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Abstract

Sequence-based comparisons have been the workhorse of bioinformatics for the past four decades, furthering
our understanding of gene function and evolution. Over the last decade, a plethora of technologies have
matured for measuring Protein–protein interactions (PPIs) at large scale, yielding comprehensive PPI
networks for over ten species. In this chapter, we review methods for harnessing PPI networks to improve
the detection of orthologous proteins across species. In particular, we focus on pairwise global network
alignment methods that aim to find a mapping between the networks of two species that maximizes the
sequence and interaction similarities betweenmatched nodes.We further suggest a novel evolutionary-based
global alignment algorithm. We then compare the different methods on a yeast-fly-worm benchmark,
discuss their performance differences, and conclude with open directions for future research.
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1. Introduction

Over the last decade, high-throughput techniques such as yeast
two-hybrid assays (1) and co-immunoprecipitation experiments (2),
have allowed theconstructionof large-scalenetworksofProtein–protein
interactions (PPIs) for multiple species. Comparative analyses of
these networks have greatly enhanced our understanding of pro-
tein function and evolution.

Analogously to the sequence comparison domain, two main
concepts have been introduced in the network comparison context:
local network alignment and global network alignment. The first
considers local regions of the network, aiming to identify small
subnetworks that are conserved across two or more species (where
conservation is measured in terms of both sequence and interaction
patterns). Local alignment algorithms have been utilized to detect
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protein pathways (3) and complexes that are conserved across
multiple species (4–6), to predict protein function, and to infer
novel PPIs (4).

In global network alignment (GNA), the goal is to associate
proteins from two or more species in a global manner so as to
maximize the rate of sequence and interaction conservation across
the aligned networks. In its simplest form, the problem calls for
identifying a 1-1 mapping between the proteins of two species
so as to optimize some conservation criterion. Extensions of the
problem consider multiple networks and many-to-many (rather
than 1-1) mappings. Such analyses assist in identifying (functional)
orthologous proteins and orthology families (7) with applications
to predicting protein function and interaction. They aim to improve
upon sequence-only methods that partition proteins into ortholo-
gous groups based on sequence-similarity computations (8–10).

GNA methods can be classified into two main categories. The
first category contains matching methods that explicitly search for a
one-to-one mapping that maximizes a suitable scoring function.
The scoring function favors mappings that conserve sequence and
interaction. Methods in this category include the integer linear
programming (ILP) method of (11) and a greedy gradient ascent
method of (12). The second category includes ranking methods
that consider all possible pairs of interspecies proteins that are
sufficiently sequence-similar, and rank them according to their
sequence and topological similarity. These ranks are then used to
derive a 1-1 mapping. Methods in this category include a Markov
random field (MRF) approach (13), the IsoRank method that is
based on Google’s Page Rank (7), and a diffusion-based method—
hybrid RankProp (14). In addition, there are several very recent
ranking approaches that do not use sequence-similarity information
at all (15, 16).

Here, we aim to propose a third, evolutionary perspective on
global alignment by designing a GNA algorithm that is based on a
probabilisticmodel of network evolution. The evolution of a network
is described in terms of four basic events: gene duplication, gene loss,
edge attachment, and edge detachment. This model allows the com-
putation of the probability of observing extant networks given the
ancestral network they originated from; bymaximizing this probabil-
ity, one obtains the most likely ancestor–descendant relations, which
naturally translate into a network alignment.

This chapter is organized as follows: Subheading 3 reviews
GNA methods that are based on graph matching. Subheading 4
presents the ranking-based methods. Subheading 5 describes in
detail the probabilistic model of evolution and the proposed
alignment method. The different approaches are compared in
Subheading 6. Finally, Subheading 7 gives a brief summary and
discusses future research directions.
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2. Preliminaries
and Problem
Definition

We focus the presentation onmethods for pairwise global alignment,
where the input consists of two networks and possibly sequence-
similarity information between their nodes, and the output is a corre-
spondence, commonly one-to-one, between the nodes of the two
networks.

A protein networkG¼(V, E) has a set Vof nodes, corresponding
to proteins, and a set E of edges, corresponding to PPIs. For a
node i ∈ V , we denote its set of (direct) neighbors by N(i). Let
G1 ¼ (V 1, E1) and G2 ¼ (V 2, E2) be the two networks to be
aligned. Let R � V 1 �V 2 be a compatibility relation between
proteins of the two networks, representing pairs of proteins that
are sufficiently sequence-similar. A many-to-many correspondence
that is consistent with R is any subset R ∗ � R. Under such a
correspondence, we say that an edge (u, v) in one of the networks
is conserved if there exists an edge (u0, u0) in the other network
such that (u, u0), (u, u0) ∈ R ∗ or (u0, u), (u0, u) ∈ R ∗ . We let
T(G1, G2) ¼ {(u, u0, u, u0): (u, u), (u0, u0) ∈ R, (u, u0) ∈E1, (u, u0)
∈ E2} denote the set of all quadruples of nodes that induce a
conserved interaction.

In its simplest formulation, the alignment problem is defined as
the problemof finding an injective function (one-to-onemapping)’:
V 1 ! V 2 such that (i) it is consistent withR and (ii) itmaximizes the
number of conserved interactions. More elaborate formulations of
the problem can relax the 1-1 mapping to a many-to-many mapping
and possibly define an alignment score to be optimized that combines
the amount of interaction conservation and the sequence similarity of
thematched nodes. The definition of a conserved interaction can also
be made more elaborate by taking into account the reliability of the
pertaining interactions and by allowing “gapped” interactions, i.e., a
directed interaction in one network is matched to two nodes that are
of distance 2 in the other network. We defer the discussion of these
extensions and the specific scoring functions used to thenext sections,
where the different GNA approaches are described.

The problem of finding the optimal one-to-one alignment
between two networks, as defined above, can be shown to be
NP-hard by reduction from maximum common subgraph (11).
Consequently, an efficient algorithm cannot be designed for the
general case. However, under certain relaxations the problem can
be solved optimally on current data sets in acceptable time.

3. Graph Matching
Methods

In this section, we describe GNA methods that look for an explicit
1-1 correspondence between the two compared networks. The first
method, by Klau, is based on reformulating the alignment problem
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as an ILP (11). The variables of the program represent the 1-1
mapping sought. Specifically, for each pair (u, v) ∈ R, the author
defines a binary variable xuv denoting whether u and v are matched
(xu, v ¼ 1) in the alignment or not (xu, v ¼ 0). The ILP formulation
is as follows:

max
X

ðu;u0;u;u0Þ2T ðG1;G2Þ
xu;u � xu0;u0 þ

X
ðu;uÞ2R

sðu; vÞ � xu;u

s:t:X
u2V 1

xu;u � 1 8u 2 V 2

X
u2V 2

xu;u � 1 8u 2 V 1;

where s(u, v) denotes the sequence similarity of u and v. The
objective function can be linearized in an obvious way by introdu-
cing binary variables tu, u0, u, u0 ¼ xu, u �xu0, u0 (for (u, u0, u, u0) ∈
T(G1, G2)) with appropriate constraints.

While the author uses optimization techniques, such as
Lagrangian decomposition and Lagrangian relaxation, to solve
this problem, an optimum solution for restricted instances can be
found in reasonable time as we report in Subheading 6. We note
that if V 1\V 2 is first partitioned into sufficiently small orthology
clusters (using, e.g., the Inparanoid algorithm (8)) and if the graph
of potential conserved interactions across clusters has no loops,
then the optimum alignment can be found in polynomial time via
a dynamic programming algorithm (12).

In the general case, the computation of optimal solutions is too
costly, hence the use of heuristics is necessary. Vert et al. (12)
suggested a gradient ascent approach. It starts from a feasible
solution and computes a sequence of moves in the direction of
the objective’s gradient until converging to a local maximum.
Denoting the adjacency matrices of the two graphs by A1 and A2,
respectively, and assuming that jV 1j ¼ jV 2j ¼ n (otherwise, add
dummy vertices), the goal of the optimization is to find a permuta-
tion matrix P that maximizes a weighted sum of the number J(P) of
conserved interactions and a sequence similarity term S(P). In

matrix notation, J ðPÞ ¼ 1
2 trðAT

1 PA2P
T Þ and its gradient is

AT
1 PA2; SP ¼ trðPCÞ where C, the matrix of sequence-similarity

scores, is its gradient.
The initial solution P0 is given by sequence similarity alone,

using a maximum matching algorithm. At each step, the algorithm
employs a maximum matching computation to update the current
permutation in the direction of the gradient:

Pnþ1 ¼ argmax
P

trð½lAT
1 PnA2 þ ð1� lÞC�PÞ;

where 0 � l � 1 is a weighting constant.
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4. Methods Based
on Ranking

A second class of methods is based on assigning a score to each pair
of compatible nodes and only at a second step choosing a global
pairing of the nodes. The latter pairing is effectively disambiguating
the compatibility relations, pinpointing the “best” 1-1 mapping.
The disambiguation can be achieved by computing a maximum
weighted bipartite matching or via simple greedy strategies. The
difference between the various methods lies mainly in the first,
scoring phase.

The first method for GNA has been proposed by Bandyopad-
hyay et al. (13) and uses a ranking that is based on a MRF model. It
starts by building an alignment graph, where the nodes represent
candidate pairs of (sequence-similar) proteins and the edges repre-
sent potentially conserved interactions. Each node in the alignment
graph is associated with a binary state z indicating if that node
represents a true orthology relation or not. The state values are
modeled using aMRF. TheMRFmodel assumes that for each node
of the alignment graph j ¼ (u, u), the probability that j represents a
true pair of orthologs (zj ¼ 1) depends only on the states of its
neighbors (N(j)), and the dependence is through a logistic
function:

Pðzj jzN ðjÞÞ ¼ 1

1þ e�a�b�cðjÞ ;

where a and b are parameters and c(j) is the conservation index of j,
defined as twice the number of conserved interactions between j
and neighbors of j whose states are pre-assigned with value 1 (true
orthologs), divided by the total number of interactions involving u
and u across the two species. The inference of the states of the nodes
is conducted using Gibbs sampling (17), yielding orthology prob-
abilities for every node. These estimated probabilities are used to
disambiguate the pairing.

Singh et al. (7) proposed an alignment method (IsoRank) that
is based on Google’s PageRank algorithm. As for MRF, the
method first computes a score for each candidate pair of orthologs
and then uses the scores for disambiguating the pairing. The score
R(i, j) of the pair (i, j) ∈ V 1 �V 2 is a weighted average of the
scores of its neighboring pairs (assuming that all node pairings are
allowed):

Rði;jÞ ¼
X

u2N ðiÞ

X
v2N ðjÞ

Rðu;vÞ
jN ðuÞjjN ðvÞj :
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The authors translate the problem of finding R into an eigen-
vector problem by expressing it in matrix form as R ¼ AR where A
is defined as:

Aði;jÞðu;vÞ ¼
1

jN ðuÞjjN ðvÞj if ði;uÞ 2 E1; ðj ; vÞ 2 E2

0 otherwise:

(

Under this formulation, theproblemreduces tofinding thedominant
eigenvector of A, which is efficiently solved using the power
method. To account for sequence similarity, the objective is
modified as R ¼ ½aA þ ð1� aÞB1T �R where B is the vector of
normalized bit scores and 1T is an all-1 row vector.

Yosef et al. (14) devised the hybrid RankProp algorithm. It con-
siders one “query node” of the first network at a time and ranks the
nodes of the second network with respect to it by using a diffusion
procedure. To this end, they constructed a composite network with
two types of edges: PPI and sequence similarity. The query node is
assigned a score of 1.0 that is continually pumped to the other
nodes through the network’s edges. The scores that the nodes
assume after the diffusion process converges induce a ranked list
of candidates for matching the query node. In detail, at step t + 1,
the score of a node i with respect to a query q is given by:

Siðt þ 1Þ ¼ Wqi þ a
X

j2N ðiÞnfqg
WjiSj ðtÞ;

wherea is a parameter controlling the diffusion rate andW is a weight
matrix that represents the composite network—it is the normalized
confidence of an interaction for PPI edges and a normalized
sequence similarity for sequence-similarity edges. Finally, to make
the score symmetric, proteins from both networks are queried and
each pair is assigned the average score of its two associated queries.

5. Network
Evolution-Based
Alignment

In this section, we present a new alignment method, called PME,
that is based on a probabilistic model of evolution. PME aims to
reconstruct the most probable ancestral network that gave rise to
the observed extant networks. Such a network induces a many-to-
many alignment in the descending networks by associating groups
of proteins in the two input networks with the corresponding
ancestral proteins. The method is based on a probabilistic model
of the evolutionary dynamics of a network, that supports four kinds
of evolutionary events: link attachment, link detachment, gene
duplication and gene loss (18).

An alignment between two networks G1 and G2 is defined by an
ancestral networkG0¼ (V 0, E0) and two functions f1 :V 1 ! V 0 and
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f2 : V 2 ! V 0 which map the nodes of G1 and G2 into the nodes of
G0 (ancestral proteins). The score of an alignmentA¼ (G0, f1, f2) is
the product of the prior probability for A and the likelihood of
observing G1 and G2 given A. We describe the probability computa-
tions in detail below.

The probability P(A) is the product of two terms that consider
the prior probability of observing G0 and the probability of the
pattern of gene duplications and losses implied by f1 and f2. For the
former, we adopt a simple Erdős–Rényi model where edges occur
independently with some constant probability PE. For the latter,
we focus on gene duplications (as in (18)), assuming that gene
duplication events occur independently with some fixed probability
Pd. For computational efficiency, we disallow gene losses, although
those could be easily incorporated to the model in a similar manner.
Formally, the two terms are as follows:

l A priori ancestral network probability:Y
ðu;uÞ62E0

ð1� PEÞ �
Y

ðu;uÞ2E0

PE :

l Gene duplication (i ∈ { 1, 2}):Y
u2V 0

f �1
i ðuÞ6¼f

P
jf �1

i ðuÞj�1

d �
Y
u2V 0

jf �1
i ðuÞj�1

ð1� PdÞ:

The probability P(GijA) of observing the networkGi, i ∈ {1, 2}
is given by the product of two factors that consider edge attachment
and edge detachment events, assuming these events occur indepen-
dently with probabilities PA and PD, respectively.

l Edge attachment:

Y
ðu;uÞ62E0

Y
ðu0;u0Þ62Ei

f iðu0Þ¼u;f iðv0Þ¼u

ð1� PAÞ �
Y

ðu0;u0Þ2Ei

f iðu0Þ¼u;f iðv0Þ¼u

PA

0
BBBB@

1
CCCCA:

l Edge detachment:

Y
ðu;uÞ2E0

Y
ðu0;u0Þ2Ei

f iðu0Þ¼u;f iðu0Þ¼u

ð1� PDÞ �
Y

ðu0;u0Þ62Ei

f iðu0Þ¼u;f iðu0Þ¼u

PD

0
BBBB@

1
CCCCA:

Our goal is to find an alignment that maximizes P(G1, G2, A)
¼ P(A) �P(G1jA) �P(G2jA). In the following, we provide an ILP
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formulation of the problem. Consider a set of n hypothetical nodes
of the ancestral network, where n ¼ jV 1j þ jV 2j is the maximal
number of nodes in the ancestral network. With each node, we
associate a binary variable ziwhich is 1 if and only if node i has some
descendant node in the extant networks. With each vertex pair
(i, j), we associate a binary variable tij which is 1 if and only if
nodes i and j interact with each other in the ancestral network. To
model the mappings f1 and f2, we define binary variables xiu and yiv,
where xiu ¼ 1 (yiu ¼ 1) if and only if f1(u) ¼ i (f2(u) ¼ i). Finally, in
order to consider gene duplications, we add binary variables di

j,
j ∈ {1, 2} such that di

j ¼ 0 if and only if i has more than one
descendant in Gj.

5.1. The ILP Formulation The constraints of the ILP are defined as follows:

t ij � zi; zj ; 1 � i<j � n

to allow edges only between “true” vertices of the ancestral network.

Xn
i¼1

xiu ¼ 1; u 2 V 1;

Xn
i¼1

yiu ¼ 1; 2 V 2

to model the fact that each protein descends from a single ancestor.X
u2V 1

xiu � zi; 1 � i � n;

X
u2V 2

yiu � zi; 1 � i � n;

xiu � zi; 1 � i � n; u 2 V 1;

yiu � zi; 1 � i;� n; u 2 V 2

tomodel the fact that each true node of the ancestral network (zi¼ 1)
must have at least one descendant in each network and each dummy
node of the ancestral network (zi ¼ 0) cannot have any descendants.

d1
i � 1þ zi � xiu � xiu; 1 � i � n; u; u 2 V 1;

d1
i � 1þ zi �

X
u2V 1

xiu; 1 � i � n;

d2
i � 1þ zi � yiu � yiu; 1 � i � n; u; u 2 V 2;

d2
i � 1þ zi �

X
u2V 2

yiu; 1 � i � n

to impose that nodes that have only one descendant have not
undergone a duplication event. Finally, we add the integer con-
straints:

xiu; yiu; zi; t ij ; d
1
i ; d

2
i 2 f0; 1g 1 � i; j � n;u 2 V 1; u 2 V 2:
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The objective is to maximize P(G1, G2, A) or, equivalently, to
maximize logP(G1, G2, A). The latter is a sum of four terms:

l A priori ancestral network probability:

’E ¼
X
i<j

logðPEÞ � t ij þ logð1� PEÞ � ð1� t ij Þ
� �

:

l Gene duplication (for simplicity, we specify only the sub-term
involving G1):

’d ¼
Xn
i¼1

X
u2V 1

xiu � zi

 !
� logðPdÞ þ

Xn
i¼1

logð1� PdÞ � d1
i :

l Edge attachment (for simplicity, we specify only the sub-term
involving G1):

’A ¼
X
i<j

ð1� t ij Þ �
X

ðu;uÞ62E1

xiu � xju � logð1� PAÞ
0
@

þ
X

ðu;uÞ2E1

xiu � xju � logðPAÞ
1
A:

l Edge detachment (for simplicity, we specify only the sub-term
involving G1):

’D ¼
X
i<j

t ij �
X

ðu;uÞ2E1

xiu � xju � logð1� PDÞ
0
@

þ
X

ðu;uÞ62E1

xiu � xju � logðPDÞ
1
A:

In order tomake the problem linear, we introduce the following
additional binary variables with appropriate constraints: pijuu ¼ tij �
xiu �xju and qijuv ¼ ð1� t ij Þ � xiu � xju.

5.2. Refinements

and Variable

Reduction

In some cases, there are not enough interactions to support a
match. To avoid an arbitrary choice among identically scored solu-
tions, we choose the solution that agrees best with the sequence-
similarity information. To this end, we add a small penalty to each
ancestral-descendant connection whose value is 10�8 � logðS þ 1Þ,
where S is the bit score of the two proteins.

Although PME naturally produces a many-to-many correspon-
dencebetweenorthologous proteins,we focus here on its reduction to
a one-to-one mapping to facilitate its comparison to other methods.
To this end,we rank all pairs of inter-species proteins that are predicted
to descend from the same common ancestor. For any potentially
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matched pair (u, v), with f ðuÞ ¼ f ðuÞ ¼ i, the score of (u, u) is given
by the score of the global alignment after removing all the nodes that
descend from i except for u and v (i.e., forcing the alignment tomatch
u and u). These scores are then fed to a maximum bipartite matching
computation to construct a 1-1 alignment.

The sequence-similarity information allows us to greatly reduce
the number of variables considered. We start with a set V¼ V 1 \V2

of hypothetical ancestral nodes. We build two relations R1 � V �V

1 and R2 � V �V 2 as follows: For each i ∈ V , we add to R1 all
pairs (i, u) with u ∈ V 1 such as u is sequence-similar to i and
u � i. Analogously, we add to R2 all pairs (i, u) with v ∈ V 2 such
that u is sequence-similar to i and u � i. The search is then
restricted to alignments whose ancestor–descendant pairs are in
R1 \R2.

The relations R1 and R2 also allow us to reduce the number of
possible edges of the ancestral network. Consider a pair of nodes
(u, v) of the ancestral network such that all possible pairs of des-
cendants of these nodes span non-edges. Clearly, in the optimal
solution, (u, v) will be a non-edge. Since the networks are usually
very sparse, this simple rule greatly reduces the number of variables
required to model the topology of the ancestral network and,
consequently, greatly saves in variables introduced by the lineariza-
tion. Although non-edges contribute to the objective function, we
can modify the latter so that the contribution of non-edges is zero
(by adding � logð1� PEÞ to all ancestral vertex pairs). In a similar
manner, we can reduce the number of ancestor–descendant pairs
that are considered in the computation of edge attachment events.

6. Experimental
Results

To compare the different GNA methods, we used the benchmark
in (13), which focuses on the pairwise global alignment of the PPI
networks of yeast and fly, starting from an initial clustering of the
proteins into orthology families formed by the Inparanoid algo-
rithm (8). In addition, we compared, under the same setting, the
alignments of each of these networks to a PPI network of worm.
The worm network was constructed by collecting data from
recently published papers and public databases (19–21) and
spanned 2,967 proteins and 4,852 interactions. The yeast network
contained 4,393 proteins and 14,318 interactions; the fly network
contained 7,042 proteins and 20,719 interactions. We considered
2,244 Inparanoid groups between yeast and fly, 1,833 groups
between yeast and worm, and 4,228 groups between worm and fly.

We included in the comparison the following methods:
ILP (11), MRF (13), IsoRank (7) and PME (Subheading 5).
We did not consider gradient ascent (12) and hybrid RankProp (14)
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in our tests. Gradient ascent tries to approximate the same objective
as the ILPmethod, hence the latter should be superior to it. Hybrid
RankProp was shown by its authors to be equivalent in perfor-
mance to the original RankProp method, which is based on
sequence only.

We implemented ILP, IsoRank, and PME in Matlab and used
ILOG CPLEX as an ILP solver. For MRF, we report on the results
published in the original paper (13). The parameter that balance
topology versus sequence similarity was set as c ¼ 0. 01 for both
IsoRank and ILP in order to give higher weight to topology. For
PME, we used the following settings: The probability of attach-
ment and detachment was set so as to obtain the same global rate of
attachments and detachments estimated from the unambiguous
clusters of Inparanoid (PA ¼ 0. 0026; PD ¼ 0. 9617). The proba-
bility of an edge in the ancestral network was estimated from the
density of the two networks (PE ¼ 3:32e�4). The probability of
duplication was set to Pd ¼ 0. 03 with the results being robust to a
wide range of values for this parameter (in the range 10 � 4–0.5).
All the experiments were executed on a DELL server with eight
processors Quad-Core AMD Opteron and 16 GB RAM, OS
Ubuntu 9.04.

To evaluate the functional coherency of the aligned proteins,
we considered two measures: (1) the number of pairs that are
classified as orthologs by HomoloGene (22), considered as a gold
standard; and (2) a score based on the gene ontology (GO) (23),
focusing on the biological process and molecular function
branches. To evaluate the significance of the number of Homolo-
Gene pairs that were matched, we computed a hypergeometric
p-value, which measures the probability that a random set of
matches (of the same size as our alignment and constrained to the
Inparanoid clusters) would yield the observed overlap or higher.
The GO score is computed as the average GO similarity of all
matched pairs. We employed the Resnik similarity among terms
and considered as a similarity between proteins the value of the best
matching between their terms (24). We restricted our analysis to
the set of ambiguous clusters, i.e., clusters that contain more than
one protein for at least one of the species.

The results for yeast-fly, yeast-worm and fly-worm are reported
in Table 1. Evidently, all methods perform similarly. ILP and Iso-
Rank always attain the maximum number of conserved interac-
tions. This is expected for ILP and suggests that IsoRank is a
good heuristic for maximizing the number of conserved interac-
tions. ILP also achieves the maximum number of HomoloGene
pairs, except in the yeast-worm alignment, where it is outperformed
by IsoRank. With respect to the GO measures, ILP attains the
highest scores in most cases, with PME performing better on the
molecular function measure.
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7. Conclusions

In this chapter, we present the GNA problem and discuss extant
methods for solving it. A guiding principle in most of these meth-
ods is the maximization of conserved interactions across the two
aligned networks. We further present a novel strategy to the prob-
lem that is based on a probabilistic model of protein network
evolution. We test the methods on a yeast-fly-worm benchmark
and find that all methods perform similarly on current networks
when starting from a defined set of orthology groups.

We believe that future research in this domain should cover
both the development of better alignment methods and the bench-
marking of such methods. While current methods do reasonably
well with respect to maximizing the number of conserved interac-
tions, evolutionary considerations are still scarcely used and could
potentially guide the alignment in a more refined way, particularly
when comparing species that are less distant apart. Additional
developments could include going beyond 1-1 alignments and
pairwise comparisons (25). An orthogonal axis is the development
of gold standard alignments. Current benchmarks such as the
Homologene collection are mostly sequence-driven and, thus,
potentially lead to biased assessment of methods. In summary, we
expect GNA methods to have greater impact as protein networks
and orthology information continue to accumulate.

Table 1
A comparison of GNA methods on a yeast-fly-worm benchmark

Dataset Method
Total
pairs

Conserved
interactions

HomoloGene GO Sim

Pairs % P-value (MF) (BP)

Yeast-fly ILP 545 91 134 0.246 4.33e � 09 3.32 1.87
MRF 535 87 133 0.248 2.17e � 09 3.26 1.85
IsoRank 545 91 133 0.244 1.01e � 08 3.28 1.88
PME 545 86 132 0.242 2.33e � 08 3.25 1.83

Yeast-
worm

ILP 194 48 72 0.371 0.059 2.95 2.23
IsoRank 194 48 74 0.381 0.021 2.97 2.22
PME 194 47 72 0.371 0.059 2.98 2.22

Fly-worm ILP 209 38 93 0.445 0.004 2.32 1.62
IsoRank 209 38 87 0.416 0.084 2.32 1.50
PME 209 36 92 0.440 0.007 2.34 1.61
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