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iPoint: an integer programming based algorithm for
inferring protein subnetworks

Nir Atias and Roded Sharan*

Large scale screening experiments have become the workhorse of molecular biology, producing data at

an ever increasing scale. The interpretation of such data, particularly in the context of a protein

interaction network, has the potential to shed light on the molecular pathways underlying the

phenotype or the process in question. A host of approaches have been developed in recent years to

tackle this reconstruction challenge. These approaches aim to infer a compact subnetwork that

connects the genes revealed by the screen while optimizing local (individual path lengths) or global

(likelihood) aspects of the subnetwork. Yosef et al. [Mol. Syst. Biol., 2009, 5, 248] were the first to

provide a joint optimization of both criteria, albeit approximate in nature. Here we devise an integer

linear programming formulation for the joint optimization problem, allowing us to solve it to optimality

in minutes on current networks. We apply our algorithm, iPoint, to various data sets in yeast and

human and evaluate its performance against state-of-the-art algorithms. We show that iPoint attains

very compact and accurate solutions that outperform previous network inference algorithms with

respect to their local and global attributes, their consistency across multiple experiments targeting the

same pathway, and their agreement with current biological knowledge.

1 Introduction

The molecular mechanisms that guide cells in their response to
a changing environment are far from understood. High-
throughput techniques are constantly being developed with
the goal of charting the pertaining molecular landscape in
greater detail. However, the sheer mass of data being produced
is hard to decipher. Challenges involve dealing with noisy and
incomplete measurements, observing only snapshots at speci-
fic time points and conditions and, most notably, integrating
different types of data whose inter-relations are not completely
understood.

A fundamental problem in this domain is the inference of a
subnetwork underlying a process of interest. Commonly, a
process is characterized by a set of relevant genes that are
either collected from the literature or obtained via a high-
throughput expression or phenotypic screen. These terminal
genes can be projected onto a protein network in an effort to
gain pathway level understanding of the process.1–3 Addition-
ally, in many cases the process or response in question can be
further characterized by a small set of anchor genes that
mediate it. It is then appealing to assume that the sought

subnetwork should ‘‘economically’’ connect the anchor to the
terminals, as discussed in detail in Yosef et al.4 For example, in
a knockout screen, a gene is knocked out and as a result other
genes are observed to change their expression levels. Here the
knocked out gene serves as a natural anchor and the differen-
tially expressed genes serve as the terminals for the reconstruc-
tion problem. In the following we focus on such ‘‘anchored’’
reconstruction problems.

Surprisingly, there are relatively few previous methods for
anchored reconstruction. Yosef et al.4 modeled the reconstruc-
tion task as a maximization problem where the likelihood of
individual paths leading from the anchor node to the terminal
nodes (local criterion), and that of the entire network (global
criterion) were jointly maximized. They showed that the result-
ing formulation is NP hard and gave an approximation algo-
rithm to solve it. Importantly, they showed that under many
scenarios, the algorithm outperformed local-based or global-
based solutions, demonstrating the added value of the joint
optimization.

Additional state-of-the-art algorithms emphasized the global
criterion. Yeger-Lotem et al.5 used a flow-based approach to
integrate data on the genetic interactors of a given gene with
information on genes that change their expression level follow-
ing its knockout. Briefly, flow originating at a root node, con-
nected to the genetic hits, is drained at a sink node which is
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connected to the set of differentially expressed genes. The goal is
to maximize the flow between the root and the sink (under some
capacity constraints) and at the same time minimize its cost
which is derived from the confidence values associated with the
edges. A second tool of the Fraenkel lab, called SteinerNet,3 is
based on reformulating the reconstruction problem as a prize-
collecting Steiner tree problem. This variant maximizes the
likelihood of the entire network but may produce a subnetwork
spanning only a subset of the input genes when the cost of
connecting them to the network is too high.

Here we provide an integer linear programming based
algorithm, iPoint (integer PrOgramming based INference of
Trees), to solve the optimization problem defined by Yosef et al.
to optimality. This allows us, for the first time, to accurately
compare the optimization criteria of Yosef et al., Yeger-Lotem
et al. and Huang et al. and, further, to evaluate the utility of an
exact solution over an approximate one. To this end we use
diverse data sets from yeast and human, running all four
algorithms across a range of parameters. We evaluate a solution
by its objective value (local and global attributes), by its agree-
ment with biological knowledge and by its consistency across
different experiments targeting the same pathway.

The results demonstrate across many different data sets that
an optimal solution for the joint local–global optimization
problem yields solutions that substantially outperform their
approximate counterparts. They also show that iPoint consis-
tently leads to biologically significant results across different
data sets and species, outperforming previous approaches to
the reconstruction problem.

2 Preliminaries

We assume we are given an initial connected network G = (V,E) of
physical protein–protein and possibly protein–DNA interactions
covering the process in question. For convenience, we assume the
network to be directed, where undirected edges are designated by
two oppositely-directed edges. Every edge in the network has some
confidence level associated with it. We define the length of an edge
(u,v) A E as �log its confidence and denoted it by cuv.

The input to a network inference problem includes: (i) the
source of the response, conveniently represented by a single
anchor node r, from which the signaling-regulatory pathways
related to the response are assumed to emanate; and (ii) the
targets of the response – a subset T C V\{r} of terminal nodes. The
goal is to find the most probable subnetwork (under a scoring
scheme to be defined), H D G, connecting the anchor node with
the terminal nodes. To deal with multiple anchors, the network is
augmented with an auxiliary node, connected to these anchors
through edges with arbitrarily-small length, and the computation
proceeds with the auxiliary node serving as a single anchor.

There are two natural criteria to score a subnetwork. The
first, local criterion scores H according to the length (like-
lihood) of its constituent anchor-terminal paths.2 Precisely,

LlðHÞ ¼
X
t2T

X
ðu;vÞ2Pt

cuv (1)

where Pt is a path from r to terminal t in H. Clearly, to minimize
Ll each Pt can be minimized independently by a shortest path
computation. The second, global criterion is the overall like-
lihood of:1,3,6

LgðHÞ ¼
X
ðu;vÞ2H

cuv (2)

As mentioned above, Yosef et al. gave an approximation
algorithm that jointly minimizes these measures. Formally,
they formed a combined objective

L(H) = cLg(H) + Ll(H) (3)

where the balancing factor c is set to OPTl/OPTg Z 1, where
OPTl, OPTg are the optimal values for Ll and Lg, respectively.

3 An exact algorithm

In this section we formulate the joint optimization problem
defined in eqn (3) as an integer linear program (ILP) that may
be optimally solved. The main challenges in formulating an
efficient ILP are: (i) ensuring the connectivity of the chosen
subnetwork. We overcome this challenge using a characteriza-
tion of optimal solutions and a careful branch and cut search.
(ii) Formulating the local measure. We address this problem
using flow computations.

3.1 Expressing the connectivity constraints

We start by observing that the optimal solution H* = arg minH

{L(H)} must be a tree (more accurately, its underlying
undirected graph is a tree). To see this, note that H* cannot
contain any edge that does not lie on a shortest path (in H*)
from r to some terminal, since its removal would improve
the solution (Lg would decrease and Ll would remain constant).
It follows that H* does not contain directed cycles. By its
optimality w.r.t. the global criterion, its underlying undirected
graph cannot contain cycles. Since G is connected, H* must be
a tree.

Our ILP has the following obvious sets of variables: per-edge
binary variables xuv, indicating whether (u,v) A E should be
included in the solution H*; and per-node variables yv, indiciat-
ing whether v A V should be included in H*. Additionally, we
use per-edge variables, suv, indicating a flow going through
(u,v). We use these flow variables to evaluate the local objective
(eqn (1)) as explained below.

To ensure the resulting subnetwork is a tree we use two sets
of constraints: the first ensures that every node v a r in H* has
exactly one predecessor and the second ensures that H* is
connected or, equivalently, that any partition of the nodes of
G, separating the anchor from some terminal, includes at least
one edge from H* crossing its subsets. Formally, given any
subset of nodes S C V containing some terminal t, the set of
edges entering S is given by �d(S) = {(u,v)|u A V\S, v A S}; the
corresponding connectivity constraint is given by:

X
ðu;vÞ2�dðSÞ

xuv � 1 (4)
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We avoid the explicit specification of these exponentially many
connectivity constraints by introducing them into the formula-
tion only when they are violated. Specifically, while solving the
linear program, the connected components of a candidate
solution reveal such violations.

Finally, we use two additional sets of constraints to
strengthen the formulation and improve the running time of
the algorithm. First, we require the out-degree of an inner node
v in H* to be at least one. Second, we only allow one of two
oppositely-directed edges to be included in H* (to avoid cycles).
The full set of constraints is given in Code Listing 1

When the input set of terminals represents differentially
expressed genes, we may wish to further constrain the solution
subnetwork so that all anchor-terminal paths end with a
protein–DNA interaction (when such edges are available), to
reflect the nature of the response (see, e.g., Yeang et al.7). Let
Ereg be the (possibly empty) set of protein–DNA interactions. We
then add the following constraints to the model:

X
ðu;tÞ2Ereg

xut � yt 8t 2 T (13)

We call the resulting variant iPointreg.

3.2 Expressing the objective function

The objective function of our ILP has two terms: a global term
(eqn (2)), trivially given by

P
(u,v)AE cuvxuv, and a local one.

To express the local term, we change the summation order
and sum over all paths going through a given edge:

LlðHÞ ¼
X
ðu;vÞ2H

tuvcuv (14)

where tuv is the number of terminals connected to the anchor
through (u,v) in H. We calculate tuv using a flow formulation,
where |T| units of flow leave the anchor and each terminal
drains only a single unit of flow. All other nodes preserve the
amount of flow going through them. This formulation is
expressed using the following linear constraints:

X
ðv;uÞ2E

svu �
X
ðu;vÞ2E

suv ¼
jT j if v ¼ r
�1 if v 2 T
0 o=w

8<
: 8v 2 V (15)

suv Z xuv 8(u,v) A E (16)
X
ðv;rÞ2E

svr ¼ 0 (17)

We argue that suv, the flow going through (u,v), is equal to tuv.
To show this, we first prove by induction over the level of v in
the tree H* that suv Z tuv. The base case is for edges leading to a
leaf v (which must be a terminal). By eqn (15) and (16), suv Z 1
as claimed. Consider now the case where v is an internal node
in H*. Let (v,w1)� � �(v,wk) be the edges leaving v. By the induction
hypothesis, for all i, svwi

Z tvwi
. Furthermore, all the terminals

in the subtree rooted at wi admit a path from the root going
through (v,wi). There are now two cases to consider. If v is a terminal
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then by eqn (15) we have suv =
P

isvwi
+ 1 Z

P
i tvwi

+ 1 = tuv.
Otherwise, suv =

P
i svwi

Z
P

i tvwi
= tuv. It remains to show that

equality holds. By eqn (15) and (17) this must be the case at the
root r. It is easy to see that equality must hold in the rest of the
tree by a top-down induction at the node level in the tree. This
completes the proof.

Interestingly, a similar flow formulation can be used to
express the connectivity of the solution using only a polynomial
number of constraints (see also e.g., Bruckner et al.8). However,
despite the theoretical succinctness of this formulation, adding
violated constraints was much faster in practice.

4 Experimental setup and performance
evaluation

We applied iPoint and iPointreg in two scenarios: (i) reconstructing
the response to a pheromone subnetwork in yeast; and (ii) recon-
structing a subnetwork underlying Huntington’s disease (HD) in
human. The performance of our approach was compared with
those of Yosef et al., ResponseNet and SteinerNet. To execute the
algorithm of Yosef et al. we used the ANAT tool.9 To run Respon-
seNet10 and SteinerNet11 we used their respective websites.

4.1 Data sources

The analysis of the response to the pheromone pathway was
based on a network downloaded from the ResponseNet web-
site. These networks contained 54 545 protein–protein interac-
tions (PPIs) and 14 023 protein–DNA interactions, spanning
6634 yeast proteins. Edge confidence was computed using a
Bayesian approach taking into account the type of evidence
available for the given interaction as described in Yeger-Lotem
et al.5 Genetic interactions were downloaded from the Sacchar-
omyces Genome Database.12 Differentially expressed genes,
defined as those having at least two-fold change with p o 0.05,
were extracted from gene signatures published by Hughes et al.13

For the HD pathway analysis, we used the human network
available as part of ANAT. This network contained 44 737 PPIs
and 4299 protein–DNA interactions spanning 10 380 proteins.
Confidence values were calculated according to a logistic
regression model,14 taking into account the experimental
techniques by which each of the interactions was discovered
and the number of times it was reported. Differentially
expressed genes, defined as those displaying more than two-
fold change, were taken from the Caduate Nucleus data of
Hodges et al.15

4.2 Execution parameters

To ensure a fair comparison we varied the execution para-
meters of the different approaches across a wide range, as
recommended by their respective authors.

For the method of Yosef et al., we used a A {0,0.25,0.5},
covering the local–global spectrum (with 0 preferring local
solutions, 0.25 balancing the two criteria and 0.5 preferring
global solutions). We additionally varied the margin parameter
to integrate solutions that deviate by at most 2% from optimum.

For ResponseNet, we used capping = 0.9 which places an
upper bound on the edges’ confidence to reduce bias toward
extensively studied interactions. We varied the G parameter
which controls the surplus of flow in the flow-maximization
problem in the range of 5–20, thereby affecting the size of the
resulting network.

For SteinerNet, we used the ‘‘rooted’’ version and varied the
b parameter, which controls the penalty on exclusion of term-
inals from the network and thereby the resulting solution size,
in the range of 1–6. The nodes were connected via protein–DNA
edges and their prizes were defined as absolute value of their
log fold change divided by the largest log fold change in the
data, as previously described. Some of the reconstructed net-
works did not include the anchor nodes. In those cases we used
the ‘‘unrooted’’ version and specified the anchor as an addi-
tional terminal, associated with an arbitrarily (and connected
via a physical interaction).

The ILP formulation of iPoint variants was optimally solved
using CPLEX,16 typically within minutes (see Section 4.3 for
detailed running times). We additionally merged with the
optimal solution up to 35 near-optimal solutions deviating
from it by no more than 5%. These perform almost equally
well under the objective and are therefore deemed as biologi-
cally relevant. Note that the merged structure need not be a
tree. Following Yosef et al., we added a penalizing factor, equal
to the length of an edge at the 25th percentile, to the confidence
of edges, thereby favoring shorter paths from the anchor to
terminals.

4.3 Running time

To solve our formulation, two complex problems should be
solved: (i) optimally solving the global criterion, also known as
the Steiner tree problem, to obtain the balancing factor c;
and (ii) optimally solving the joint optimization criterion. In
addition, our implementation may optionally merge multiple,
equally good solutions.

Surprisingly, solving the joint optimization criterion
required less than two minutes in both yeast and human
datasets. The comptuation of the balancing factor was more
costly, taking six minutes on average on the yeast data set and
half an hour on the human dataset. Interestingly, this cost may
be avoided as we noted the balancing factor was highly corre-
lated (Pearson 0.8, p o 0.0003) with the number of terminals
and could possibly be estimated using a linear regression
model. The approximation algorithm of Yosef et al.4 is much
faster requiring only a few seconds to complete.

Enumeration of multiple solutions was a time consuming
task. For the yeast data sets, it took on average two hours to
enumerate all 35 solutions and on the human data set 100
minutes were needed.

4.4 Performance evaluation

We evaluated a solution based on the enrichment of its genes
with respect to functionally related gene sets. To this end, we
used two scores: the first computing the hypergeometric enrich-
ment of all inferred (non-input) genes of the reconstructed
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subnetwork; and the second capturing the topology of the
subnetwork by computing the number of enriched anchor-to-
terminal paths of the subnetwork (p o 0.05, FDR corrected).
For each terminal, we arbitrarily chose a shortest path connect-
ing it to the anchor and focused on paths with at least three
nodes. For each algorithm we picked a solution (across the
different parameters values) maximizing the sum of these two
criteria by normalizing each score relative to the maximum
achieved by the algorithm. For ease of comparison we report
scores normalized across all algorithmic variants in a similar
manner.

For the response to pheromone pathway data sets we
computed the enrichment with genes annotated as related to
pheromone response (GO:0019236). For these data sets we
further assessed the consistency of the solutions. The consis-
tency score of an algorithm (consisting of several experiments
targeting the same pathway) was defined as the number of
nodes (resp., edges) appearing in at least two subnetworks
(reconstructed for different experiments) divided by the total
number of nodes (resp., edges) across all subnetworks pro-
duced by the algorithm.

For the Huntington’s disease data set we computed the
enrichment of the solutions’s genes with genes belonging to
one of: KEGG HD pathway (hsa:05016), HD-associated genes in
the Genetic Association Database (GAD),17 HD-associated genes
in the Comparative Toxicogenomics Database (CTD),18 and
with apoptosis-related genes according to KEGG (Apoptosis
Pathway; hsa:04210) and the gene ontology (Apoptotic Process,
GO:006915).

5 Results

We applied iPoint and iPointreg to several data sets in yeast and
human and compared them to state-of-the-art algorithms of
Yosef et al., Yeger-Lotem et al. and Huang and Fraenkel. We
evaluated the performance of the algorithms according to three
criteria: (i) the joint objective function; (ii) enrichment of
solutions with relevant gene sets such as related GO terms;
and (iii) the consistency of solutions across different experi-
ments targeting the same pathway.

As an initial assessment of iPoint, we examined the con-
tribution of iPoint’s optimal solution (with respect to the joint
objective) to the objective function and to the size of the
resulting subnetwork. Applying our algorithm and that of Yosef
et al. on the various data sets, we found that on average the
approximation algorithm deviated by roughly 10% from opti-
mum in both measures (see Fig. 1). However, for one of the data
sets the objective deviated by more than 30% from optimum
and in general the deviation could be much larger and is a
function of the number of terminals.4

5.1 Pheromone response pathway

Our second set of experiments concerned the reconstruction of
the well-studied pheromone response pathway in yeast. Follow-
ing Yeger-Lotem et al.,5 we used multiple data sets in which
different genes in this pathway were perturbed (STE5/7/11/12/18)

and data were collected on their genetic (synthetic lethal)
interactors and differentially expressed genes. The different
algorithms were used to connect the genetic interactors to the
differentially expressed genes using an integrated network of
protein–protein and protein–DNA interactions.

We scored the obtained solutions by their enrichment and
that of their constituent pathways with the response to the
pheromone biological process (GO:0019236), as suggested by
Huang and Fraenkel.3 The results are summarized in Fig. 2 and
Table 1. In all but one data set (DSTE5) iPoint variants attained
the highest combined score. Ranking the algorithms according
to their average normalized scores across the different datasets
(Table 1), consistently places iPoint variants as the best per-
forming algorithms, followed by ResponseNet, Yosef et al. and
SteinerNet. The ranking also shows that the iPointreg variant is
preferable in this setting.

An interesting feature of this data set is that all perturba-
tions target the same pathway and, thus, allow estimating the
consistency or stability of the produced solutions. Consistent
algorithms allow integrating solutions from multiple perturba-
tions in a confident manner into a consensus solution. We
measured the consistency of any given algorithm by its ability
to recover similar sets of nodes and edges across data sets. As
shown in Fig. 3, the SteinerNet algorithm achieved the highest
consistency scores on these data sets, followed by the iPoint
variants.

5.2 Huntington’s disease

Huntington’s disease is a neurodegenerative disease caused
by a mutation in the Huntingtin (HTT) gene. The exact
mechanisms underlying the pathogenesis of the disease are

Fig. 1 Optimal vs. approximate solution. The dark bars denote the ratio
between the objective value of the approximation algorithm to the optimum
(attained by iPoint). The light bars denote the ratio between the sizes of the
networks inferred by the approximation algorithm and iPoint. Data sets are
ordered according to the number of terminals.
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not fully understood. In this case, we applied the four algo-
rithms to infer subnetworks connecting HTT to genes that
are differentially expressed in the disease state. Notably,
across a wide range of algorithmic parameters ResponseNet
did not produce any solution for this data set. Therefore, we
compared iPoint’s performance to that of Yosef et al. and
SteinerNet only.

We calculated the enrichment of the solutions produced
with respect to three gene sets related to HD: (i) KEGG HD
pathway; (ii) HD genes in CTD; and (iii) HD genes in GAD.
Additionally, as HD is strongly associated with apoptotic pro-
cesses,19,20 we scored the enrichment of the reconstructed
networks with genes annotated for apoptosis in KEGG and GO.

In all but one data set (GAD genes), iPoint variants out-
performed the other algorithms (see Fig. 4). Of note is the poor
performance of SteinerNet with respect to path enrichments in

these data, even when forcing its solutions to include the
anchor (HTT) as described above.

Fig. 2 Functional enrichment of inferred subnetworks on the response to pheromone data. Evaluation of enrichment of the entire network solution (light gray bars)
and paths connecting anchors with terminals (dark gray bars) of different approaches for network reconstruction across multiple data sets related to the response to
the pheromone pathway. Method abbreviations are as follows: I – iPoint, IR – iPointreg, R – ResponseNet, S – SteinerNet and Y – Yosef et al.

Table 1 Performance evaluation on the response to pheromone data sets.
Values denote average normalized scores across the different data sets. Network
details the enrichment score for the entire network and Paths details the
enrichment score for individual paths connecting anchors with terminals

Algorithm Network Paths Total

iPoint 0.78 0.90 1.68
iPointreg 0.85 0.88 1.73
ResponseNet 0.73 0.66 1.39
Yosef et al. 0.21 0.96 1.17
SteinerNet 0.33 0.78 1.11

Fig. 3 Consistency evaluation. Shown are percents of consistent edges and
nodes across solutions to the different pheromone response data sets. The
numbers above the bars denote the number of consistent nodes or edges versus
their total number across the inferred networks.
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6 Conclusions

In this paper we presented iPoint, an exact algorithm for
subnetwork inference. The algorithm uses an ILP formulation
to optimize global and local aspects of the reconstructed
network. Our contribution is threefold: (i) we formulate the
theoretical model of Yosef et al. as an integer linear program
and optimally solve it in an efficient manner; (ii) we give an
empirical assessment for the approximation performance of
the algorithm with respect to network size and objective; and
(iii) we demonstrate the advantages of our framework over
state-of-the-art inference algorithms on various data sets
in yeast and human, providing high quality and consistent
networks.

Several extensions of our work are possible. First, following
the approach of Huang and Fraenkel,3 the algorithm could be
easily adapted to account for confidence values of the input
terminals, thereby including in the inferred subnetwork high
scoring terminals and, possibly, discarding low scoring term-
inals. Second, the ILP could serve as a convenient platform for
integrating additional data sets by placing explicit constraints
to ensure a reconstruction that is highly consistent across the
data sets.
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