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The topology behind biological interaction networks has been studied for over a decade. Yet, there is no
definite agreement on the theoretical models which best describe protein-protein interaction (PPI)
networks. Such models are critical to quantifying the significance of any empirical observation regarding
those networks. Here, we perform a comprehensive analysis of yeast PPI networks in order to gain insights
into their topology and its dependency on interaction-screening technology. We find that: (1)
interaction-detection technology has little effect on the topology of PPI networks; (2) topology of these
interaction networks differs in organisms with different cellular complexity (human and yeast); (3) clear
topological difference is present between PPI networks, their functional sub-modules, and their
inter-functional ‘‘linkers’’; (4) high confidence PPI networks have more ‘‘geometrical’’ topology compared
to predicted, incomplete, or noisy PPI networks; and (5) inter-functional ‘‘linker’’ proteins serve as
mediators in signal transduction, transport, regulation and organisational cellular processes.

A
s biological data accumulates at an ever increasing rate, the depth of our understanding of biological data
has to keep up. Protein-protein interaction (PPI) networks are currently among the most available and
studied molecular interaction data sets. A usual and intuitive way of representing these data is via graphs

(or networks) where nodes are proteins, and edges — detected through interaction-detection wet-lab screening
experiments1–9 — are placed between them.

It is interesting that over a decade after the sequencing of human and yeast genomes has been completed, it is
still unclear what the final size of those, and many other, interactomes will be. Recently, Stumpf et al. (2008)10

estimated interactome sizes of human and three eukaryotic organisms: they estimated the human interactome to
have < 650, 000 edges, C. elegans < 200, 000 edges, D. melanogaster < 75, 000 edges, and S. cerevisiae < 25, 000–
30, 000 edges. Their results indicated that the size of PPI networks of various organisms correlate well with the
organism’s apparent complexity, rather than the mere size of its genome.

The topology (i.e., structure) of a biological network is thought to be a by-product of stochastic chance and
evolutionary necessity11–15. On the other hand, there is a wide body of scientific evidence that contradicts the
‘‘chance and necessity’’ principle and corroborates the modular organisation of functions in biological net-
works16–25. To adequately model and analyse a network, we need to somehow understand this apparent ‘‘random-
ness coupled with evolution’’. Yet, the issue of what networks in biology ‘‘look like’’ is still largely debated.

A network, therefore, typically represents a whole biological system; and modularity of a system refers to its
ability to be broken down into smaller yet still cohesive sub-parts, often called ‘‘modules’’26,27. There is a wide body
of evidence which suggests that biological systems are comprised of distinct interacting modules18–21,25–28.
Identifying these distinct modules within biological systems is one of the essential steps in understanding cellular
organization on a higher-level25,26,29,30. A module is often represented by a sub-network with more interactions
between its elements than with elements of other modules. Still, inter-modular cross-talk is very prominent in PPI
networks19,23.

Techniques such as yeast-2-hybrid (Y2H), affinity purification (AP), mass spectrometric (MS) protein complex
identification and many others are producing large amounts of experimental PPI data1–9. These PPI data are
publically available and stored in various databases such as the Biological General Repository for Interaction
Datasets (BioGRID)31, IntAct32, Molecular INTeraction database (MINT)33, Human Protein Reference Database
(HPRD)34, Biomolecular Interaction Network Database (BIND)35 and the Database of Interacting Proteins
(DIP)36. Databases such as Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)37,
Interologous Interaction Database (I2D)38, and iRefIndex39 combine large portions of the above-mentioned
sources into single datasets. Since available PPI data sets still have high false-discovery rates24,40, we analyse data
sets obtained from the following 16 PPI detection technologies31: affinity capture-luminescence (hereafter denoted
by ‘‘acl’’ for brevity), affinity capture-MS (‘‘acms’’), affinity capture-RNA (‘‘acrna’’), affinity capture-western
(‘‘acw’’), biochemical activity (‘‘ba’’), co-crystal structure (‘‘cocs’’), co-fractionation (‘‘cof’’), co-localisation
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(‘‘col’’), co-purification (‘‘cop’’), far western (‘‘fw’’), FRET (‘‘fret’’),
PCA (‘‘pca’’), protein-peptide (‘‘ppep’’), protein-RNA (‘‘prna’’),
reconstituted complex (‘‘rc’’) and yeast two-hybrid (‘‘y2h’’).
However, some of these 16 biotechnologies generate very sparse
PPI data (explained below), hence in the main text of our manuscript,
we focus on the results of only those biotechnologies that produce
PPI networks which are sufficiently dense to be modelled (Figure 1).
Also, note that while ‘‘acrna’’, ‘‘col’’ and ‘‘prna’’ are not PPIs in their
strictest form, they are akin to PPIs and BioGRID classifies them into
the physical protein interaction category alongside the rest of the PPI
data (http://wiki.thebiogrid.org/doku.php/experimental_systems).

In this paper, we study in depth the modelling of yeast S. cerevisiae
PPI networks, as these are currently the most complete and accurate
interaction networks. For evaluating the fit of model networks to PPI
data, we use a range of six global and local network properties
(detailed in Methods). Since they all give consistent results, for space
constraints we present only the results of Graphlet Degree
Distribution Agreement (GDDA) similarity measure (detailed in
Methods; see Supplementary Text for other similarity measures).
Also note that GDDA encompasses other network similarity mea-
sures (see Methods).

Although there were attempts to quantify the dependence of a
network’s structure on a given set of features such as age, or abund-
ance of proteins in a cell14, none of them explored the dependency of
network models on interaction-detection biotechnology. Also, to our
knowledge, no other study addresses biotechnology-dependant
modelling of functional sub-modules in PPI networks. Two recent
papers dealt with characterising degree distributions of yeast tran-
scriptional regulatory networks, and attempted to identify and
explain microscopic features of human regulatory networks, such
as motif patterns and highly connected network elements41,42.
Other similar studies undertook dynamical modelling of regulatory
networks using state-transition graphs while specifically focusing on
regulatory control of T-helper cell activation and differentiation43; or
tested for simple edge overlaps between only two data sets: yeast two-
hybrid and literature curated data sets44.

There were a couple of attempts to model full PPI networks of
yeast, fruit fly, worm and human45–47; however the aim of those
studies was not to quantify the topological features of PPI networks
produced by different interaction-detection technologies, but rather
to determine the best fitting theoretical model for various model
organisms. Conversely, a study by Fernandes et al. (2010)48 aims to
quantify methodological biases in experimental data using a newly
proposed measure for PPI network comparison. They find that only
sufficiently large PPI data can be used for inter- and intra- species

comparisons using the mentioned novel measure based on normal-
ised correlations between node degrees, which is largely similar to
one of the five random network models that we use, namely, the
STICKY random model. In addition, they use a model akin to the
degree distribution preservation model (ER-DD) used in our study as
the only random model against which they compare, and some of the
data sets they use are currently outdated by ten years or more.
Moreover, the PPI data analysed in most of the above mentioned
studies is now largely outdated and thus our work offers analysis on
up-to-date yeast PPI data, comprising of roughly 75,000 interactions
between almost 6,000 proteins. Also, unlike any of the previous
studies, we dissect and model PPI data in several ways: 1) we examine
networks created from all available protein-protein interaction data;
2) we examine sub-networks (modules) based on cellular functions;
3) we examine sub-networks based on interaction screening biotech-
nology; 4) we examine sub-networks based on the combination of
cellular functions and interaction screening biotechnology; 5) we
examine functional diversity between intra- and inter- function pro-
tein interactions; and finally, 6) we contrast the observed yeast results
with those obtained for the human PPI data.

Ultimately, our work aims to shed new light in search for general
principles that give rise to the structure and organisation of inter-
action networks21,49.

Results
We analyse current yeast protein-protein interaction (PPI) networks
using random graph models with the same number of nodes and
edges as the data. We apply five most commonly used network
models for modelling PPI networks (see Methods for details on these
random models): Erdös-Rényi random graphs (ER)50, Erdös-Rényi
random graphs with the same degree distribution as the data (ER-
DD)51, Geometric random graphs (constructed using 3-dimensional
Euclidean space, denoted by GEO)52, Scale Free Barabási-Albert type
networks (SF)53 and stickiness-index based networks (STICKY)54. To
rule out any potential bias of random graph models towards a par-
ticular interaction-screening technology, we present the modelling
results obtained for different yeast data sets (see Methods for details
on the yeast data): 16 sub-networks of BioGRID based on different
PPI detection biotechnologies; one network comprised of all PPIs
available in BioGRID31; and one which represents a set of literature
curated interactions55.

As mentioned above, we use a range of six network properties to
measure the fit between models and data, and they all yield consistent
results. We find the yeast PPI networks to be best fit by GEO and
STICKY random graph models (Figure 1): STICKY provides the best
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Figure 1 | The fit of random graph models to yeast PPI networks. The fit of five random graph models (ER, ER-DD, GEO, SF and STICKY) to yeast PPI

networks. The first 10 PPI networks listed on the x axis are extracted from BioGRID according to their evidence codes and labelled as described in the

introductory section above. Label ‘‘biogrid’’ denotes a network comprised of all PPIs from BioGRID. Label ‘‘lc’’ denotes a network comprised of a

literature curated set of PPIs from Reguly et al. (2006)55.
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fit for the full PPI network from BioGRID and the ‘‘acms’’ network, it
is tied with GEO to provide the best fit for ‘‘ba’’ and ‘‘y2h’’ networks,
while GEO provides the best fit for all other data including the
literature curated PPI network55. Since ‘‘acms’’ and ‘‘y2h’’ have high
coverage (81% and 60% of all proteins in BioGRID, respectively), and
the literature curated data are likely of high confidence, it may be
argued that STICKY fits higher coverage while GEO fits higher con-
fidence data the best. However, if this is the case, it is not clear why
‘‘acw’’ and ‘‘rc’’ — which are also of high coverage (including 49%
and 36% of all proteins in BioGRID, respectively) — are best fit by a
GEO model.

GEO random graph model has previously been shown to model
yeast PPI networks well46,56. STICKY random graph model is based
on the normalised degree of a node and captures the fact that a pair of
proteins is more likely to interact if both proteins have high stickiness
indices than if this was not the case and it has also been shown to
model PPI networks well54. In Figure 1 and in all subsequent figures
containing results of random graph modelling, the plots contain
points and error bars, which correspond to the obtained averages
of model-to-data fit, and standard deviations, respectively.

Note that this study is extensive in that it is based on the analysis of
close to 20 million networks — including original PPI data, model
networks and robustness and rewiring experiments. Testing what
effect different inference models (e.g., spoke versus matrix models),
or different types of experiments (e.g., high- versus low- throughput)
have on PPI network topology is beyond the scope of this paper and
could be done as a future follow-up study.

Next, we ask whether any topological difference exists between the
PPI network as a whole and its sub-networks containing only one
biological function, or whether any topological difference exists
between sub-networks containing different biological functions. To
this end, we extract and model functional sub-networks of yeast PPI
data. Interestingly, we find that: (1) functional sub-modules tend to
be organised geometrically regardless of their biological function,
while (2) ‘‘communication links’’ between them tend to be
STICKY (see below for details). Note that when modelling the yeast
data, we noticed that some of the resulting functional sub-networks
are very small and sparse so that they fall under a ‘‘region of instab-
ility’’ recently described in Hayes et al. (2013)57. In brief, what that
region suggests is that when a network is small and sparse (i.e., has a
small number of nodes and edges), the structure of model networks
of that size and density is unstable, so a model cannot be fit to such
data. The following sections describe the structure of the yeast’s
functional sub-modules and their ‘‘linkers’’.

Linked functional sub-modules of PPI networks. We extract
functional sub-modules from yeast PPI data based on a functional
annotation recently used in Costanzo et al. (2010)58. This gives us 14
categories of biological function from which we can create functional
sub-networks (see Methods for details on functional categories and
their corresponding sub-networks). When extracted from full yeast
PPI networks (‘‘acms’’, ‘‘acw’’, ‘‘rc’’, ‘‘y2h’’, literature curated and
BioGRID), most functional sub-networks are best modelled either
by GEO or STICKY random graph models (Figure 2). However,
many functional sub-networks that are neither GEO nor STICKY
are, in fact, insufficiently large to be modelled accurately (i.e., fall into
the ‘‘region of instability’’ described above, resulting in large error
bars over all five random models).

In all networks except for BioGRID, functional sub-networks ‘‘A’’
and ‘‘B’’ (i.e., ‘‘cell cycle progression/meiosis’’ and ‘‘nuclear-cytoplas-
mic transport’’; see Supplementary Table ST2 for a full list of used
biological function categories) have around 50 nodes and interac-
tions, and should be disregarded when viewing the results since such
tiny (sparse) networks cannot be modelled with confidence as prev-
iously described (we include it for completeness). The same holds
true for modules ‘‘E’’, ‘‘G’’, ‘‘K’’ and ‘‘L’’ of the ‘‘y2h’’ and ‘‘literature

curated’’ networks; modules ‘‘E’’ and ‘‘K’’ of the ‘‘rc’’ network; and
module ‘‘K’’ of the ‘‘acw’’ network. Still, a consistent topological
structure for functional sub-modules emerges (Figure 2): GEO net-
works provide the best fit for all functional sub-modules in PPI net-
works (irrespective of biotechnology) while STICKY is a competitor
to GEO only for BioGRID data (Figure 2 e).

This suggests that yeast proteins which belong to functional mod-
ules within a PPI network are organised geometrically, while the PPI
network that includes all available PPI data has both STICKY and
GEO structure (Figures 1 and 2); we confirm the robustness of this
modelling approach by randomly swapping node IDs, thus conserv-
ing all topological properties of the networks (see Figure SF3 in
Supplementary Information). In contrast, we find that proteins link-
ing functional sub-modules contribute to STICKY topology of the
PPI network. These ‘‘linker’’ proteins may or may not be functionally
annotated; if they are, then they are not physically interacting with
proteins belonging to their functional sub-module, but with proteins
belonging to other functional sub-modules (illustrated in
Supplementary Figure SF1; see Discussion for more details on this).
This GEO-STICKY topological duality in PPI data is easily seen by
comparing degree distributions of intra- and inter-functional pro-
teins (Figure 3). The degree distribution of all proteins within the
network follows a power-law (blue circles in Figure 3) which indi-
cates the presence of hubs. If we then break all proteins into two sets
— intra- and inter- functional proteins, i.e., those that interact with
proteins of the same function (green triangles in Figure 3) and those
that do not (red squares in Figure 3), respectively — we see that intra-
functional proteins have Poisson degree distribution just as GEO
networks have (confirming that functional modules are GEO), while
the degree distribution of inter-functional ‘‘linker’’ proteins follows a
power-law as does the degree distribution of the entire PPI network.
This means that the majority of cross-functional ‘‘linkers’’ are of
lower degrees, i.e., make a link between single proteins in different
functional modules, but that there exists a small number of ‘‘linkers’’
that provide high connectivity between functional modules (illu-
strated in Supplementary Figure SF1).

In addition, we find that ‘‘linkers’’ are almost exclusively disor-
dered proteins — also known as intrinsically unstructured, or nat-
urally unfolded proteins — whose lack of a fixed tertiary structure is
said to be key to their diverse binding abilities (binding to enzymes,
signalling receptors, regulators, etc.). We do this by comparing them
against databases of known disordered proteins: MobiDB59,
IDEAL60, and DisProt61. Also, we find ‘‘linkers’’ to be significantly
(p-value # 0.05; all p-values were adjusted using Benjamini-
Hochberg multiple-hypothesis testing procedure) involved in:

. signal transduction (e.g., membrane trafficking, cell surface
receptors).

. regulatory processes (e.g., biosynthesis, metabolism, transcrip-
tional control).

. transport (e.g., trans-membrane, vesicle-mediated).

. organisation of membrane, chromatin, chromosomes, cytoskele-
ton, actin, macromolecular complex subunits, vesicles, mitochon-
drion, spindle, peroxisome and nuclear pores.

. modification of chromatin, histones and small proteins.

Interestingly, the disordered nature and, consequently, biochem-
ical properties of ‘‘linkers’’ are ideal for exactly these types of bio-
logical functions — i.e., for mediating molecular interactions, for
quickly initialising the signalling process, and for orchestrating reg-
ulatory and organisational events.

PPI network topology is independent of interaction-detection
biotechnology. We showed above that the topology of functional
sub-modules of PPI networks is geometric and that communication
between them is done by disordered signalling, regulatory, or
organisational proteins of relatively low connectivity. We test if
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this GEO-STICKY duality depends on the biotechnology used for
detecting PPIs. Surprisingly, we observe the same GEO-STICKY
duality across all screening biotechnologies.

In particular, we modelled 18 yeast PPI networks detected by
different biotechnologies (Figure 1): 16 protein-protein interaction
detecting methods listed above, 1 that combined all interaction-
detecting methods, and 1 literature curated network of higher con-
fidence. Surprisingly, different biotechnologies consistently produce
PPI networks that are best fit by GEO or STICKY network models. In
particular, out of those, six PPI networks are small and sparse so they
fall into the region of instability (‘‘acl’’, ‘‘acrna’’, ‘‘fw’’, ‘‘fret’’, ‘‘ppep’’
and ‘‘prna’’) and could not be modelled with confidence. The
remaining twelve PPI networks are either GEO or STICKY or in-
between. In other words, the topology of the interactome seems not
to be biotechnology-dependant.

Discussion
Whether the above-described results hold true across species is a
subject of future research. Since the human PPI network is the second
most studied, we check if similar holds for it as well. Indeed, we find
that human interactome largely agrees with the above findings for

yeast. However, the human PPI network seems to be ‘‘more sticky’’
than the yeast PPI network. As a source of human PPI data, we used
Interlogous Interaction Database (I2D, http://ophid.utoronto.ca/).
The dataset version is 2.0 and was obtained in October 2012. We
included in the analysis the three variants of the I2D database:

. The network containing the complete set of all experimental and
predicted interactions from I2D; it has 171,580 interactions
between 14,745 proteins; we denote it by I2D-FULL.

. The network containing only the high-confidence experimental
interactions, where we consider high confidence to be all inter-
actions verified by at least two sources from which I2D got the
data (so, this excludes orthology-based predicted interactions that
exist in I2D-FULL, as well as low confidence interactions which
come from a single source). This network, denoted by I2D-HC,
contains 41,143 interactions between 9,647 proteins. Note that
each publication is considered a unique ‘‘interaction supporting
source’’, but in some cases it might be possible that two publica-
tions with different PubMed (http://www.ncbi.nlm.nih.gov/
pubmed) identifiers and with a number of years between them
refer to a similar or updated version of the same initial data set —
in this case it could be argued that the detected interaction is
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Figure 2 | The fit of random graph models to yeast PPI functional sub-networks. We present results for four different biotechnologies — (a) ‘‘acms’’,

(b) ‘‘acw’’, (c) ‘‘rc’’ and (d) ‘‘y2h’’ — as these data sets produce functional sub-networks dense enough to be modelled with confidence (explained above).

Together, these four cover over 90% of all interactions in BioGRID (e). The literature curated set of PPIs55 (f) also contains sufficient PPI data

for all 14 functional subnetworks to be induced on it. On the x-axis, label FULL denotes the complete yeast PPI network (named in the panel’s title) and

labels A, B, C, …, N denote sub-networks of FULL broken down according to biological functions.
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supported by only one rather than two sources and thus intro-
duces a slight mismatch between the expected and actual HC data
set; however since tracking such database changes cannot be
automated, the community standardly defines high-confidence
interactions as we do here.

. The third network (denoted by I2D-PRED) contains only predicted
interactions; it has 59,898 interactions between 6,704 proteins.

Specifically, the full network of human PPIs that includes pre-
dicted interaction (I2D-FULL) is best modelled by STICKY model
followed by ER-DD and SF. Interestingly, the fit of STICKY to the
network containing predicted interactions only (I2D-PRED) is as
good as to the entire human PPI network (I2D-FULL) that contains
predicted interactions, while if we exclude predicted and low confid-
ence interactions from the network (I2D-HC), the fit of GEO
improves (Supplementary Figure SF2). Hence, the topology of the

full human PPI network seems to be dominated by predicted and low
confidence interactions. Furthermore, analogous to the breakdown-
by-function that we performed for yeast data, we model the func-
tional sub-networks in I2D-FULL and I2D-HC human PPI
networks. In total, this gives us 30 networks to analyse: 2 full PPI
networks (I2D-FULL and I2D-HC) and 14 functional sub-networks
for each of those two full PPI networks (see Methods for details on 14
functional categories for annotating human proteins). Unlike for
yeast, we find that the full human PPI network (I2D-FULL) has
mostly STICKY functional sub-modules: 11 out of 14 functional
sub-networks are STICKY, while the remaining 3 are split between
GEO and STICKY (see Figure 4). Interestingly, for the high confid-
ence part of the human PPI network, the topology of the functional
sub-networks is, just like in yeast, ‘‘more geometric’’: 5 out of 14
were split between GEO and STICKY, while the remaining 9 had a
marginal difference between GEO and STICKY. Hence, while the

a)
10

0
10

1
10

2
10

3
10

0

10
1

10
2

10
3

BioGRID

Degree of nodes

N
u

m
b

e
r o

f 
n

o
d

e
s

 

 

All proteins
Proteins in funct. sub nets
Linkers

b)
10

0
10

1
10

2
10

3
10

0

10
1

10
2

10
3

Affinity capture / mass spectrometry

Degree of nodes

N
u

m
b

e
r o

f 
n

o
d

e
s

 

 

All proteins
Proteins in funct. sub nets
Linkers

Figure 3 | Degree distributions of intra- and inter- functional proteins. A log-log scale shows three degree distributions: . – all proteins in a network,

m – proteins in functional sub-networks (intra-functional), and & – ‘‘linker’’ proteins (inter-functional). Left panel shows degree distributions for the full

BioGRID network. Right panel shows degree distributions for interaction data from affinity-capture coupled with mass spectrometry. We show only two

data sets here, but we’ve verified that all PPI screening biotechnologies (listed in the introductory section) yield the same degree distribution patterns.
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Figure 4 | The fit of random network models to functional sub-networks of two human PPI networks. Top panel: full I2D network (I2D-FULL).

Bottom panel: high confidence part of the I2D network (I2D-HC). The plot for I2D-PRED is almost identical to that of I2D-FULL, hence we do not

include it.
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experimentally derived human PPI network has the topology of
functional sub-modules very resemblant of that in yeast PPI network,
these results may indicate that low confidence and interlogously
predicted human PPIs may need to be re-examined.

Additionally, we found the ‘‘linkers’’ in the human PPI network to
be enriched (p-value # 0.05; all p-values were adjusted using
Benjamini-Hochberg multiple-hypothesis testing procedure) in pro-
teins from the Rab protein family, in particular, those involved in
regulation of Rab GTPase activity and regulation of Rab protein
signal transduction. Interestingly, the Rab protein family is an
‘‘umbrella term’’ for all the GO terms that we found in yeast’s ‘‘lin-
kers’’. It is a member of Ras protein superfamily which consists of G-
proteins functioning as an ‘‘on/off’’ switch for cellular processes. Ras
is activated by G-protein coupled receptors (GPCRs) and regulates
cell behaviour by signal transduction and is also involved in cyto-
skeletal dynamics and morphology, as well as membrane trafficking.
We speculate that the reason for which we find ‘‘linkers’’ to be cur-
rently isolated from intra-functional proteins could be down to the
hydrophobic nature of GPCR proteins, which reduces the ability of
high-throughput screening to detect protein interactors of GPCRs.

Proteins that link multiple network disease-modules are consid-
ered to be effective drug-targets since, beside being independently
regulated from the proteins belonging to a single module they are
mostly non-hub nodes, and targeting non-hub nodes is crucial in
mitigating unwanted side-effects of drug therapy62. Even more gen-
erally, nodes which link network modules of any kind provide cross-
talk between signalling pathways which is an especially attractive
property of putative drug targets. Hence, we show that topological
properties of functional sub-networks in yeast and human interac-
tomes are quite similar and linked with proteins whose function is
preserved between yeast and human, and whose further exploration
as effective drug-targets with controllable side-effects could poten-
tially yield novel insight for pharmaceutical drug development.

Methods
Yeast protein-protein interaction data. For modelling the PPI network of baker’s
yeast (S. cerevisiae), we use data from BioGRID31 downloaded in October 2012
(version 3.1.93). Also, we use a set of literature curated PPIs from Reguly et al. (2006)55

which we consider to be a ‘‘high confidence’’ set of PPIs.
Based on experimental evidence codes assigned to each interaction in BioGRID, we

extract 16 networks of physical interactions (Supplementary Table SF1). In addition,
we include a network based on the full set of BioGRID PPIs, which has 5,981 nodes
and 74,542 edges. Together with the ‘‘high confidence’’ PPI network mentioned
above, this gives us 18 yeast PPI networks (16 based on different biotechnology, 1 full
from BioGRID and 1 high confidence from literature curation).

Yeast networks based on functional categories were constructed as follows. For each
of the 18 above-described networks, we extracted functional sub-networks in order to
see whether there is any variation in the topology of different functional sub-units
within a cell and whether that variation could be attributed to experimental tech-
nology that produced them. Functional annotation of yeast proteins that we use
represents an updated version of the annotation used by Costanzo et al. in their 2010
paper ‘‘Genetic landscape of a Cell’’58. The annotation covers 75% of proteins in
BioGRID and separates them into 14 categories based on biological function
(Supplementary Table SF2). We construct a subnetwork on a given function X by
taking nodes annotated with that particular function and all edges between them (i.e.,
we construct an induced sub-graph on nodes involved in function X). This results in
270 distinct yeast networks: 18 above-described PPI networks plus each of those 18
PPI networks broken down into 14 functional categories (18 1 18 3 14 5 270).

Functional annotation of human proteins. If we want to model the functional sub-
modules of the human interactome and compare their structure with those of yeast,
we first need to find an appropriate protein-function annotation which is comparable
to that given by Costanzo et al. (2010)58 for the yeast interactome. Gene Ontology
(GO, http://www.geneontology.org/) offers a directed acyclic graph (DAG) of
biological functions along with a functional annotation for the human interactome.
However, it contains hundreds of functional categories, which are based on a many-
to-many annotation scheme: many proteins have multiple functional annotations,
some proteins hundreds, or even thousands of annotations. The somewhat
condensed version of GO functional annotation, GO Slim, was still too broad for our
purposes, having around 100 functional groups and still being a many-to-many
annotation scheme. Hence, we used GO Slim categories from Mouse Genome
Informatics (MGI, http://www.informatics.jax.org/gotools/data/input/
map2MGIslim.txt) which are specifically built to be consistent with the human GO
annotation (GOA), and are much more concise than human GO Slim: there are 14

functional categories similar to those we use for yeast. We consider this annotation to
be sufficiently compact for the purposes of modelling the human interactome and
comparing the results to those obtained when modelling the yeast interactome (see
Supplementary Table SF3for a list of functional categories).

Random model fitting. To get insight into the structure (topology) of the PPI sub-
networks, we compare them with different random network models. We construct
random model networks with the same number of nodes and edges as the data. For
modelling the PPI networks described above, we take into consideration five most
commonly used network models:

. Erdös-Rényi random model (ER) represents uniformly distributed random
interactions. An ER network is constructed by generating a fixed number of nodes
and then randomly adding edges between uniformly chosen pairs of nodes, until
the desired number of edges is reached50.

. Generalized random model (ER-DD) represents an extension of the ER model in
that the degree distribution of the nodes in the generated network matches the
degree distribution of the nodes in the input network. An ER-DD network is
constructed as follows. Each node is first assigned a ‘‘connection capacity’’, after
which edges are uniformly placed between randomly chosen pairs of nodes and
their available ‘‘connection capacities’’ are reduced51.

. Geometric model (GEO) captures the spatial proximity relationships between
nodes uniformly distributed inside a n-dimensional space52. We construct GEO
network in 3-dimensional space by placing an edge between two nodes if the
Euclidean distance between them is within a distance threshold, E.

. Barabási-Albert Scale-free (SF-BA) model represents networks with power law
degree distributions (i.e., scale-free topology). A SF-BA network is constructed
from a small initial seed network and nodes are added iteratively: new nodes are
attached to existing ones based on attachment probabilities, which, in turn,
correspond to the degrees of existing nodes53.

. The Stickiness-index based model (STICKY) is based on the assumption that the
higher the degrees of two nodes, the more likely they are to interact54. A STICKY
network is constructed by randomly assigning stickiness-index values to all
nodes. These values are proportional to degrees of nodes in the input network.
Then, pairs of nodes are connected with the probability corresponding to the
product of their stickiness-indices.

For each of these five random network models corresponding to each of the 300
data sub-networks (270 yeast networks described above and 30 human networks
described in the main text), we generate 30 model networks. This produces 45,000
random model networks: 300 (yeast and human PPI networks) 3 5 (random models)
3 30 (network instances for each random model) 5 45, 000 networks of the size of
yeast and human PPI networks. To see which model fits the data, we measure the
similarity between all our networks (human and yeast) and each of the 150 model
networks (30 3 5 5 150 of them per data network) by computing the GDD-agree-
ment between them (see below for details on GDD). We compute the average and
standard deviation of the GDD agreement between the data networks and all of the 30
generated instances of one network model, and we do this for each of the five random
network models.

Testing the robustness of the modelling approach. We test the robustness of the
approach for random networks applied to functional sub-modules by swapping a
percentage of IDs of nodes (10%, 20%, …, 100%) and computing the GDD agreement
with all five random models. We create 50 sub-network instances for each of the 10
‘‘rewiring steps’’ (e.g., 50 sub-network instances with 10% of nodes IDs are swapped in
the original network, 50 sub-network instances with 20% of node IDs swapped in the
original network, etc.); and for each rewired instance we compute 30 model instances
of each of the five random network models. As this produces an extremely large
number of networks — 18 networks (16 biotechnology networks, 1 full BioGRID
network and 1 literature curated) 3 14 (functional submodules) 3 10 (rewiring steps
from 10% to 100% in 10% increments) 3 50 (instances of a rewiring) 3 5 (random
network models) 3 30 (model instances) 5 18, 900, 000 networks — and is
computationally unfeasible to compute in a reasonable amount of time (we would
need to generate almost 20 million random network models, compute graphlet and
orbit counts for each of them, and then finally compute the GDDA score), thus we
focused on three largest and most representative networks instead of all 18: affinity
capture/mass spec, yeast two hybrid, and the full BioGRID network. The results are
consistent across the three data sets: as the node IDs get increasingly permuted, the
geometricity of the functional sub-modules drops (GEO model), while the topological
randomness increases (ER and ER-DD); this is more apparent on sub-modules that
have sufficient nodes and edges to be outside of the ‘‘region of instability’’ and be
modelled with confidence (see caption under Figure SF3 for details).

Measuring network similarity. For modelling the PPI networks, we use a range of
global (degree distribution, clustering coefficient, shortest paths, diameter, radius)
and local (Graphlet Degree Distribution Agreement, GDDA) network properties to
determine the fit between real and model data. Below, we give a brief explanation of
each network property used.

. Degree of a node in a network is the number of connection is has to other nodes in
the network.

. Degree distribution of a network is a probability distribution of degrees of all
nodes in a given network. If P(k) is the percentage of nodes in the network that
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have degree k, then the degree distribution is the distribution of P(k) for all values
of k.

. Clustering coefficient, Ci, of a node i is the proportion of the number of edges
between its neighbours, Ei, and the maximum number of edges that could exist

between the neighbors: Ci~
2Ei

ki ki{1ð Þ , where ki is the number of neighbours of i,

i.e., the degree of node i. The average clustering coefficient is defined as the
average of the clustering coefficients of all the nodes in the network:

�C~
1
n

Xn

i~1
Ci, where n is the number of nodes in a network63.

. Shortest path between two nodes, u and v, is the minimum number of edges that
have to be traversed to get from u to v. The length of a shortest path between u and
v is the distance from u to v.

. Eccentricity of a node v, E vð Þ, is the largest distance between v and any other node
in the network.

. Diameter is the maximum eccentricity over all nodes in a network: d~ max
v[V

E vð Þ.
. Radius is the minimum eccentricity over all nodes in a network: r~ min

v[V
E vð Þ.

. Graphlet degree distribution agreement (GDDA) is a measure which shows how
similar the structure of two networks is. It is based on counting the occurrences of
all small induced subgraphs with k nodes, graphlets, where k g {2, 3, 4, 5}. By
definition there are 73 grpahlet degree distributions (GDDs) for each data-to-
model comparison. The distributions are scaled and normalized so that the
dependencies between graphlets are taken into account and then the arithmetic
average of such scaled and normalized distributions aggregates them into a single
number in [0, 1]. Informally, GDDA is a generalisation of the degree distribution,
so that instead of comparing only the degree distributions of two networks, it also
compares how similar the two networks are in terms of distributions of sub-
networks such as triangles and squares46,56. We chose GDDA over motifs64 and
spectral methods65 because it has been shown to be a very robust, yet sensitive
measure that encapsulates a large range of other commonly used measures, such
as the degree distribution (1st GDD), clustering coefficient (3rd GDD), etc. See
Supplementary Information for more details.
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