the OMIM and
GWAS catalogs (Methods). The genetic similarity was
strongly correlated with the phenotypic similarity with a
Pearson correlation of 0.28 (p value = 0, see Additional
file 4: Figure S2).
Our method, named GLADIATOR (GLobal Approach

for DIsease AssociaTed mOdule Reconstruction), initial-
izes Seed Protein Sets (referred to as SeedPS) and ex-
pands them to complete modules by minimizing the
squared distance between the given disease phenotypic
similarity and the similarity of the corresponding mod-
ules in terms of their member proteins (see Fig. 1).
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SeedPS was set for each disease as a set of proteins
forming the largest connected component (LCC) out of
all the connected components spanned by the Known-
DisPS in the human PPI network. To traverse the search
space of potential disease-related proteins, we applied a
simulated annealing algorithm targeted at optimizing the
correlation between the phenotypic- and module-based
disease similarities. In each step of the annealing
process, we randomly selected a disease-protein pair to
either add or remove, while ensuring the connectivity of
the resulting output module (Methods). We confirmed
that this process converges to coherent modules by plot-
ting the hypergeometric enrichment score of the inter-
mediate modules as a function of the objective function
score as the annealing progresses. As shown in Fig. 3,
the enrichments of the predicted proteins increase as
the distance between module similarity and phenotypic
similarity decreases, reinforcing our approach.
The GLADIATOR algorithm inferred 223 disease

modules with an average Module Protein Set (referred
to as ModulePS) size of 47.3 proteins, a Pearson correl-
ation to phenotypic similarity of 0.68, and a squared Eu-
clidean distance of 291.5. This result shows great
improvement over the initial starting point of the mod-
ules, with an average module size of 18.1 and a Pearson
correlation of 0.2 to phenotypic similarity for the
SeedPS, and an average size of 64.3 proteins with a Pear-
son correlation of 0.28 for the KnownDisPS. The result-
ing disease modules are provided in Additional file 5.
Overall, GLADIATOR was able to expand SeedPS,

resulting in a total of 6497 new disease-protein associa-
tions for 2373 proteins and 216 diseases. The predicted
proteins vary in their topological properties such as de-
gree and centrality. The average degree of the predicted
proteins was higher than expected by chance, as was also
observed previously for known disease-associated pro-
teins [12]; see Additional file 4: Figure S3. The predicted
proteins were highly enriched in known disease-related
proteins and in relevant cellular pathways, as demon-
strated below.

GLADIATOR predicts known disease-related genes
In order to evaluate the correlation between disease
modules predicted by GLADIATOR and the current
knowledge base of disease-associated genes, we
employed two types of cross-validation tests and add-
itionally compared the predicted associations to an ex-
ternal data source of disease-gene association. First, we
examined the recovery rate of known disease proteins
from the OMIM and GWAS catalogs which were not
part of the LCCs that served as seed sets for the module
reconstruction (i.e., KnownDisPS excluding SeedPS).
Overall, the KnownDisPS for all diseases involves 14,338
known disease-protein associations, 4041 of which were
in SeedPS. Out of the 6497 associations predicted by
GLADIATOR, 301 true associations were recovered,
resulting in a highly significant hypergeometric p value
< 6e-186. Furthermore, when analyzed separately, 101 dis-
eases (45%) were enriched with known disease proteins
with a hypergeometric FDR-corrected p value < 0.05

Fig. 3 The objective function guides detection of modules enriched with known disease-related proteins. As the annealing process minimizes the
Euclidean distance between module similarity and phenotypic similarity, the disease modules become more enriched with disease-related pro-
teins, measured by the –log hypergeometric p value between associations predicted by GLADIATOR’s modules and gold-standard associations re-
trieved from DisGeNET
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(Methods). Additionally, a cross-validation test was ap-
plied to each disease separately by removing at least 10%
of its original SeedPS, while ensuring the seed’s connect-
ivity (Methods). Overall, 127 disease-gene associations
out of 640 associations removed (19.8%) were recovered
across all disease modules.
Next, we compared the novel Predicted Protein Set,

PredictedPS (i.e., ModulePS excluding SeedPS) to an ex-
ternal corpus of disease-gene associations extracted from
the DisGeNET database [26]. We constructed a gold-
standard disease-gene association matrix for the three
types of associations obtained from DisGeNET, termed
here as ‘Literature’, ‘Curated’, and ‘BeFree’ (Methods). We
computed hypergeometric enrichments for associations
predicted by GLADIATOR across all diseases vs. gold-
standard drug-gene associations (after removing
SeedPS). The predicted associations showed significant
enrichments with all association types (p values < 5e-491,
2e-543, and 5e-83 for ‘Literature’, ‘BeFree’, and ‘Curated’ re-
spectively). We further computed the per-disease enrich-
ment for each PredictedPS vs. the corresponding gold-
standard disease associations. We found that 34%, 7.5%,
and 34% of the predicted modules were significantly
enriched when compared against the ‘Literature’, ‘Cu-
rated’, and ‘BeFree’ associations, respectively (FDR-cor-
rected hypergeometric p value < 0.05). A total of 103 out
of 214 diseases (48%) with available gold-standard asso-
ciations were significantly enriched in at least one of the
association types. Overall, 151 modules (68%) were vali-
dated with gold-standard associations extracted from ei-
ther DisGeNET or the OMIM and GWAS catalogs
(KnownDisPS).

GLADIATOR predicts coherent modules
To evaluate the biological properties of the modules pre-
dicted by GLADIATOR, we examined both their func-
tional coherence with respect to the GO and their
enrichment with known biological pathways. First, we
calculated the average semantic similarity for each Mod-
ulePS in GO biological process (BP), molecular function
(MF), and cellular component (CC) categories. We com-
pared the resulting scores to the coherence scores of 100
random modules obtained by randomly expanding each
SeedPS to a connected module of the same size as the
original module (Methods). We found that 34.4%, 56.1%,
and 64.7% of the predicted modules were highly coher-
ent in CC, MF, and BP terms, respectively (empirical p
value < 0.05), with 70% of the modules exhibiting signifi-
cant coherence in at least one of the three GO branches.
For the second test, the ModulePS were tested against
each of the 1077 gold-standard pathways retrieved from
MSigDB using a hypergeometric test. We found that 216
disease modules (97%) predicted by GLADIATOR were
enriched in at least one known biological pathway (FDR

p value <0.05, corrected for modules and pathways) with
an average of 75 enriched pathways per ModulePS
(FDR-corrected p value < 0.05). To evaluate the signifi-
cance of these results, we constructed 100 randomized
models. Each such model was composed from a collec-
tion of random expansions of each disease SeedPS to a
connected module of the same size as the corresponding
GLADIATOR module. On average, 200 modules per
random model were enriched in at least one pathway
(FDR p value < 0.05) with an average of 22 enriched
pathways per module, resulting in an empirical p value
< 0.01 compared to GLADIATOR in both tests. We fur-
ther computed the enrichment of SeedPS and Known-
DisPS in MSigDB pathways, collecting the significantly
enriched pathways (FDR <0.05) in these protein sets to a
reference collection of pathways. The average number of
enriched pathways in SeedPS and KnownDisPS was 23.8
and 25.3 pathways, respectively, representing a fivefold-
to-fourfold decreased enrichment vs. the ModulePS. Fur-
thermore, 91% of the SeedPS reference pathways
remained enriched in the corresponding ModulePS.
Last, to evaluate the relevance of the novel predicted

proteins to disease etiology, we compared the pathway
annotation of PredictedPS to the reference pathways
enriched in the corresponding SeedPS (Methods). We
found that 77% of diseases’ PredictedPS were signifi-
cantly enriched in proteins participating in SeedPS refer-
ence pathways, validating their relevance. Moreover, 83%
of the PredictedPS were validated in a similar manner
when compared to the reference pathways enriched in
the KnownDisPS (Methods).

GLADIATOR outperforms existing methods
We compared our method to two recently published
state-of-the-art methods for predicting disease-
associated modules: DIAMOnD [15] and HotNet2 [16].
We applied the DIAMOnD algorithm to the set of dis-
eases, using either the SeedPS used by the GLADIATOR
algorithm or the entire set of KnownDisPS from which
the SeedPS was extracted. DIAMOnD iteratively adds
proteins to a set of seed proteins until the disease mod-
ule size meets a predefined target size. For comparison,
we fixed DIAMOnD’s target size parameter to the mod-
ule size obtained by the GLADIATOR algorithm for the
same disease. A module returned by the HotNet2 algo-
rithm was considered significant if the empirical p value
reported for its size was less than 0.05. Out of the 223
modules predicted by HotNet2 for all diseases, only 32
(14%) were reported as significant according to their em-
pirical p value. We thus considered two HotNet2 solu-
tions: one containing all 223 modules, regardless of their
empirical p value, and another containing only the 32
modules reported as significant by HotNet2 (Methods).
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We repeated all evaluation tests on the competing
methods. In cross-validation, DIAMOnD and HotNet2
were able to recover 13.3% and 9.9% of the removed associ-
ations, when starting from the same pruned SeedPS as
GLADIATOR, compared to 19.8% associations retrieved by
GLADIATOR. Moreover, accounting for KnownDisPS as-
sociations, DIAMOnD was able to recover only 24 associa-
tions out of its 6502 predicted associations (hypergeometric
p value of 0.89), while HotNet2 was able to recover 195 as-
sociations out of its 40,829 predicted associations (hyper-
geometric p value of 0.51) compared to 301 out of the 6497
associations predicted by GLADIATOR (hypergeometric p
value < 6e-186). Figure 4 depicts the performance of GLADI-
ATOR, HotNet2, and DIAMOnD with respect to gold-
standard disease-gene associations and biological pathway
enrichments. Evidently, GLADIATOR outperforms both
methods, obtaining the highest enrichment in all three as-
sociation types extracted from DisGeNET and retaining the
highest percentage of predicted modules enriched with bio-
logical pathways or known associations.

GLADIATOR predicts novel shared proteins among
phenotypically similar diseases
One desired property of GLADIATOR is its ability to
predict shared submodules among similar diseases.
Overall, 6617 disease pairs (out of 24,753 pairs) from
our dataset have a positive phenotypic similarity score.
Out of these, 3147 disease pairs showed genetic similar-
ity (i.e., shared genes) in their KnownDisPS, and only
884 pairs showed genetic similarity in their SeedPS.
GLADIATOR was able to recover genetic similarity for
5652 disease pairs out of the phenotypically similar ones.
Additional file 4: Figure S2 displays the correlation be-
tween genetic similarity and phenotypic similarity before
and after running GLADIATOR.
Disease module similarity assigned to a disease pair

which did not exhibit genetic similarity in its SeedPS re-
sults from introducing previously unknown shared pro-
teins to two similar diseases or by adding a novel
protein to a disease, where it is already known to associ-
ate with a similar disease. Doing so, GLADIATOR ex-
panded the SeedPS with 1031 shared proteins, 105 of
which were not previously associated with any disease.
The histogram of associated diseases per protein is
shown in Additional file 4: Figure S3c. Out of the 301
known disease proteins recovered by GLADIATOR, 284
were recovered by assigning a seed protein from one dis-
ease to a phenotypically similar disease. For example,
oligodendrocyte transcription factor (OLIG2) has a
known role in both leukemia and in lymphatic diseases,
which have a phenotypic similarity of 0.6. OLIG2 was
part of the SeedPS of leukemia; however, it was not part
of the LCC that served as SeedPS in lymphatic diseases.
OLIG2 was predicted by GLADIATOR to participate in

the lymphatic diseases module along with 29 more pro-
teins, resulting in a ModulePS of size 103. In the final
predicted ModulePS, lymphatic diseases and leukemia
share 48 proteins, compared to 67 in their KnownDisPS
and 19 in their SeedPS.
As another example, we analyzed a common protein

predicted to have a role in both autoimmune diseases
and blood platelet disorders, which have a phenotypic
similarity of 0.7. These two diseases, which share no
proteins in their SeedPS and only two proteins in their
KnownDisPS, were assigned with 30 shared proteins in
their ModulePS, 14 of which were not previously known
to associate with any of the diseases. Fibrinogen gamma
chain (FGG) is one example of such a protein. FGG is a
blood-borne glycoprotein which upon vascular injury is
cleaved to form fibrin. Both fibrinogen and its cleavage
product fibrin have multiple functions in blood clotting,
including platelet aggregation [39, 40]. Specifically, the
binding of fibrinogen through its gamma chain (FGG)
allows platelet aggregation and wound healing. Varia-
tions in this binding site were shown to contribute to
disorders such as thrombosis and cardiovascular disease
[41]. Furthermore, inhibition of gamma chain function
has been shown to interfere with multiple fibrinogen ac-
tivities, including platelet adhesion and platelet-mediated
clot retraction [41]. Recently it was shown that in several
autoimmune neurodegenerative diseases, such as mul-
tiple sclerosis, disruption in the blood-brain barrier al-
lows fibrinogen to contact the white matter, which forms
autoimmunogenic fibrin plaques [42]. Additionally, it
was shown that fibrinogen promotes autoimmunity via
chemokine release [43] and that an abnormal variant in
fibrinogen occurs in patients with certain types of auto-
immune diseases [44].

Case analysis: the hyperinsulinism module
After establishing the utility of our method across differ-
ent diseases, we expanded the analysis on a specific dis-
ease module, focusing on hyperinsulinism, a medical
state in which the levels of insulin in the blood are above
the norm. Only one protein in OMIM is known to be re-
lated to hyperinsulinism, while 44 proteins are reported
in the GWAS Catalog. Out of these 45 proteins, 26 were
found in the PPI network, and only 3 were initially con-
nected and served as SeedPS. GLADIATOR expanded
this seed to a module of 29 proteins, from which 2 were
recovered from its set of KnownDisPS (Fig. 5). Compar-
ing the ModulePS of hyperinsulinism to known path-
ways retrieved from MSigDB resulted in 10 enriched
pathways (FDR-corrected p value < 0.05), 7 of which
are also enriched in the PredictedPS, while only 4 are
enriched in its SeedPS. In the following section, we
focus on one of these pathways and show how it af-
fects disease pathogenicity, by analyzing proteins from
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Fig. 4 (See legend on next page.)
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this pathway predicted by GLADIATOR to associate
with hyperinsulinism, and we further analyze novel
suggested genes.
The peroxisome proliferator-activated receptor alpha

(PPARA) pathway (BioCarta) was enriched in the pre-
dicted ModulePS, with 6 out of its 60 proteins partici-
pating in the predicted hyperinsulinism module (see
Fig. 5). PPARA is a nuclear transcription factor and a
major regulator of lipid metabolism; it regulates the ex-
pression of genes involved in lipoprotein metabolism,
raising the levels of apolipoprotein A1 (APOA1), a major
apolipoprotein of high-density lipoprotein (HDL) [45].
APOA1, predicted by GLADIATOR to participate in the
hyperinsulinism module, is well studied in the context of
insulin and glucose regulation. It has been long known
that APOA1 is a significant contributor to the plasma
insulin concentration in men [46], and an inverse correl-
ation between insulin released during an oral glucose
tolerance test and APOA1 concentration was observed
[47]. Moreover, polymorphism in the APOA1-C3-A4
gene cluster was associated with hyperlipidemia [48] and
fasting insulin levels [49]. GLADIATOR also predicted
APOB, another apolipoprotein, to participate in the

disease module. It was shown that the level of APOB in
plasma is a good predictor for both glucose level and in-
cident type 2 diabetes. Moreover, the APOA1/HDL chol-
esterol ratio was the strongest predictor of incident type
2 diabetes [50], and APOB level is significantly corre-
lated with plasma insulin level in women [46]. Another
key protein in the PPARA pathway is the transcription
factor specificity protein 1 (SP1). SP1, predicted by
GLADIATOR, is involved in several mechanisms alter-
ing gene activity in response to insulin [51]. Moreover, it
was shown that insulin regulates the subcellular
localization, stability, and activation level of SP1 [52].
We noticed that another member of the SP family, SP3,
is also predicted by GLADIATOR to participate in the
hyperinsulinism module, and found that a recent
study suggests a new mechanism involving both SP1
and SP3 in mediating insulin activation of glucokinase
transcription [53]. Last, we found that the retinoblast-
oma protein RB1, which also participates in the
PPARA pathway, is associated with insulin resistance,
obesity, and metabolic disturbances in mice [54]. We
thus suggest that dysregulation of the PPARA path-
way may promote hyperinsulinism.

Fig. 5 The disease module predicted by GLADIATOR for hyperinsulinism. Proteins participating in the enriched peroxisome proliferator-activated
receptor alpha (PPARA) pathway are colored accordingly. Proteins participating in SeedPS or KnownDisPS are marked as hexagons and
quadrangles, respectively

(See figure on previous page.)
Fig. 4 GLADIATOR outperforms previous methods. Enrichment scores (–log(hypergeometric p value)) for disease-gene associations extracted from
DisGeNET vs. all predicted disease-gene associations (a); percentage of enriched modules vs. corresponding disease gold-standard associations extracted
from DisGeNET (b); percentage of enriched modules vs. known pathways extracted from MSigDB (c). GLADIATOR predictions were compared to the
modules obtained from the DIAMOnD algorithm, using both the full list of disease-gene associations (DIAMOnD-Full seed) and the largest connected
component obtained from this list, which served as the seed for our algorithm (DIAMOnD-LCC), and to the largest modules obtained from the HotNet2
algorithm (HotNet2-All) and a subset of these modules reported as significant by the HotNet2 algorithm (HotNet2-Significant)
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Discussion
GLADIATOR predicts disease modules for hundreds of
diseases simultaneously based on a protein interaction
network and disease phenotypic similarity. The predicted
modules were compared with external data sources,
showing a strong correlation with current knowledge of
disease-related genes. Moreover, we tested the coherence
of our modules by comparing them both to existing bio-
logical pathways and to GO-related terms, obtaining
high enrichment and similarity scores. We provided a
detailed analysis of the shared molecular mechanism of
similar diseases and further investigated the hyperinsu-
linism module predicted by GLADIATOR, demonstrat-
ing its pathophysiological relevance and suggesting
possible mechanisms underlying this disease.
Previous module-finding methods were gene-centric

or disease-centric and lacked information on the cross-
talk between different disease components. In contrast,
the module-centric approach presented here provides a
wider, integrated view. Given that many human diseases
share mechanisms and phenotypes, we hypothesize that
knowledge obtained for one can be borrowed to infer
mechanisms for other similar diseases. GLADIATOR
provides not only predicted modules but also the inter-
relation between disease modules, in the form of shared
submodules, providing insights into the etiology and
phenotypic mechanisms of diseases. We demonstrate
that indeed as the correlation between module similarity
and the phenotypic similarity increases, the modules be-
come more predictive to known disease-related proteins,
supporting the assumption that phenotypically similar
diseases share similar mechanisms.
In this endeavor we focused on a set of predicted

modules viewed as complete disease pathways. However,
running GLADIATOR multiple times under different
parameter configurations may yield different predicted
modules in each run. These modules can then be used
to rank proteins according to the percentage of solutions
in which they are associated with a disease, thus increas-
ing the robustness of the predictions for both disease-
related protein and phenotypic-related submodules. Last,
this study focused on finding one connected module for
each disease. A future study can expand the understand-
ing and cataloging of diseases mechanisms by utilizing
our method as a starting point for multiple pathway pre-
dictions per disease.

Conclusions
We have taken a global approach for predicting hun-
dreds of disease modules simultaneously based on the
phenotypic similarity between diseases. Our method uti-
lizes the protein interaction network to find connected
regions that form coherent modules which mediate dis-
ease pathology. The analysis of the resulting modules

demonstrated that borrowing knowledge from one dis-
ease can contribute to the molecular understanding of
another disease.

Additional files
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Additional file 3: GLADIATOR code. (PY 16 kb)

Additional file 4: Supplementary figures and legends. Figure S1.
Comparison to HotNet2 variants. Enrichment scores for disease-gene
associations extracted from DisGeNet vs. all predicted disease-gene
associations (a). Precentage of enriched modules vs. corresponding
disease gold standard associations extracted from DisGeNet (b). Precentage
of enriched modules vs. known pathways extracted from MSigDB (c).
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solutions corresponding to two different Heat parameters of 1000
and 100, and two significance thresholds for module of 0.05 and 1.
Figure S2. Correlation between phenotypic and genetic similarity.
Phenotypic similarity vs. Jaccard-based similarity obtained from known
diseases associated proteins (KnownDisPS) (a). Seed proteins used by
GLADIATOR (SeedPS) (b). Modules predicted by GLADIATOR (ModulePS)
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