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ABSTRACT

Motivation: Identifying protein orthologs is an important task that is
receiving growing attention in the bioinformatics literature. Orthology
detection provides a fundamental tool towards understanding protein
evolution, predicting protein functions and interactions, aligning
protein-protein interaction networks of different species and detecting
conserved modules within these networks.

Results: Here, we present a novel diffusion-based framework that
builds on the Rankprop algorithm for protein orthology detection and
enhances it in several important ways. Specifically, we enhance the
Rankprop algorithm to account for the presence of multiple paralogs,
utilize protein-protein interactions, and consider multiple (>2) species
in parallel. We comprehensively benchmarked our framework using a
variety of training data sets and experimental settings. The results,
based on the yeast, fly and human proteomes, show that the novel
enhancements of Rankprop provide substantial improvements over
its original formulation as well as over a number of state of the art
methods for network-based orthology detection.

Availability: Data sets and source code are available upon request.

Contact: niryosef@post.tau.ac.il

1 INTRODUCTION

The notion that similar protein sequences imply similar protein

Subsequent studies based on these principles have extended
the network structure used to quantify the global property
by incorporating protein-protein interaction (PPI) information.
Bandyopadhyay et al. [2006] used a Markov random field (MRF)
formulation to derive probabilities for orthologies based on
conserved PPI patterns. The ISORank algorithm [Singh et al., 2007]
assigns similarity scores to pairs of proteins according to a random
walk in the product graph of the two networks. These scores (or
probabilities) then serve as a basis for orthology detection; in MRF,
the derived probabilities were used to resolve ambiguous orthology
predictions made by the Inparanoid algorithm [Remm et al., 2001].
In ISORank the scores were used to create a global alignment of the
yeast and fly networks.

In this paper, we extend the Rankprop algorithm in three
important ways and test the impact of these extensions on the
accuracy of the obtained similarity scores in comparison to the
original Rankprop formulation as well as to the two PPI-based
approaches (MRF and ISORank). First, we modify Rankprop to
include PPl information in addition to sequence similarity data. This
variant, which we calhybrid Rankprop combines the two types
of information into a unified hybrid network and learns the weight
of each of the factors in a supervised manner. Second, we present
an improved version of Rankprop, termeditual Rankpropwhich
explicitly accounts for the problem of multiple paralogs. Finally, we
examine the utility of applying the algorithm to a network derived

functions has been traditionally employed to guide the identificationfrom more than two species

of orthologous protein pairs [Brenner, 1999]ij.e., proteins in
different species that evolved from a common ancestor. Howeve

r

Using the yeast and fly proteomes, we show that mutual Rankprop
outperforms Rankprop, MRF and ISORank on the orthology

one problem with identifying orthologs by sequence similarity oo ction task, and that incorporating the human network also

arises when the protein in question has similarity to not one;

but many paralogous proteins [Sjolander, 2004].

every cross-species protein pair is technically orthologous, but it i

mproves the accuracy of the algorithm. The added value of

In these Caseﬁ1cluding PPI information, however, remains unclear as we do not
Bbserve a significant improvement for hybrid Rankprop relative to

still necessary to distinguish which protein pairs play functionallythe original Rankprop algorithm

equivalent roles [Remm et al., 2001].

In addition to accurately identifying orthology relationships, the

. To.c.JIate', one of the mos.t Su.cceSSfu' paradigms for orthOIOg%lifferent Rankprop variants provide two other advantages compared
identification uses a combination of local and global networkWith ISORank and MRF. First, the Rankprop methods can produce
propert_les. In this approgch, th_e .S'”?"a”ty Of, two proteins Is orthology predictions for any given protein. This is similar to
determined by two factors.. the §|.m|Iar|ty of thelr.sequ.ences (tthORank but contrasts with the MRF, which is limited to proteins
local property) and the similarities among their neighbors N that participate irat least oneconserved interaction, as defined in

SSection 3.4. For this reason, the MRF fails to make predictions for

some network structure (the global property). One example i
the Rankprop algorithm which identifies protein homologies bya substantial portion of the proteins in a given network.

performing a diffusion operation in a protein sequence similariFy Second, the Rankprop variants are efficient. The MRF method
network. Rankprop was shown to outperform iterative protein ses Gibbs sampling, the running time of which is difficult to
database search methods such as PSI-BLAST [Altschul et al.,,1997 haracterize ISORan’k’s running time (B(E’“) where E is the

wh_lch consnders_only a limited proportion of protein similarities at number of edges in a network ardis the number of networks.
a time (.e.,focusing on the local property).

(© Oxford University Press 2008. 1
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Thus, this algorithm scales exponentially with the number of testedwo separate matrice$Vs;,, andW,,;. As a measure of sequence
networks. In contrast, the running time of the Rankprop variantssimilarity we use the BLASTE-value, whereWg;.,[i, j] is the
scales polynomiallyO(k*V? + k?V E) with PPl information and ~ BLAST E-value assigned to proteinwhen querying with protein
O(K*V?) without using PPI information, wher¥ is the number  j (i.e., the score is normalized by the length of sequepcnd
of nodes in the network. Furthermore, in many applications we areghe number of proteins in the network). For PPI based similarity,
only interested in a subset of the proteiesg., when looking for ~ we setW,;;[i,j] to the complementt — ¢ of the confidence
orthologs of a specific pathway or complex. The different Rankpropscorec assigned to the interaction between proteirend j (see
methods can infer orthologies for a specified subsetqfroteins  Section 3.1). We use the complement in order to conform with the
in a substantially shorter timeX(mk?V + mkE) or O(mk*V) sequence similarity scores, where a lower score indicates a stronger
with or without using PPI information, respectively). In practice, signal.
ISORank’s exponential running time prevents the algorithm from Next we construct a weight matri’, which encodes the hybrid
considering more than two species at a time. Instead, it uses metwork, by transforming the weights in the input matrix. The
pairwise incremental procedure in order to account for multipletransformation is applied separately for PPI edges and for protein
networks [Singh et al., 2008]. The Rankprop variants, on the othesimilarity edges in the following manner. For the PPI edges we
hand, can be applied to multiple networks simultaneously. Asdefine:
our results show, this capability provides an important advantage, Wppii, 4]
because the confidence of an inferred homology between a pair of Wi; = —log (#) ; (1)

- . . ppi * Tppi
proteins can be enhanced by the existence of common orthologs in

other species. where M AX,,,; is the highest weight (or the lowest confidence)

assigned to protein pairs in the hybrid network. A similar
formulation is used for sequence similarities:
2 ALGORITHMS

We start by reviewing the Rankprop algorithm and then describe the W — 1 Weimli, 7] @)
three novel enhancements of the basic algorithm. 0T T O MAX 0o )

2.1 Rankprop where M AX ;. is the highestF-value assigned to protein pairs

The input to the Rankprop algorithm is a weighted network andin the_ hybrid netyvork. The logarithmic transfer functions in
a designated query node within that network. The nodes in th&auations 1and Zintroduce two parametets, andoin,, for PP
network correspond to proteins from two or more species. Edgegnd protein similarity edges, respectively. These parameters control

connect pairs of proteins that share sequence similarity. The initiatlhe importance of highly scoring protein pairs compared to pairs

weights of the edges are set using a pairwise sequence comparis\ﬁ’#h weaker links.

algorithm. In this work, we use BLASE-values [Altschul et al. Finally, the matrixi?” is normalized such that for each node, the
1990], transformed so as to represent transition probabilities (settingM Of weights of incoming edges Is(i.e., vj : >, Wi; = 1).

the sum of weights of incoming edgesttdor all nodes). Rankprop h(_a normallze_ltlon procedu_re |ntr9duces an additional pgrametgr
assigns scores to all of the nodes in the network by using a diffusiod/Nich determines the relative weight of sequence- and interaction-
procedure across the weighted network. During diffusion, the quergimilarity edges. Iior each node, the sum of incoming sequence
node is assigned a score of 1.0, and this score is continually pump ilarity edges IS5 and the sum of Incoming '_DPI edge%f“?p.

to the remaining nodes by means of the transition matrix. UpoH\IOte that althou.gh PPl edges are not orlgmglly dlre(?ted,we treat the
termination, every protein is assigned a score, determined by the" | €dges as directed because the normalized weights depend only

steady state of the diffusion process. A higher score implies a highe}” "€ end-point—see discussion in Section 2.3. The parajeter
level of similarity. allows us to reformulate the original Rankprop as a special case of
In the next section we present a generalization of Rankprog!® NYPrid Rankprop by setting= cc.

to integrate protein-protein interaction data. We defer the formal " the diffusion process, the query node continually pumps its
score to the remaining nodes, this time by means of the weighted

description of the normalization procedures and the diffusion ) ) ' > ’ -
algorithm to that section. hyi_orld netwo_rk. During the diffusion, a proteiR pumps _to its
neighbors (either by homology or by PPI) at timethe linear

. combination of scores tha® received from its neighbors at time
2.2 Hybrid Rankprop t — 1, weighted by the strengths of the edges between them. The
In the hybrid version of Rankprop, the edges of the weightedstrength of the diffusion or the relative weighting between the local
network encodeéwo types of relations between proteins: protein- and global properties is controlled by an additional parameter
protein interaction and pairwise protein similarities. Specifically, (see Algorithm 1). For efficiency, the diffusion process is terminated
edges between proteins of the same species correspond to proteafter a fixed number of iterations, and the resulting diffusion values
protein interactions, and edges connecting proteins from differenare used as an approximation to the ones we would obtain upon
species represent sequence similarity relations. The weights otonvergence. The output is a ranked list of putative homologs. Note
the edges reflect the level of confidence in the protein-proteirthat hybrid Rankprop can readily produce a second ranked list of
interaction, or the degree of sequence similarity. putative interaction partners; however, in this study we concentrate

In a preprocessing stage, we convert the weights in the grapbnly on homology detection. The algorithm is summarized as

to transition probabilities. First, we represent the input graph asAlgorithm 1.
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Algorithm 1 Pseudocode of the hybrid Rankprop algorithm. To exploit this asymmetry, we define thmutual Rankprop
Given a set of proteins from two species, Igt;,,, andIV,,,; denote  variant. This algorithm considers the top ranked candidates, applies
the input weight matrices (encoding sequence similarity and proteim query from each of them, and then re-ranks them according to the
interaction data, respectively}; denote the set of proteins in the corresponding scores assigned to the original query node. Formally,
hybrid network andg € V denote the query protein. For each for a given query node let a; ...a, be the topu proteins on
v € V denotes(v) as the species to which the proteibelongs, and  the ranked list produced by Rankprop and .. s,, be their scores
N (v) as the set of proteins adjacenttin the hybrid network. Ina  (wherey is a small constant, set here to 5). Mutual Rankprop calls
preprocessing stage, the algorithm converts the input matrices intoRankprop separately for every as the query node. Let,; be
single hybrid network using the procedureke TransitionMafThe  the score of; when querying fromu;. We rerank each of the;s
balancing parameter determines the relative weight of sequence based on a mutual score, which is definedsast s,,;)/2. Finally,
similarity and PPI edges, and the parameteontrols the rate of the  the topu proteins are re-sorted according to this new score. In the
diffusion. The number of iterations is fixed to a constanHybrid  following, we experiment with the mutual extension of both the
Rankprop produces a ranked listynknon 0Of candidate homologs  original Rankprop and the hybrid Rankprop variants.
of q.

1: procedure HYBRIDRANKPROA(W sim, Wi, q, 5, v, p) 2.4 Using morethan two networks

2: W — makeTransitionMat(Wsim, Wppi, p)

The extension of Rankprop or hybrid Rankprop to more than two

i: ;ygr((t)): 11; sz;loé q:%(0)=0 networks i§ straightforward. For e>.<ample, in the latter variant, for
5 for i el V do three species we have a total of six networks_, (three PPI and three
6: v+ =a Y Wy(t) +7:(0) sequence S|mllarlty networks). The edge ngghts are trgnsformed
JEN(i)\q using Equations 1 and 2 and then normalized according to the
7: end for parametep.
8: end for In this case, the output with respect to a given query will be two
9: ranksim < sort({vi () }s)£s(q)) orthology lists, one for each of the remaining species. It is easy to
10: return ranksim see that in a given hybrid network, every edge is visited a constant
11: end procedure number of times (equal to the fixed number of iterations), so the

running time of a single query on a hybrid graph encompasking
PPI networks, each witl edges and” nodes isO(kE + k*V'h),
whereh is the maximum number of sequence similarity links per
protein. In our applicatiork is limited to a constant valuei( <

100). Querying from all the nodes in the hybrid network therefore
costsO(kV (k*V + kE)) = O(k*V? + k*V E) time. The original
version of Rankprop does not use PPl edges and, in our experiments
does not use sequence similarity edges within a single species;
therefore, Rankprop’s running time reducexg:*v2).

2.5 Tuningthe parameters

Fig. 1. Anexamplefor theutility of mutual scoring. The two sets of nodes  The parameters,,:, osim, p and o enable us to control the
represent families of paralogs from two species. Thicknésslges reflects ~ operation of the Rankprop variants either by selective tuning of the
the magnitude of the respective Rankprop scores. weights of the two types of edges i, osim), by determining the

overall balance between their influencgy, (©r by determining the

rate of the diffusiond).

We learn the values of these parameters from a labeled training set

2.3 Mutual Rankprop via cross-validation and grid search. In our implementation, we use
The ranking scheme applied by Rankprop is directional; the naturdive-fold cross-validation, and we consider all combinations of the
thing to ask then is whether it is also (at least to some extentylifferent parameter values. We based our search on a series@f thre
empirically symmetric. Note that the intrinsic lack of symmetry exponents®: = {0,2,5}. For the two tuning parametess,,;, and
does not stem merely from the directionality of the BLAST scoreso..,., we consider the value€)?, i € . For the balance parameter
but, more importantly, from the topology of the networks. Becausep we consider the valugs™, i € X. Finally, for the diffusion rate
the normalization of edge weights depends on the in-degree of thparameterq, we consider a low value d@f.3 and a higher value of
target node, two very different weights might be assigned to the&.95. For the original Rankprop implementation, we g&b co and
same relation. The obvious example, presented in Figure 1, is in thexamine the different values only fot;,, anda.
case of duplication followed by divergence. In this case, a protein
(denoteda) in one network has multiple homology matches in the
other network, representing a family of paralogs. Now assume thag EXPERIMENTAL SETUP
all the paralogs but one (denoté)l have other clear homology
matches (to paralogs of. Querying only fromz will not be ableto~ 3-1  The analyzed networks
distinguishb from the rest, while querying frorh and its paralogs Initially, we apply our orthology detection scheme to the networks
will clarify that b is the most probable ortholog af of Saccharomyces cerevisia@d Drosophila melanogasteihe
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data set is identical to the one used by two previous orthologyl996]. The ROG, scores are computed separately for each query,
detection studies [Bandyopadhyay et al., 2006, Singh et al., 2007]}aking the complement of the positive set as the negative set.

and downloaded from the online supplement of [Bandyopadhyay The previous procedure igelative in the sense that targets
et al., 2006]. It contains protein sequences of 5878 yeast and@.8,7 for a particular query are only ranked relative to one another. A
fly proteins from FlyBase and SGD [Crosby et al., 2007, Christiemore stringent quality metric requires that the scores produced for
et al., 2004]. PPI information in the data set is from the Database oflifferent queries lie on the same scale. We meashselutequality
Interacting Proteins [Xenarios et al., 2000] and includes 14,319 andy sorting together the outputs from multiple queries and computing
20,720 interactions for yeast and fly respectively. The downloade@ single ROC curve. The computation of the absolute quality is
data set also provides confidence values to each PPI edge badegised on the specific negative sets.

on a logistic regression model [Bader et al., 2004]. Importantly,

homology-based data were not used when determining these values 4 Alignment graph for MRF

This is a crucial point because in the following experiments we he MRE hod is based on afi b h .
will use the confidence values, in cross validation, to train and tes?F;P? W mket ?I'hls a(je 'Onth gnlr_nent ettweenrt] e two glv?n .
orthology predictors. networks. The nodes in the alignment graph represent pairs

In a second experiment, we also add a human network. Thigf proteins, one of each species. An edge between two alignment

’oo : f ; ; ’
network contains 7915 protein sequences and 28,972 interactio des (u,v) and (u', ") exists if u interacts withu’ and the

;. )
collected from recently published papers [Rual et al., 2005, Stelz .|stance betwegp and v IS no more than 2 (or vice versa). We
et al., 2005] and from the HPRD database [Peri et al., 2003]. ppjrst use the original alignment graph used by [Bandyopadhyay

confidence values for the human network were assigned using { al., 2006], whose nodes are defined according to the orthology

logistic regression model similar to the one used for the yeast anquSterS of |qp§ran0|d. Howevgr, a problem with this graph s that
fly networks. the vast majority of the proteins appear in only one alignment

Protein similarities E-values) were computed using BLASTP node and thus have only one candidate for orthology (in fact, this

[Altschul et al., 1997], using a threshold &f—value< 10 holds, by definition, for all positive pairs in the Inparanoid gold
b ' ' standard). Consequently, the relative performance of the algorithm

could not be assessed. To circumvent this problem, we used a second
3.2 Training Data alignment graph defining the alignment nodes according to the five

We consider two distinct gold standard sets of positive and negativ&Op mutual BLAST matches_ O_f each protein. qu a f"’?" comparison,
orthology relations. The first set is based on the Inparanoid prograrﬁ1 th's experiment we also limit the sequence similarity information
[Remm et al., 2001]. These labels were used for validation in two"’“/a"‘r’1b|e to Rankprop .and ISORank to the five top mutual BLAST
previous studies [Bandyopadhyay et al., 2006, Singh et al., 2007fnatches of each protein.

Specifically, the positive cases are drawn from Inparanoid homology

clusters that contain only one representative from each species

(unambiguous orthology). We consider two methods for definingd RESULTS

the n(_agative _set. The more stri_ngent, whi_ch we termgpecific In the following we use the yeast and fly data to compare
negative set is cqmposed of pairs of protelns_that are best BLAST, Rankprop variants—the original Rankprop algorithm, mutual
matches not assigned to the same Inparanoid cluster. The Seco%nkprop, hybrid Rankprop, and mutual hybrid Rankprop. The
definition for the negative set is the complement of the positive sety 4 iants are compared to each other and to the MRF method of
The positive and negative orthology data sets were provided by thﬁSandyopadhyay et al., 2006], ISORank [Singh et al., 2007] and
authors of [Bandyopgdhyay etal, 2996]- . BLAST [Altschul et al., 1997]. In addition, we apply the original
The second training set of positive and negative orthologyrankprop and hybrid Rankprop to a three-species network (adding
relations is taken from the HomoloGene database [Wheelef,e hyman network), and we compare the quality of the resulting
et al,, 2003]. Importantly, the homology detection procedure ofyeictions to the two-species results. Because the ISORank, MRF
HomoloGene uses both proteins and their matching DNA sequenceg, hybrid Rankprop are limited only to proteins that participate in

and relies on a global optimization rather than local. In addition,ihe pp| network. we focus the computation on these cases only.
HomoloGene considers synteny when applicable. The positive

training set is composed of the HomoloGene orthologous pairs. As . . -
negatives we take the top five nonorthologous BLAST matches. AS -1 Performance evaluation on the Inparanoid training
before, we also use a second definition for the negative set as the data

complement of the positive set. The evaluation of the Rankprop variants is done by cross validation.
For each Rankprop variant and each cross validation iteration, we
apply the algorithm with all possible parameter combinations (see
Section 2.5). We then choose the best parameter set, using as our
We measure the quality of a given orthology predictor by comparingperformance criterion either the relative or absolute ROC score on
it with the gold standard and computing a receiver operatingthe training set. Finally, we apply the algorithm to the test set with
characteristic (ROC) curve [Hanley and McNeil, 1982]. Our quality the selected parameters. The MRF is also evaluated using cross
metric is the area under this curve (the ROC score). In orthologyalidation as in [Bandyopadhyay et al., 2006]. For ISORank we do
prediction applications, we are primarily interested in the top-rankedot use training and simply set the single parameter (the propagation
predictions. To account for that, we measure the area under the curvatex) to 0.6, its preferred value for this specific data set, according
up to the first 50 false positives (R@§ [Gribskov and Robinson, to [Singh et al., 2007]. Importantly, the MRF algorithm is applicable

3.3 Performance evaluation
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only to proteins with conserved interactions. Therefore, for a fair /¢ 1. Overlap in resolving ambiguous Inparancid orthology
comparison, we consider only cases for which this algorithm is” redictions. Given two methods: andb, the table presents the overlap
! ! index =22 where O, is the number of yeast proteins that belong to an

applllcable. . . ambigugﬂs Inparanoid clusterd(, a cluster with more than one yeast protein
Figure 2A compares the relative performance of the differenty; more than one fly protein) and were assigned the same ortbglogind

rankings using the Inparanoid positive and negative sets, wherg 7, is the total number of such proteins that were applicable ki bo

MRF is applied with the Inparanoid-based alignment graph.andb. Analyzed methods include BLAST, hybrid Rankprop (HRP), ralitu

Evidently, the relative performance of the BLAST scores is hybrid Rankprop (MHRP), Rankprop (RP), mutual Rankprop (WM&l the

extremely high. This stems from the fact that most of the positivemarkov random field (MRF) method.

pairs in the Inparanoid set are mutually best BLAST matches,

and all the positive pairs are best BLAST matches in at least one

direction. Because the ISORank scores are very similar to those

of BLAST, ISORank performs almost as well as BLAST. For the

Rankprop variants, the advantage of mutual approach is evident both

HRP MHRP RP MRP MRF

BLAST 0.45 0.61 0.48 0.63 0.64

for Rankprop and hybrid Rankprop. However, when considering HRP - 0.72 0.95 0.70  0.40
only non-trivial test cases (inset), where true orthologs are not MHRP  — - 0.71 092 0.53
mutual best BLAST matches, we do not see any clear advantage I?AFI;P - - - 0.72 (()J:gl

for either of the variants.

Figure 2B depicts the absolute performance of the different
rankings. Evidently, all four Rankprop variants outperform both
MRF and ISORank. In addition, we see that the ability of the scores
obtained from ISORank to separate true orthologies from false onesompared our results to each other, to the results of Bandyopadhyay
is very similar to that of the raw BLAST E-values. The MRF method et al. [2006] and to annotations from HomoloGene.
performs worse than both. Focusing on the non-trivial test cases Overall, the Rankprop variants can resolve a much larger
(inset), we see that MRF outperforms BLAST and ISORank andpercentage of the ambiguous Inparanoid predictions than MRF can.
that all three are outperformed by the Rankprop variants. Out of 1238 yeast proteins in the ambiguous clusters, the MRF

We also tested the different methods using the Inparanoid goldnethod was applicable only to 146, whereas the Rankprop variants
standard where MRF is applied with the BLAST-based alignmentare applicable to 703, excluding proteins with no PPI information.
graph. The results are qualitatively similar to the ones in Figure 3 As a gold standard for this disambiguation task, we used
(data not shown). orthology annotations from the HomoloGene database. We

identified an ortholog in the HomoloGene database for 189 of the

. 1238 ambiguous Inparanoid predictions. Comparing the various

4.2 Per_fo_r mance comparison on the HomoloGene Rankprop variants to one another shows that the mutual Rankprop

training data variants strongly outperform the single-sided variants. On these 189

In this experiment we use the HomoloGene positive and negativexamples, the mutual Rankprop variants agrees with HomoloGene
sets, and we use our alternative definition for the alignment grapin 137 (72%) and 139 (73%) of the cases, with and without PPI

of MRF. The results are displayed in Figure 3. Here we see thatlata, respectively. By comparison, the one-sided Rankprop variants

the mutual variants of Rankprop (with and without using PPImatch HomoloGene in 104 (55%) and 106 (56%) of the cases.

information) outperform their one sided counterparts both in the Among the same set of 189 proteins with HomoloGene
relative and absolute tests. In addition, the relative performance ainnotations, MRF is only applicable to 51. For these proteins
mutual hybrid Rankprop is better than that of the mutual RankpropMRF agrees with HomoloGene in 36 (70%) of the cases, whereas
better than that of ISORank in the general case, and slightly worsgutual Rankprop agrees with HomoloGene in 35 (68%) or 37 (72%)
than ISORank in the non trivial case. cases, depending upon whether PPI information is used or not.

We also tested the different methods using the HomoloGendhe overlaps among the results from MRF and from the different
positive and negative sets where MRF is applied with theRankprop variants are summarized in Table 1.

Inparanoid-based alignment graph. The results are qualitatively An example for an ambiguous orthology prediction by Inparanoid
similar to the previous experiment in Figure 2 (data not shown). is yeast Ubiquitin UBI4 which marks various proteins for selective
degradation via the ubiquitin-26S proteasome system [Ozsolak

. . . . o et al.,, 1987]. Along with UBI4 the respective Inparanoid cluster

4.3 Disambiguating Inparanoid orthology predictions contains two fly paralogs—Ubiquitin-63E and Ubiquitin-5E, where

Inference based on sequence similarity alone, using thé¢he latter has a slightly better sequence similarity with UBI4. The
Inparanoid program, is often insufficient to determine orthologytrue ortholog according to all the Rankprop variants as well as
relations. In such cases, we obtain orthology clusters containing MRF, however, is the former. This result is further supported by
number of paralogs from each species, where the actual mappirthe HomoloGene database.
of functional orthologs is unknown. Bandyopadhyay et al. [2006] Another example is the kinetochore protein Skpl, which
used the scores obtained by the MRF method to determine thparticipates in multiple protein complexes, including the SCF
most probable orthologs and resolve these ambiguities based on P&#iquitin ligase complex, the centromeric DNA binding CBF3
information. In a similar manner, we used the different variants ofcomplex, and the RAVE complex that regulates assembly of the V-
our method to disambiguate the same clusters, assigning the toprPase [Seol et al., 2001]. The Inparanoid cluster of Skpl contains
ranked protein as the putative ortholog of the query protein. We thea number of paralogous fly proteins. Among those, the ortholog
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Fig. 2. Homology detection benchmark using the Inparanoid gold standard (A) Relative performance: the figure plots the percentagauiefigs (y-axis)

for which the associated RQg score is greater than a given threshold (x-axis). (B) Alisoperformance: an ROC curve is displayed for each of the
predictors. Seven methods are shown, including the four Rrapkvariants, BLAST, ISORank and MRF. The insets preselytwon-trivial cases where true
orthologs are not mutual best BLAST matches.
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Fig. 3. Homology detection benchmark using the HomoloGene gold standard. Methods, labels and insets are as in Figure 2.

predicted by MRF is the Skpa centromeric DNA binding protein. * e
However, the correct ortholog according to HomoloGene and the oor

mutual Rankprop variants is Skpb, a paralog of Skpa (which has o8l - ggﬁﬁgrss"_kgr;’ge;éjpe°‘es
a slightly lower sequence similarity with the yeast’'s Skpl). The 07t K'* - Hybrid Rankprop - 3 species
reason for this discrepancy is that Skpb does not have any known os | < Rankprop — 3 species

conserved interactions, and is excluded from the MRF analysis. 3
These two examples demonstrate that network based methods can §

produce accurate orthology predictions, which are not necessarily &

in line with the best BLAST matches. Additionally, we see that the S

limited applicability of MRF may harm its accuracy by excluding

prominent candidates from the analysis, a limitation which does not

hold for the Rankprop variants. Kol o1

L L
3 0.4 0.5

0‘.2 0.
Relative ROC
4.4 Orthology detection based on three networks

Fig. 4. Homology detection benchmark using three species Absolute

To examine the.utility of employing more than tW,O network§ in performance scores are shown for the Inparanoid gold stdndae inset
orthology detection, we repeated the above experiments using tqﬁesems onlyon-trivial cases as in Figure 2.

human network in addition to those of yeast and fly. We applied

the Rankprop and hybrid Rankprop variants as described above

and tested the accuracy of the scores assigned to the yeast-fly

protein pairs. The basic assumption is that the scores of truerthologous pairs from yeast and fly will increase when also
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accounting for their common orthologs in human. The resultingS. F. Altschul et al. Gapped BLAST and PSI-BLAST: A new

absolute performance with the Inparanoid gold standard (Figure 4) generation of protein database search prografscleic Acids

shows a clear improvement in accuracy when adding the human Research25:3389-3402, 1997.

network. We also examined the effect on the relative performancéd. S. Bader, A. Chaudhuri, J. M. Rothberg, and J. Chant. Gaining

and observed a smaller yet evident improvement when using the confidence in high-throughput protein interaction networks.

additional network (data not shown). Similar results were also Nature Biotechnology22(1):78-85, 2004.

obtained with the HomoloGene dataset (data not shown). S. Bandyopadhyay, R. Sharan, and T. Ideker.  Systematic
identification of functional orthologs based on protein network
comparisonGenome Research6:426-35, 2006.

5 DISCUSSION S. E. Brenner. Errors in genome annotatidrends in Genetigsl5:

We have presented three novel extensions for the Rankpro& 132_133'_1999'

algorithm—the hybrid Rankprop which includes PPI information, - R. Christie et al. ~ SaccharomycesGenome Database
the mutual Rankprop which was designed to account for multiple (SGD) provides tools to identify and analyze sequences from
paralogous candidates and an application of Rankprop (and hybrid Saccharomyces. cerevisiagnd related sequences from other
Rankprop) to three species concomitantly. We have demonstrated °r92nismsNucleic Acids Researc82:D311-4, 2004.

that the Rankprop algorithm and its novel variants provideM: A- Crosby etal. FlyBase: Genomes by the doZencleic Acids
improved scoring methodologies compared to several state-of-the- Res_earch35(Database |ssu§):D486—491, 2007. ) )

art methods. We also showed that, in the majority of cases, botff!- Gribskov and N. L. Robinson. ~Use of receiver operating
the mutual variant and the addition of a third network improve characteristic (ROC) analysis to evaluate sequence matching.

upon the original Rankprop algorithm in both relative and absolute Computers and Chemistr?O_(l):25—33, 1996‘
performance. J. A. Hanley and B. J. McNeil. The meaning and use of the area

With regards to the utility of PPI data, the picture is not as clear. Under areceiver operating characteristic (ROC) cuRagliology

Evidently, diffusion based only on sequence similarity performs just 143:29-36, 1982'

as well as the diffusion with PPI information, and is often better E- ©ZS0lak, D. Finley, M. J. Solomon, and A. Varshavsky. The yeast
than the PPI based approaches MRF and ISORank. A possible UPiduitin genes: a family of natural gene fusio&4BO J, 6(5):
explanation for this observation might be that the majority of pairs in 1429_1439’ 1987. .

both positive sets are mutually best matches with very signifigant >- Peri et al. Development of human protein reference database as
values, which makes them easy for detection by sequence similarity. an initial platform for approaching systems biology in humans.
This phenomenon is illustrated by the exceptionally high BLAST Genome Research3:2363-71, 2003. _
scores in the relative performance estimations. An alternativd!- Remm, C. E. Storm, and E. L. Sonnhammer. ~Automatic
explanation might be that yeast and fly are just too distant to apply clusterlr_lg of orthologs and m-paralogs from pairwise species
methods that are based on interaction conservation. comparisons. Journal of Molecular Biology 314:1041-1052,

The probabilities obtained by the MRF algorithm were used by 2001. .
[Bandyopadhyay et al., 2006] to resolve Inparanoid clusters that- Ru._al (_et al. Toyvardsaproteome-scale map of the human protein-
had a few paralogs from each species. In Section 4.3 we compared Protein interaction networkiNature 437:1173-8, 2005.
the utility of the Rankprop variants in this task to that of MRF. we J- H- Seol. A. Shevchenko, and R. J. Deshaies. ~Skpl forms
showed that the mutual variants of Rankprop compare favorably to multiple protein complexes, including rave, a regulator of v-

MRF as they were applicable to roughly five times more proteins_ 2tPase assembliiat Cell Biol, 3(4):384-391, 2001.
and achieved a similar accuracy. R. Singh, J. Xu, and B. Berger. Pairwise global alignment of

The ISORank algorithm uses the obtained similarity scores to protein interaction networks by matching neighborhood topology.

construct a global alignment of the investigated PPI networks by RECOMBO7pages 16-31, 2007.

seeking the best one-to-one orthology assignment. Naturally, sucR- Singh. J. Xu, and B. Berger. Global alignment of multiple pr(.)tein
an assignment should not necessarily fit the best matches on the Ntéraction networks.Pacific Symposium on Biocomputini:

ranked lists. Hence, a prerequisite for a successful construction of 303_314' 2008. L .

a global alignment is for the scores assigned to target proteins t- Siolander.  Phylogenomic inference of protein molecular
be well calibrated from one query to the next. This property is function: Advances and challenges.Bioinformatics 20(2):
reflected by our absolute performance measure, which points to a 170-179, 2004. . L .

clear advantage of the Rankprop variants over ISORank. In thi&)- Stelzl et al. - A human protein-protein interaction network: a
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