
INFORMS Journal on Computing
Vol. 16, No. 4, Fall 2004, pp. 360–370
issn 0899-1499 �eissn 1526-5528 �04 �1604 �0360

informs ®

doi 10.1287/ijoc.1040.0088
©2004 INFORMS

Computational Problems in Noisy SNP and
Haplotype Analysis: Block Scores, Block
Identification, and Population Stratification

Gad Kimmel
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel, kgad@tau.ac.il

Roded Sharan
International Computer Science Institute, 1947 Center St., Suite 600, Berkeley, California 94704, USA,

roded@icsi.berkeley.edu

Ron Shamir
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel, rshamir@tau.ac.il

The study of haplotypes and their diversity in a population is central to disease-association research. We
study several problems arising in haplotype block partitioning. Our objective function is the total number

of distinct haplotypes in blocks. We show that the problem is NP-hard when there are errors or missing data,
and provide approximation algorithms for several of its variants. We also give an algorithm that solves the
problem with high probability under a probabilistic model that allows noise and missing data. In addition, we
study the multipopulation case, where one has to partition the haplotypes into populations and seek a different
block partition in each one. We provide a heuristic for that problem and use it to analyze simulated and real
data. On simulated data, our blocks resemble the true partition more than the blocks generated by the LD-based
algorithm of Gabriel et al (2002). On single-population real data, we generate a more concise block description
than do extant approaches, with better average LD within blocks. The algorithm also gives promising results
on real two-population genotype data.

Key words : haplotype; block; genotype; SNP; subpopulation; stratification; algorithm; complexity
History : Accepted by Harvey J. Greenberg, Guest Editor; received August 2003; revised March 2004; accepted
April 2004.

1. Introduction
The availability of a nearly complete human genome
sequence makes it possible to look for telltale dif-
ferences between DNA sequences of different indi-
viduals on a genome-wide scale, and to associate
genetic variation with medical conditions. The main
source of such information is single nucleotide poly-
morphisms (SNPs). Millions of SNPs have already
been detected (Sachidanandam et al. 2001, Venter
et al. 2001), out of an estimated total of 10 million
common SNPs (Kruglyak and Nickerson 2001). This
abundance is a blessing, as it provides very dense
markers for association studies. Yet, it is also a curse,
as the cost of typing every individual SNP becomes
prohibitive. Haplotype blocks allow researchers to
use the plethora of SNPs at a substantially reduced
cost.
The sequence of alleles in contiguous SNP posi-

tions along a chromosomal region is called a haplotype.
A major recent discovery is that haplotypes tend to
be preserved along relatively long genomic stretches,
with recombination occurring primarily in narrow

regions called hot spots (Gabriel et al. 2002, Patil et al.
2001). The regions between two neighboring hot spots
are called blocks, and the number of distinct haplo-
types within each block that are observed in a popula-
tion is very limited: typically, some 70% to 90% of the
haplotypes within a block belong to very few (two to
five) common haplotypes (Patil et al. 2001). The remain-
ing haplotypes are called rare haplotypes. This find-
ing is very important to disease-association studies
because once the blocks and common haplotypes are
identified, one can hopefully obtain a much stronger
association between a haplotype and a disease pheno-
type. Moreover, rather than typing every individual
SNP, one can choose few representative SNPs from
each block that suffice to determine the haplotype.
Using such tag SNPs allows a major saving in typing
costs.
Due to their importance, blocks have been studied

quite intensively recently. Daly et al. (2001) and Patil
et al. (2001) used a greedy algorithm to find a par-
tition into blocks that minimizes the total number of

360



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS 361

SNPs that distinguish a prescribed fraction of the hap-
lotypes in each block. Zhang et al. (2002) provided
a dynamic-programming algorithm for the same pur-
pose. Koivisto et al. (2003) provided a method based
on minimum description length to find haplotype
blocks. Bafna et al. (2003) proposed a combinato-
rial measure for comparing block partitions and sug-
gested a different approach to find tag SNPs that
avoids the partition into blocks. For an excellent,
recent review on computational aspects of haplotype
analysis, see Halldorsson et al. (2003).
In this paper we address several problems that

arise in haplotype studies. Our starting point is a
very natural optimization criterion: we wish to find
a block partition that minimizes the total number of
distinct haplotypes that are observed in all the blocks.
This criterion for evaluating a block partition fol-
lows naturally from the above-mentioned observa-
tion: within blocks in the human genome, only a few
common haplotypes are observed (Patil et al. 2001,
Daly et al. 2001, Gabriel et al. 2002). The same cri-
terion is used in the pure-parsimony approach for
haplotype inference, where the problem is to resolve
genotypes into haplotypes, using a minimum number
of distinct haplotypes (Gusfield 2003). In this case, the
problem was shown to be NP-hard (Hubbell 2003, cf.
Halldorsson et al. 2003). This criterion was also pro-
posed by Gusfield (2001) as a secondary criterion in
refinements to Clark’s inference method (Clark 1990).
Minimizing the total number of haplotypes in blocks
can be done in polynomial time (if there are no data
errors) using a dynamic-programming algorithm. As
we shall show, the problem becomes hard when errors
are present or some of the data are missing. In fact,
the problem of scoring a single given block turns out
to be the bottleneck. Note that in practice, one has to
account for rare haplotypes and hence minimize the
total number of common haplotypes.
The input to all the problems we address is a hap-

lotype matrix A with columns corresponding to SNPs
in their order along the chromosome and rows corre-
sponding to individual chromosomal segments typed.
Because virtually all SNP sites have two alleles, we
adopt the common assumption that the matrix is
binary after we transform the two distinct alleles at
each site arbitrarily to 0 and 1. Aij is the allele type of
chromosome i in SNP j . The first set of problems that
we study concerns the scoring of a single block in the
presence of errors or missing data. In one problem
variant, we wish to find a minimum number of hap-
lotypes such that by making at most E changes in
the matrix, each row vector is transformed into one
of them. We call this problem total block errors (TBE).
We show that the problem is NP-hard, and provide
a polynomial 2-approximation algorithm to a variant

of TBE, where one wishes to minimize the total num-
ber of errors induced by the solution and the num-
ber of common haplotypes is bounded. In a second
problem, we wish to minimize the number of haplo-
types when the maximum number of errors between a
given row and its (closest) haplotype is bounded by
e. We call this problem local block errors (LBE). This
problem is shown to be NP-hard too, and we pro-
vide a polynomial algorithm (for fixed e) that guar-
antees a logarithmic approximation factor. In a third
variant, some of the data entries are missing (man-
ifested as question marks in the block matrix), and
we wish to complete each of them by zero or one
so that the total number of resulting haplotypes is
minimized. Again, we show that this incomplete haplo-
types (IH) problem is NP-hard. To overcome the hard-
ness we resort to a probabilistic approach. We define
a probabilistic model for generating haplotype data,
including errors, missing data, and rare haplotypes,
and provide an algorithm that scores a block correctly
with high probability under this model.
Another problem that we address is stratifying the

haplotype populations. It has been shown that the
block structure in different populations is different
(Gabriel et al. 2002). When the partition of the sample
haplotypes into subpopulations is unknown, deter-
mining a single block structure for all the haplotypes
can create artificial solutions with far too many haplo-
types. We define the minimum block haplotypes (MBH)
problem, where one has to partition the haplotyped
individuals into subpopulations and provide a block
structure for each one so that the total number of
distinct haplotypes over all subpopulations and their
blocks is minimum. We show that MBH is NP-hard,
but we also provide a heuristic for solving it in
the presence of errors, missing data, and rare haplo-
types. The algorithm uses ideas from the probabilistic
analysis.
We applied our algorithm to several synthetic and

real datasets. We show that the algorithm can iden-
tify the correct number of subpopulations in sim-
ulated data, and that it is robust to noise sources.
On simulated data, when compared to the LD-based
algorithm of Gabriel et al. (2002), we show that our
algorithm forms a partition into blocks that is much
more faithful to the true one. On a real dataset of
Daly et al. (2001) we generate a more concise block
description than do extant approaches, with a better
average value of high LD-confidence fraction within
blocks. As a final test, we applied our MBH algo-
rithm to the two largest subpopulations reported in
Gabriel et al. (2002). As these were genotype data,
we treated heterozygotes as missing data. Neverthe-
less, the algorithm determined that there are two sub-
populations and correctly classified over 95% of the
haplotypes.



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
362 INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS

The paper is organized as follows. In §2 we study
the complexity of scoring a block under various noise
sources and present our probabilistic scoring algo-
rithm. In §3 we study the complexity of the MBH
problem and describe a practical algorithm for solv-
ing it. Section 4 contains our results on simulated and
real data.
A preliminary version of the results of this paper is

to appear in Proceedings of the Third Workshop on
Algorithms in Bioinformatics (WABI) (Kimmel et al.
2003).

2. Scoring Noisy Blocks
In this section we study the problem of minimizing
the number of distinct haplotypes in a single block
under various noise sources. This number will be
called the score of the block. The scoring problem
arises as a key component in block partitioning in
single- and multiple-population situations.
The input is a haplotype matrix A with n rows

(haplotypes) and m columns (SNPs). A may contain
errors (where 0 is replaced by 1 and vice versa), result-
ing from point mutations or measurement errors, and
missing entries, denoted by “?”. Clearly, if there are
no errors or missing data then a block can be scored
in time proportional to its size by a hashing algo-
rithm. Below we define and analyze several versions
of the scoring problem that incorporate errors into the
model. We assume until §2.4 that there are no rare
haplotypes. In the following we denote by vi the ith
row vector (haplotype) of A, and by V = 
v1� � � � � vn
the set of all n row vectors.

2.1. Minimizing the Total Number of Errors
First we study the following problem: We are given
an integer E, and wish to determine the minimum
number of (possibly new) haplotypes, called cen-
troids, such that by changing at most E entries in A,
every row vector is transformed into one of the
centroids. Formally, let h�·� ·� denote the Hamming
distance between two vectors. Define the following
problem:
Problem 1 (Total Block Errors (TBE)). Given a

binary haplotype matrix A and an integer E, find a
minimum number k of centroids v1� � � � � vk, such that∑

u∈V mini h�u�vi� ≤ E.
Determining if k = 1 can be done trivially in O�nm�

time by observing that the minimum number of errors
is obtained when choosing v1 to be the consensus vec-
tor of the rows of A. The general problem, however,
is NP-hard, as shown below:

Theorem 1. TBE is NP-hard.

Proof. We provide a reduction from VERTEX
COVER (Garey and Johnson 1979). Given an instance
�G= �W =
w1�����wm�F =
e1�����en��k� of VERTEX
COVER, where w.l.o.g. k < m−1, we form an instance

�A�k + 1�E� of TBE. A is an �n + mn2� × m matrix,
whose rows are constructed as follows:
(1) For each edge ei = �s� t� ∈ F , we form a binary

vector vei
with 1 in positions s and t, and 0 in all other

positions.
(2) For vertex wi ∈ W define the vertex vector ui as

the vector with 1 in its ith position, and 0 otherwise.
For each wi ∈W we form a set Ui of n2 identical copies
of ui.
Finally, define E = n+n2�m−k�. We shall prove that

G has a vertex cover of size at most k if and only if
there is a solution to TBE on A with at most k + 1
centroids and E errors.

�⇒� Suppose that G has a vertex cover 
w1� � � � �wt
with t ≤ k. Take some cover with t = k. Partition the
rows of A into the following subsets: for 1≤ i ≤ t the
ith subset will contain all vectors corresponding to
edges that are covered by vi (if an edge is covered by
two vertices, choose one arbitrarily), along with the n2

vectors in Ui. Its centroid will be wi. The �t+1�st sub-
set will contain all vectors corresponding to vertices
of G that are not members of the vertex cover, with
its centroid being the all-0 vector. It is easy to verify
that the number of errors induced by this partition is
exactly n+n2�m− k�= E.

�⇐� Suppose that A can be partitioned into at most
t+1 subsets with corresponding centroids (with t ≤ k)
such that the number E∗ of induced errors is at most
E. In particular, examine a partition that induces a
minimum number of errors. W.l.o.g., we can assume
that for each i all vectors in Ui belong to the same
set in the partition. For each vertex i ∈ W , the set Ui

induces at least n2 errors, unless ui is one of the cen-
troids. Let l be the number of centroids that corre-
spond to vertex vectors. Then the number E ′ of errors
induced by the remaining m− l sets of vertex vectors
is at least �m− l�n2. But because E ′ ≤ E∗, it follows that
�m− l�n2 ≤ E = �m− k�n2 + n. Hence, k ≤ l + 1/n and
by integrality k ≤ l. Now, l ≤ t + 1 ≤ k + 1. Suppose
to the contrary that l = k + 1. Because the Hamming
distance of any two distinct vertex vectors is 2, we get
E ′ ≥ 2�m−k−1�n2 > E (because m > k+1), a contradic-
tion. Thus, l = k. We claim that these k vertices form a
vertex cover of G. By the argument above, every other
vertex vector must belong to the �k+ 1�st subset and,
moreover, its centroid must be the all-0 vector. Con-
sider a vector w corresponding to an edge �u�w�. If w
is assigned to the �k+1�st subset, it adds 2 to E∗. Sim-
ilarly, if w is assigned to one of the first k subsets cor-
responding to a vertex v, and u�w �= v, then w adds 2
to E∗. Because there are n edges and the assignment
of vertex vectors induced E ′ = n2�m−k�≥ E−n errors,
each edge can induce at most one error. Hence, each
edge induces exactly one error, implying that every
edge is incident to one of the k vertices. �



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS 363

Due to the hardness of TBE, we resort to enu-
merative approaches. We study the optimization ver-
sion where E is to be minimized. A straightforward
approach is to enumerate the centroids in the solu-
tion and assign each row vector of A to its closest
centroid. Suppose there are k centroids in an opti-
mum solution. Then the complexity of this approach
is O�kmn2mk�, which is feasible only for very small
m and k. In the following we present an alternative
approach. We devise a �2− 2/n�-approximation algo-
rithm, which takes O�n2m+ knk+1� time.
To describe the algorithm and prove its correct-

ness we use the following lemma, that focuses on
the problem of seeking a single centroid v ∈ W
for the set of vectors W = 
v1� � � � � vn. Denote ṽb ≡
argminv∈
0�1m

∑n
i=1 h�v�vi�, and let E ≡∑

v∈W h�v� ṽb�.

Lemma 2. Let vb = argminv∈W

∑n
i=1 h�v�vi�. Then∑n

i=1 h�vb�vi�≤ �2− 2/n�E.

Proof. Define s ≡ ∑
1≤i<j≤n h�vi� vj�. We first claim

that s ≤ E�n− 1�. Then,
s = ∑

i<j

h�vi� vj�≤
∑
i<j

 h�vi� ṽb�+h�ṽb� vj�!

= �n− 1�∑
i

h�vi� ṽb�= �n− 1�E�

The first inequality follows because the Hamming dis-
tance satisfies the triangle inequality. The last equality
follows by using ṽb as the centroid. This proves the
claim.
By the definition of vb, for every vc �= vb we have∑

vi∈V

h�vb�vi�≤
∑
vi∈V

h�vc�vi��

Summing the above inequality for all n vectors, not-
ing that h�v�v�= 0, we get
n
∑
vi∈V

h�vb�vi�≤ 2
∑

1≤i<j≤n

h�vi� vj�= 2s ≤ 2E�n− 1�� �

Theorem 3. TBE can be �2 − 2/n�-approximated in
O�n2m+ knk+1� time.

Proof. Algorithm: Our algorithm enumerates all
possible subsets of k rows in A as centroids, assigns
each other row to its closest centroid, and computes
the total number of errors in the resulting solution.

Approximation Factor. Consider two (possibly
equal) partitions of the rows of A: Palg = �A1� � � � �Ak�,
the one returned by our algorithm; and Pbest = � �A1�
� � � � �Ak�, a partition that induces a minimum number
of errors. For 1≤ i ≤ k denote

vi
b = argmin

v∈Ai

∑
vj∈Ai

h�v�vj�� v̂i
b = argmin

v∈ �Ai

∑
vj∈ �Ai

h�v�vj��

The number of errors induced by Palg and Pbest are

Ealg =
k∑

i=1

∑
v∈Ai

h�vi
b� v� and Ebest =

k∑
i=1

∑
v∈ �Ai

h�v̂i
b� v��

respectively. Finally, let ni = � �Ai� and denote by ei the
minimum number of errors induced in subset �Ai, by
the optimal solution. In particular,

∑k
i=1 ni = n and∑k

i=1 ei = E.
Because our algorithm checks all possible solutions

that use k of the original haplotypes as centroids and
chooses a solution that induces a minimal number
of errors, Ealg ≤ Ebest. By Lemma 2,

∑
v∈ �Ai

h�v̂i
b� v� ≤

�2− 2/ni�ei for every 1≤ i ≤ k. Summing this inequal-
ity over all 1≤ i ≤ k we get

Ealg ≤ Ebest =
k∑

i=1

∑
v∈ �Ai

h�v̂i
b� v�≤

k∑
i=1

(
2− 2

ni

)
ei

≤
k∑

i=1

(
2− 2

n

)
ei =

(
2− 2

n

)
E�

Complexity. As a preprocessing step we compute
the Hamming distance between every two rows in
O�n2m� time. There are O�nk� possible sets of cen-
troids. For each centroid set, assigning rows to cen-
troids and computing the total number of errors takes
O�kn� time. The complexity follows. �

We note that Ostrovsky et al. (2002) presented a
probabilistic algorithm for the above problem, with
an approximation ratio of �1+4√$�2, where 1

4 ≥ $ > 0.

2.2. Handling Local Data Errors
In this section we treat the question of scoring a block
when the maximum number of errors between a haplo-
type and its centroid is bounded. Formally, we study
the following problem.
Problem 2 (Local Block Errors (LBE)). Given a

block matrix A and an integer e, find a minimum
number k of centroids v1� � � � � vk and a partition P =
�V1� � � � �Vk� of the rows of A, such that h�u�vi�≤ e for
every i and every u ∈ Vi.

Theorem 4. LBE is NP-hard even when e = 1.
Proof. We use the same construction as in the

proof of Theorem 1. We claim that the VERTEX
COVER instance has a solution of cardinality at most
k if and only if the LBE instance has a solution of
cardinality at most k+ 1, such that at most one error
is allowed in each row. The “only if” part is imme-
diate from the proof of Theorem 1. For the “if” part,
observe that any two vectors corresponding to a pair
of independent edges cannot belong to the same sub-
set in the partition, and so is the case for a vertex
vector and any vector corresponding to an edge that
is not incident on that vertex. This already implies a
vertex cover of size at most k + 1. Because m > k + 1
there must be a subset in the partition that contains
at least two vectors corresponding to distinct vertices.



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
364 INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS

But then either it contains no edge vector, or it con-
tains exactly one edge vector and the vectors corre-
sponding to its endpoints. In any case we obtain a
vertex cover of the required size. �

Theorem 5. There is an O�logn� approximation algo-
rithm for LBE that takes O�n2me� time.

Proof. Our approximation algorithm for LBE is
based on a reduction to SET COVER. Let V be the
set of row vectors of A. Define the e-set of a vector v
as the set of vectors of the same length that have
Hamming distance at most e to v. Denote this e-set
by e�v�. Let U be the union of all e-sets of row vectors
of A. We reduce the LBE instance to a SET COVER
instance �V �� �, where � ≡ 
e�v�∩V % v ∈U. Clearly,
there is a 1-1 correspondence between solutions for
the LBE instance and solutions for the SET COVER
instance, and that correspondence preserves the car-
dinality of the solutions. We now apply an O�logn�-
approximation algorithm for SET COVER (see, e.g.,
Cormen et al. 1990) to �V �� � and derive a solution to
the LBE instance, which is within a factor of O�logn�
of optimal. The complexity follows by observing that
�U � =O�nme�. �

2.3. Handling Missing Data
In this section we study the problem of scoring an
incomplete matrix, i.e., a matrix in which some of
the entries may be missing. The problem is formally
stated as follows.
Problem 3 (Incomplete Haplotypes (IH)). Given

an incomplete haplotype matrix A, complete the
missing entries so that the number of haplotypes in
the resulting matrix is minimum.

Theorem 6. IH is NP-hard.

Proof. We present a reduction from GRAPH COL-
ORING (Garey and Johnson 1979). Given an instance
�G = �W�E��k� of GRAPH COLORING we build an
instance �A�k� of IH as follows. Let W = 
1� � � � �n.
Each i ∈W is assigned an n-dimensional row vector vi

in A with 1 in the ith position, 0 in the jth position
for every �i� j� ∈ E, and “?” in all other positions.
Given a k-coloring of G, let W1� � � � �Wk be the

corresponding color classes. For each class Wi =

v

�i�
j1

� � � � � v
�i�
ji

 we complete the ?s in the vectors cor-
responding to its vertices as follows. Each ? in one
of the columns v

�i�
j1

� � � � � v
�i�
ji
is completed to 1, and all

the others are completed to 0. The resulting matrix
contains exactly k distinct haplotypes. Each haplotype
corresponds to a color class, and has 1 in position i if
and only if i is a member of the color class.
Conversely, given a solution to IH of cardinality at

most k, each of the solution haplotypes corresponds
to a color class in G. This follows because any two
vectors corresponding to adjacent vertices must have
a column with both 0 and 1 and, thus, represent two
different haplotypes. �

2.4. A Probabilistic Algorithm
In this section we define a probabilistic model for
the generation of haplotype block data. The model is
admittedly naive, in that it assumes equal allele fre-
quencies and independence between different SNPs
and distinct haplotypes. However, as we shall see in
§§3 and 4, it provides useful insights towards an effec-
tive heuristic that performs well on real data. We give
a polynomial algorithm that computes the optimal
score of a block under this model with high proba-
bility (w.h.p.). Our model allows for all three types of
confusing signals mentioned earlier: rare haplotypes,
errors, and missing data.
Denote by T the hidden true haplotype matrix, and

by A the observed one. Let T ′ be a submatrix of T ,
which contains one representative of each haplotype
in T (common and rare). We assume that the entries of
T ′ are drawn independently according to a Bernoulli
distribution with parameter 0.5. T is generated by
duplicating each row in T ′ an arbitrary number of
times. This completes the description of the proba-
bilistic model for T . Note that we do not make any
assumption on the relative frequencies of the haplo-
types. We now introduce errors to T by independently
flipping each entry of T with probability ' < 0�5.
Finally, each entry is independently replaced with a
? with probability p. Let A be the resulting matrix,
and let A′ be the submatrix of A induced by the rows
in T ′. Under these assumptions, the entries of A′ are
independently identically distributed as follows: A′

ij =
0 with probability �1− p�/2, A′

ij = 1 with probability
�1− p�/2 and A′

ij = ? with probability p.
We say that two vectors x and y have a conflict in

position i if one has value 1 and the other has value 0
in that position. Define the dissimilarity d�x�y� of x
and y as the number of their conflicting positions (in
the absence of ?s, this is just the Hamming distance).
We say that x is independent of y and denote it by
x � y, if x and y originate from two different haplo-
types in T . Otherwise, we say that x and y are mates
and denote it by x ≈ y. Intuitively, independent vec-
tors will have higher dissimilarity compared to mates.
In particular, for any i:

pI ≡ Prob�xi = yi �x � y-xi� yi ∈ 
0�1�= 0�5�
pM ≡ Prob�xi = yi �x ≈ y-xi� yi ∈ 
0�1�

= '2+ �1−'�2 > 0�5� (1)

Problem 4 (Probabilistic Model Block Scoring
(PMBS)). Given an incomplete haplotype block
matrix A, find a minimum number k of centroids
v1� � � � � vk, such that under the above probabilistic
model, with high probability, each vector u ∈ A is a
mate of some centroid.



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS 365

Score(A):

1. Let V be the set of rows in A.

2. Initialize a heap S.

3. While V �= ∅ do:

(a) Choose some v ∈ V .

(b) H ← {v′ ∈ V | d(v, v′) ≤ t∗}.
(c) V ← V \ H

(d) Insert(S,|H|).
4. Output S.

.

Figure 1 An Algorithm for Scoring a Block Under a Probabilistic Model
of the Data

Note. Procedure insert(S, s) inserts a number s into a heap S.

Our algorithm for scoring a block A under the
above probabilistic model is described in Figure 1. It
uses a threshold t∗ on the dissimilarity between vec-
tors to decide on mate relations. We set t∗ to be the
average of the expected dissimilarity between mates
and of the expected dissimilarity between indepen-
dent vectors (see proof of Theorem 7). The algorithm
produces a partition of the rows into mate classes of
cardinalities s1 ≥ s2 ≥ · · · ≥ sl. Given any lower bound
/ on the fraction of rows that need to be covered
by the common haplotypes, we give A the score h =
argminj

∑j
i=1 si ≥ /n. We prove below that w.h.p. h is

the correct score of A.

Theorem 7. If m=0�logn� then w.h.p. the algorithm
computes the correct score of A.

Proof. We prove that w.h.p. each mate relation
decided by the algorithm is correct. Applying a union
bound over all such decisions will give the required
result. Fix an iteration of the algorithm at which v
is the chosen vertex and let v′ �= v be some row vec-
tor in A. Let Xi be a binary random variable that is
1 if and only if vi and v′

i are in conflict. Clearly, all
Xi are independent identically distributed Bernoulli
random variables. Define X ≡ d�v�v′� = ∑m

i=1Xi and
f ≡ �1− p�2. Using (1) we conclude:

�X �v′ � v� ∼ Binom�m�f �1− pI ���

�X �v′ ≈ v� ∼ Binom�m�f �1− pM���

We now require the following Chernoff bound (cf.
Alon and Spencer 2000). If Y ∼ Binom�n� s� then for
every $ > 0 there exists c$ > 0 that depends only on $,
satisfying:

Prob �Y −ns� ≥ $ns!≤ 2e−c$ns�

Let 4 = mf �1− pM�. Define $ ≡  �1− pI � − �1− pM�!/
�2�1−PM�� and t∗ ≡ $4. Applying the Chernoff bound

and using the assumption that m=0�logn�, we have
that for all c > 0:

Prob�X > t∗ �v′ ≈ v� ≤ 2e−c$m <
1
nc

�

Prob�X ≤ t∗ �v′ � v� <
1
nc

�

Because we check whether d�v�v′� < t∗ a total of
O�n2� times, by applying a union bound we con-
clude that the probability that throughout the algo-
rithm some implied mate relation is incorrect and is
bounded by a polynomial in 1/n. �

When using the algorithm as part of a practical
heuristic (see §3), we do not report the rare haplo-
types. Instead, we report only the smallest number
of the most abundant haplotypes as computed by the
algorithm that together capture a fraction / of all
haplotypes.

3. The Multipopulation Case
Suppose that the matrix A contains haplotypes from
several homogeneous populations. The partitioning
into blocks can differ among populations (Gabriel
et al. 2002). Here, we study the question of recon-
structing the partition of the rows of A into sets
called subpopulations, and the columns in each set into
blocks, such that the sum of the scores of the subma-
trices corresponding to these blocks is minimized.
Problem 5 (Minimum Block Haplotypes (MBH)).

Given a haplotype matrix A, find a partition of its
rows into subpopulations so that the total number of
block haplotypes is minimized.
In practice, we usually have full information on the

population from which each of the haplotypes origi-
nates. However, in certain situations there may be a
hidden stratification of a population that can affect
the conclusions of association studies on it. Problem 5
aims to address such situations.

3.1. Minimum Block Haplotypes
For a haplotype matrix A and a subset S of its rows,
we denote by HA

S the (minimum) total number of
block haplotypes in an optimal partition of S into
blocks. Our goal is to find HA =HA

V . Given a partition
P = �P1� � � � � Pr � of the rows of A into subpopulations,
we let HA�P� =∑r

i=1H
A
Pi
, that is, the (minimum) total

number of block haplotypes in an optimal partition of
each subpopulation into blocks. In the following we
omit the superscript A when it is clear from the con-
text. Given a partition P , H�P� can be polynomially
computed in the noiseless case using a simple adapta-
tion of the dynamic-programming algorithm of Zhang
et al. (2002). However, the general MBH problem is
NP-hard.

Theorem 8. MBH is NP-hard.



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
366 INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS

Proof. We provide a reduction from VERTEX
COVER (Garey and Johnson 1979). Let �G= �V �E�� k�
be an instance of VERTEX COVER where �V � = n,
�E� = m, and w.l.o.g. n < m. We build an instance
�A�n�8m+ 4+ 2m2�+ 12m+ 2k� of (the decision ver-
sion of) MBH as follows. We associate with the ver-
tices and edges of G row vectors of dimension c =
�2n+1�m10. These vectors will constitute the matrix A.
Each of the row vectors v is partitioned into segments
where the segment of length m10 between positions
i− ≡ �i − 1�2m10 + 1 and i+ ≡ �i − 1�2m10 + m10 cor-
responds to vertex i. The m10 last positions in v are
called its tail.
The content of each segment will be a periodic

binary sequence. For an integer k let Sk be the
sequence �0� � � � �0�1� of length k where S0 = �0� and
S1 = �1�. For convenience we denote Sk also as S1k , and
use S−1

k to denote the complement of that sequence.
Each of the vector segments consist of repetitions of
some Sk or its complement. We denote by Sk�l� the
sequence formed by concatenating copies of Sk up
to a total length of l where the last copy may be
truncated.
For an ordered sequence of integers 1 = i1 < · · · <

il+1 = c+1, inducing a partition of  1� � � � � c!, we define
the following vector set:

Ui1� ���� il+1�k1� � � � � kl�

≡ ⋃
r1� ���� rl∈
1�−1

(
S

r1
k1

�i2− i1�� � � � � S
rl
kl
�il+1− il�

)
�

In words, Ui1�����il+1�k1� � � � � kl� is a set of 2l vectors of
dimension c, where the sth vector contains in its tth
segment copies of Sr

kt
with r = 1 iff the tth bit of s is 0.

With each vertex vi we associate the set of 2 ·
�2 · 4m� · 2 · 2m2 = 64m3 vectors:

Vi =
⋃

1≤j≤4m� im2≤k<�i+1�m2

U1� i−� i++1� c−m10+m9i� c+1�0� j�0� k��

Thus, each vertex vector has four segments: until
position i− it is all zeros or all ones; between i− and
i+ it has one of 4m possible sequences or their com-
plements; until the beginning of its tail it is again all
zeros or all ones; and then at a unique position, which
depends on the vertex identity, starts one of 2m2 pos-
sible tail sequences for that vertex.
With each edge el% 1 ≤ l ≤ m connecting vertices

i and j , where i < j , we associate a set of 2 ·
�2 · 4� · 2 · �2 · 4� · 2= 512 vectors

El =
4l⋃

p=4l−3
U1� i−� i++1� j−� j++1� c+1�0� p�0� p�0��

Thus, each edge vector contains one of eight possi-
ble sequences in its �i−� i+� and �j−� j+� segments, and
these sequences are unique for each edge.

By construction, HVi
= 2+ 8m+ 2+ 2m2 = 8m+ 4+

2m2 and HEl
= 16+ 6= 22. We now prove that G has

a vertex cover of size at most k if and only if A has a
partition P with H�P�≤ n�8m+ 4+ 2m2�+ 12m+ 2k.
(⇒) W.l.o.g., let 
1� � � � � t be a vertex cover of size

t ≤ k for G. Let Ci be the set of edges covered by ver-
tex i (for an edge covered by two vertices, choose the
one with smaller index) where Ci =� for i > t. Define
Ai ≡ Vi ∪

⋃
j∈Ci

Ej for 1 ≤ i ≤ n. Let P = �A1� � � � �An�.
We shall prove that H�P� is of the required size.
Fix i and let Ci = 
e1� � � � � ep where ej connects i to
sj and, w.l.o.g., i < s1 < · · · < sp. We claim that HAi

=
�8m+ 4+ 2m2�+ 12p+ 29 where 9 is an indicator that
equals 1 if and only if i ≤ t. Consider the partition of
Ai into the following blocks: �1� i−1�� �i−� i+�� �i+ + 1�
s−1 1�� �s−1 � s+1 �� � � � � �s+p−1 + 1� s−p 1�� �s−p � s+p �� �s+p + 1, c −
m10+m9− 1�� �c −m10+m9� c�. Due to Vi, Ai has two
haplotypes in the first block, 8m haplotypes in the
second block (which corresponds to the segment of
vertex i), two haplotypes in the segment before last,
and 2m2 haplotypes in the tail block. In addition, if
we add the sets Ej one by one to the same subpopu-
lation, then every such set, corresponding to the edge
�i� sj �, adds two new blocks and 12 haplotypes (two
haplotypes in ��j − 1�+ + 1� j−1� and 8+ 2 in �j−� j+�).
The only exception is j = 1, for which two more hap-
lotypes are added in the tail segment. Thus, if �Ci� =
p > 0 then HAi

= �8m + 4 + 2m2� + 12p + 2 and if Ai

contains no edge vectors then HAi
= 8m+4+2m2. The

claim follows.
(⇐) Suppose that A has a partition P = �A1� � � � �At�

so that H�P� ≤ n�8m+ 4+ 2m2�+ 12m+ 2k. In partic-
ular, examine the partition P ∗ for which H ≡H�P ∗� is
minimal. W.l.o.g. every one of Vi and Ej is completely
contained in some Ak. We first claim that no set in
the partition contains both Vi and Vj for i �= j . Sup-
pose this is not the case. Define a new partition P ′ in
which Vj is moved into a new set. Then H −H�P ′�≥
�2m2 + 2�− 8m− 4> 0 where the first term is due to
the tail segments of i and j and the second is due
to edge vectors corresponding to edges incident on j
that are possibly present in the same partition set as
Vi and Vj . Thus, we arrive at a contradiction.
Now consider an edge l connecting vertices i and j ,

and let Ar ⊇ El. We claim that Vi ⊂ Ar or Vj ⊂ Ar

(in P ∗). To see that, observe that in the first case l adds
at most 14 haplotypes to H (similar to the argument
in the “only if” part of the proof), while in the second
case it adds at least 16 haplotypes to H because each
of the segments �i−� i+� and �j−� j+� contains eight
unique haplotypes.
Finally, suppose there are t sets in P ∗ that contain

edge vectors. Then H ≥ n�8m + 4 + 2m2� + 12m + 2t,
implying that t ≤ k and G has a vertex cover of size
at most k. �



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS 367

3.2. A Polynomial Case
We now give a polynomial algorithm for a restricted
version of MBH in which each subpopulation is
required to be a contiguous set of rows. We call this
variant minimum contiguous block haplotypes (MCBH).
Its solution may be useful for designing heuristics
that permute the matrix rows for local improvement.
For clarity, in the discussion below we shall assume
that there exists an oracle that scores a given block in
O�1� time. Denote the optimal solution of MCBH on
A by HA.

Theorem 9. MCBH can be solved in O�n2m2� time.

Proof. Algorithm: Let A be an input haplotype
matrix. We give a dynamic-programming procedure
to solve MCBH. A key component of the algorithm is
a dynamic-programming algorithm, which computes
the score for a given subpopulation S in a straightfor-
ward manner, similar to Zhang et al. (2002). Let T S

i ,
0 ≤ i ≤ m, be the minimum number of block haplo-
types in the submatrix of A induced on the rows in S
and the columns 1� � � � � i, where T S

0 = 0. For a pair of
columns i� j let BS

ij be the score of the block induced
by the rows in S and the columns in 
i� � � � � j. Then
the following recursive formula can be used to com-
pute T S

m:
T S

i = min
0≤j≤i−1

T S
j +BS

ji�

We now use a second dynamic-programming algo-
rithm to compute HA. Define Pi, 0 ≤ i ≤ n as the
minimum number of block haplotypes in any row
partition of A
1�����i. Clearly, P0 = 0 and Pn = HA.
The computation of Pi uses the following recursive
formula:

Pi =min
1≤j≤i

Pj−1+ T 
j� ���� i
m �

Complexity. Computing T S
m for any S takes O�m2�

time. Hence, computing HA takes O�n2m2� time in
total. �

3.3. A Heuristic
Next, we present an efficient heuristic for MBH. The
algorithm has three components: a block-scoring pro-
cedure, a dynamic-programming algorithm to find the
optimum block structure for a single subpopulation,
and a simulated-annealing algorithm to find an opti-
mum partition into homogeneous subpopulations. We
describe these components below.
The dynamic-programming component is as de-

scribed in the first part of the proof of Theorem 9. For
scoring a block within the dynamic-programming pro-
cedure we use the probabilistic algorithm described
in §2.4 with a small modification: instead of using a
fixed threshold t∗, we compute a different threshold
t∗v�v′ for every two vectors v�v′. This is done by count-
ing the number l of positions in which neither of the

vectors has ?, and setting t∗v�v′ = 1
2 l �1− pM�+ �1− PI �!.

Scoring an n× t block takes O�tnk� time where k is a
bound on the number of common haplotypes. Hence,
the dynamic program takesO�mb2nk) total time where
b is an upper bound on the allowed block size. Addi-
tional saving may be possible by precomputing the
pairwise distances of rows in contiguous matrix seg-
ments of size up to b.
The goal of the annealing process is to optimize

the partition of the haplotypes into subpopulations.
We define a neighboring partition as any partition that
can be obtained from the current one by moving one
haplotype from one group to another. The process
proceeds through a sequence of neighboring parti-
tions depending on their scores and the temperature
parameter in a standard annealing fashion. A cru-
cial factor in obtaining a good solution is the ini-
tialization of the annealing process. We perform the
initialization as follows. We compute pairwise simi-
larities between every two haplotypes. The similar-
ity Suv of vectors u and v is calculated as follows.
Initially we set Suv = 0. We then slide a window of
size w = 20 along u and v (20 is the average size
of a block). For each position i we check whether
d��ui� � � � �ui+w−1�� �vi� � � � � vi+w−1��≤w' (for a param-
eter '). If this is the case, we increment Suv and jump
to i + w for the next iteration. Otherwise, we jump
to i + 1. The intuition is that rows from the same
subpopulation should be more similar in blocks in
which they share the same haplotypes and, thus, have
a better chance to hit good windows and accumu-
late a higher score in the scan. Next we cluster the
haplotypes based on their similarity values using the
K-means algorithm (MacQueen 1965). The resulting
partition is taken as the starting point for the anneal-
ing process. To determine the number of subpopula-
tions K, we try several choices and pick the one that
results in the lowest score.
The running time of the practical algorithm is dom-

inated by the cost of each annealing step. Because this
step changes the haplotypes of two subpopulations
only, it suffices to recompute the scores of these sub-
populations only.

4. Experimental Results
4.1. Simulations
We applied our heuristic algorithm to simulated and
real haplotype data. First we conducted extensive
simulations to check the ability of our algorithm to
detect subpopulations and recognize their block struc-
ture. Our simulation setup is as follows. We generated
simulated haplotype matrices with 100 haplotypes
and 300 SNPs. The number of subpopulations var-
ied in the simulations. Subpopulations were of equal
sizes. For each subpopulation we generated block



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
368 INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

Number of subpopulations tested

S
co

re

1
2
3
4

True number
of subpopulations

Figure 2 Simulation Results: Determining the Number of
Subpopulations

Note. For each simulated matrix, containing one to four subpopulations, the
score assigned by the algorithm to partitions (y axis) with different numbers
of subpopulations (x axis). Simulations were performed with error level 1%
and no missing entries.

boundaries using a Poisson process with rate 20.
Each block within a subpopulation contained two to
five common haplotypes, covering 90% of the block’s
rows (with the remaining 10% being rare haplotypes).
Within each block of each subpopulation, the haplo-
type matrix was created according to the probabilistic
model described in §2.4. Errors and missing data were
introduced with varying rates of up to 30%.
As a first test we simulated several matrices with

one to four subpopulations and applied our algorithm
with K ranging from 1–8. For each K we computed
the score of the partition obtained (as described in
§3.3). In each of the simulations the correct number
got the lowest score (Figure 2). Next we simulated
several matrices with three subpopulations and differ-
ent levels of errors and missing data. Table 1 summa-
rizes our results in correctly assigning haplotypes to
subpopulations (the set with the largest overlap with
the true subpopulation was declared correct). It can
be seen that the MBH algorithm gives highly accurate
results for missing data and error levels up to 10%.

Table 1 Accuracy of Haplotype Classification by the
MBH Algorithm for Different Noise Levels
(Data Are for Three Subpopulations)

% Correct
% Errors % Missing entries classifications

0 0 99
5 5 98
10 10 95
15 15 84
20 20 71

For comparison, we also implemented the LD-
based algorithm of Gabriel et al. (2002) for finding
blocks. We compared the block structures produced
by our algorithm and by the LD-based algorithm to
the correct one, using an alignment score similar to
the one used in comparison of two DNA restriction
enzyme maps (Waterman 1995, §9.10). The score of
two partitions P1 and P2 of m SNPs is computed as
follows. We form two vectors of size m−1, in which 1
in position i denotes a block boundary between SNPs
i and i+1, and 0 denotes that the two SNPs belong to
the same block. We then compute an alignment score
of these vectors using an affine gap penalty model
with penalties 3, 2, and 0�5 for mismatch, gap open,
and gap extension, respectively, and a match score of
zero.
We simulated one population with 3,000 haplo-

types, computed its block structure with both algo-
rithms, and compared them to the true one. We
repeated this experiment with different error and
missing-data rates. The results are shown in Figure 3.
It can be observed that our algorithm yields partitions
that are closer to the true ones, particularly as the rate
of errors and missing data rises. An example of the
actual block structures produced is shown in Figure 4.

4.2. Real Data
We applied our algorithm to two published datasets.
The first dataset of Daly et al. (2001) consists of 258
haplotypes and 103 SNPs. We applied our block parti-
tioning algorithm with the following parameters: the
maximal allowed error ratio between two vectors to
be considered as resulting from a single haplotype
was 0.02. In addition, we allowed up to 5% rare

0% 5% 10% 15% 20% 25% 30%
0

50

100

150

200

250

300

350

Error and missing data rates

D
is

ta
nc

e 
sc

or
e

Figure 3 Accuracy in Block Reconstruction by our Algorithm (Solid
Line) and the Algorithm of Gabriel et al. (2002) (Dashed
Line)

Note. y axis: the score of aligning the reconstructed structure with the cor-
rect one. x axis: the noise rate.



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS 369

Figure 4 An Example of the Block Structures Produced for an Error
Rate of 1% by Our Algorithm (Bottom), the LD-Based Algo-
rithm of Gabriel et al. (2002) (Top), and the True Solution
(Middle)

Note. Each block boundary is denoted by a vertical line.

haplotypes, i.e., in scoring a block we sought the min-
imum number of different haplotypes that together
cover at least 95% of the rows.
In order to assess our block partitioning and com-

pare it to the one reported by Daly et al. (2001),
we calculated LD-based measures for both partitions.
Specifically, we calculated the LD-confidence values
between every pair of SNPs inside the same block,
using a <2 test, as follows. For a pair i� j of SNPs, let
Pa�b, where a� b ∈ 
0�1, be the frequency of occurrence
of a in position i and b in position j of a haplotype.
Let p0, p1 (q0, q1) denote the frequencies of haplotypes
with 0 and 1 in the ith (jth) SNP, respectively. Define
D ≡ P00P11 − P01P10. D is a measure of linkage dis-
equilibrium, and nD2/�p0p1q0q1� is distributed as <2,
with one degree of freedom.
For each block, we calculated the fraction of

SNP pairs in the block whose LD-confidence value
exceeded 95% (high LD pairs). The average fraction
over all blocks was computed as the ratio of the total
number of high LD pairs inside blocks to the total
number of SNP pairs within blocks.
A comparison between our block partition to the

one obtained by Daly et al. (2001) is presented in
Table 2. Overall, the two block partitions have similar
boundaries and similar scores. The average fraction
of high LD pairs in blocks for our partition was 0.823.
For the partition of Daly et al. (2001) the average frac-
tion was 0.796. Another partition was produced for
these data by Eskin et al. (2003) based on minimizing
the number of representative SNPs. Their partition

Table 2 Comparison Between the Blocks of Daly et al. (2001) and the
Blocks Generated by Our Algorithm

Fraction of high Fraction of high
Daly et al. blocks LD pairs Our blocks LD pairs

1: 1–9 0�78 1: 1–15 0�81
2: 10–15 1
3: 16–24 0�78 2: 16–24 0�78
4: 25–35 0�95 3: 25–36 0�94
5: 36–40 0�70 4: 37–44 0�68
6: 41–45 1
7: 46–77 0�77 5: 45–67 0�84

6: 68–78 0�71
8: 78–85 0�50 7: 79–81 0�33
9: 86–91 0�93 8: 82–90 0�89
10: 92–98 0�95 9: 91–95 1
11: 99–103 1 10: 96–103 0�75

Average 0�796 0�822

Table 3 Separation to Subpopulations and Block Finding on Different
Regions in Part of the Data of Gabriel et al. (2002)

Chromosome: % Correct
region #SNPs Discovered blocks classifications

1: 3a 119 1: 1–35, 36–119 95
2: 1–46, 47–119

2: 8a 73 1: 1–73 99
2: 1–73

6: 24a 121 1: 1–52, 53–121 98
2: 1–44, 45–121

8: 29a 104 1: 1–27, 28–104 100
2: 1–40, 41–104

9: 32a 110 1: 1–25, 26–110 99
2: 1–38, 39–110

14: 41a 141 1: 1–48, 49–63, 64–141 100
2: 1–12, 13–63, 64–141

Note. Includes subpopulations A and D

contained 11 blocks and its average fraction of high
LD pairs was 0.814.
The second dataset we analyzed, of Gabriel et al.

(2002) contains unresolved genotype data. In order to
apply our algorithm to these data, we transformed
them into haplotypes by treating heterozygous SNPs
as missing data. Notably, the fraction of heterozygous
sites was relatively small, so the loss in information
was moderate. We considered the two largest popu-
lations in the data, A (Europeans) and D (individuals
from Yoruba), consisting of 93 and 90 samples, respec-
tively. Each population was genotyped in ∼60 differ-
ent regions in the genome. We analyzed six of those
regions that contained over 70 SNPs. In all cases we
were able to detect two different populations in the
data and classify correctly over 95% of the haplotypes.
The results are shown in Table 3. The results with
three populations were poorer, due to the smaller size
of the third population.

5. Concluding Remarks
We have introduced a simple and intuitive mea-
sure for scoring and detecting blocks in a haplotype
matrix: the total number of distinct haplotypes in
blocks. Using this measure along with several error
models, we have studied the computational prob-
lems of scoring of a block, and of finding an optimal
block structure. Most versions of the scoring problem
that address imperfect data are shown to be NP-hard.
A similar situation occurred with the f score function
of Zhang et al. (2002). We devised several algorithms
for different variants of the problem. In particular, we
gave a simple algorithm, which, under an appropriate
probabilistic model, scores a block correctly with high
probability in the presence of errors, missing data,
and rare haplotypes.
Note that our measure is adequate only when the

ratio of the number n of typed individuals to the



Kimmel, Sharan, and Shamir: Computational Problems in Noisy SNP and Haplotype Analysis
370 INFORMS Journal on Computing 16(4), pp. 360–370, © 2004 INFORMS

number m of SNPs is not too extreme. When n is very
small and m is large, our measure might be optimized
by the trivial solution of a single block.
In simulations, our score leads to more accurate

block detection than does the LD-based method of
Gabriel et al. (2002). While the simulation setup is
quite naive, it seems to act just as favorably for the
LD-based methods. The latter methods apparently
tend to over-partition the data into blocks, as they
demand a very stringent criterion between every pair
of SNPs in the same block. This criterion is very hard
to satisfy as block size increases, and the number
of pairwise comparisons grows quadratically. On the
data of Daly et al. (2001) we generated a slightly more
concise block description than do extant approaches,
with a somewhat better fraction of high-LD pairs.
We also treated the question of partitioning a set of

haplotypes into subpopulations based on their differ-
ent block structures, and devised a practical heuris-
tic for the problem. On a genotype dataset of Gabriel
et al. (2002) we were able to identify two subpopu-
lations correctly, in spite of ignoring all heterozygous
types. A principled method of dealing with geno-
type data remains a computational challenge. While
in some studies the partition into subpopulations is
known, others may not have this information, or fur-
ther, finer partition may be detectable using our algo-
rithm. In our model we implicitly assumed that block
boundaries in different subpopulations are indepen-
dent. In practice, some boundaries may be common
due to the common lineage of the subpopulations.
A more detailed treatment of the block boundaries
in subpopulations should be considered when addi-
tional haplotype data reveal the correct way to model
this situation.

Acknowledgments
R. Sharan was supported by a Fullbright grant. R. Shamir
was supported by a grant from the Israel Science Founda-
tion (Grant 309/02). The authors thank Chaim Linhart and
Dekel Tsur for their comments on the manuscript.

References
Alon, N., J. H. Spencer. 2000. The Probabilistic Method. John Wiley

and Sons, Inc., New York.
Bafna, V., B. V. Halldorsson, R. Schwartz, A. Clark, S. Istrail. 2003.

Haplotyles and informative SNP selection algorithms: Don’t
block out information. Proc. Seventh Annual Internat. Conf. Res.
Comput. Molecular Biol. (RECOMB). The Association for Com-
puting Machinery. New York, 19–27.

Clark, A. 1990. Inference of haplotypes from PCR-amplified sam-
ples of diploid populations. Molecular Biol. Evolution 7 111–122.

Cormen, T. H., C. E. Leiserson, R. L. Rivest. 1990. Introduction to
Algorithms. MIT Press, Cambridge, MA.

Daly, M. J., J. D. Rioux, S. F. Schaffner, T. J. Hudson, E. S.
Lander. 2001. High-resolution haplotype structure in the
human genome. Nature Genetics 29(2) 229–232.

Eskin, E., E. Halperin, R. M. Karp. 2003. Large scale reconstruction
of haplotypes from genotype data. Proc. Seventh Annual Inter-

nat. Conf. Res. Comput. Molecular Biol. (RECOMB). The Associ-
ation for Computing Machinery. New York, 104–113.

Gabriel, S. B., S. F. Schaffner, H. Nguyen, J. M. Moore, J. Roy,
B. Blumenstiel, J. Higgins, M. DeFelice, A. Lochner, M. Faggart,
S. N. Liu-Cordero, C. Rotimi, A. Adeyemo, R. Cooper, R. Ward,
E. S. Lander, M. J. Daly, D. Altshuler. 2002. The structure
of haplotype blocks in the human genome. Science 296
2225–2229.

Garey, M. R., D. S. Johnson. 1979. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman and
Co., San Francisco, CA.

Gusfield, D. 2001. Inference of haplotypes in samples of diploid
populations: Complexity and algorithms. J. Comput. Biol. 8(3)
305–323.

Gusfield, D. 2003. Haplotype by pure parsimony. Proc. Four-
teenth Annual Sympos. Combin. Pattern Matching (CPM), Morelia,
Mexico. Springer, Berlin, 144–155.

Halldorsson, B. V., V. Bafna, N. Edwards, R. Lippert, S. Yooseph,
S. Istrail. 2003. Combinatorial problems arising in SNP. Discrete
Math. Theoret. Comput. Sci. Lecture Notes in Computer Science,
No. 2731. Springer-Verlag, Heidelberg, Germany, 26–47.

Hubbell, E. 2003. Finding a parsimony solution to haplotype phase
is NP-hard. Unpublished manuscript, Affymetrix Inc., Santa
Clara, CA.

Kimmel, G., R. Sharan, R. Shamir. 2003. Identifying blocks and sub-
populations in noisy SNP data. Proc. Third Workshop Algorithms
in Bioinformatics (WABI). Springer-Verlag, Berlin, 303–319.

Koivisto, M., M. Perola, T. Varilo, W. Hennah, J. Ekelund, M. Lukk,
L. Peltonen, E. Ukkonen, H. Mannila. 2003. An MDL method
for finding haplotype blocks and for estimating the strength
of haplotype block boundaries. Proc. Pacific Sympos. Biocomput-
ing (PSB), Big Island of Hawaii, Hawaii, Vol. 8. World Scientific,
Singapore, 502–513.

Kruglyak, L., D. A. Nickerson. 2001. Variation is the spice of life.
Nature Genetics 27 234–236.

MacQueen, J. 1965. Some methods for classification and analysis
of multivariate observations. Proc. Fifth Berkeley Sympos. Math.
Statist. Probab., University of California Press, Berkeley, CA,
281–297.

Ostrovsky, R., Y. Rabani. 2002. Polynomial time approximation
schemes for geometric k-clustering. J. Assoc. Comput. Mach. 49
139–156.

Patil, N., A. J. Berno, D. A. Hinds, W. A. Barrett, J. M. Doshi,
C. R. Hacker, C. R. Kautzer, D. H. Lee, C. Marjoribanks,
D. P. McDonough, B. T. Nguyen, M. C. Norris, J. B. Sheehan,
N. Shen, D. Stern, R. P. Stokowski, D. J. Thomas, M. O. Trulson,
K. R. Vyas, K. A. Frazer, S. P. Fodor, D. R. Cox. 2001. Blocks of
limited haplotype diversity revealed by high-resolution scan-
ning of human chromosome 21. Science 294 1719–1723.

Sachidanandam, R., D. Weissman, S. C. Schmidt, J. M. Kakol, L. D.
Stein, G. Marth, S. Sherry, J. C. Mullikin, B. J. Mortimore,
D. L. Willey, S. E. Hunt, C. G. Cole, P. C. Coggill, C. M. Rice,
Z. Ning, J. Rogers, D. R. Bentley, P. Y. Kwok, E. R. Mardis, R. T.
Yeh, B. Schultz, L. Cook, R. Davenport, M. Dante, L. Fulton,
L. Hillier, R. H. Waterston, J. D. McPherson, B. Gilman,
S. Schaffner, W. J. Van Etten, D. Reich, J. Higgins, M. J.
Daly, B. Blumenstiel, J. Baldwin, N. Stange-Thomann, M. C.
Zody, L. Linton, E. S. Lander, D. Altshuler. 2001. A map of
human genome sequence variation containing 1.42 million sin-
gle nucleotide polymorphisms. Nature 291 1298–2302.

Venter, J. Craig, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural,
G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt,
J. D. Gocayne et al. 2001. The sequence of the human genome.
Science 291 1304–1351.

Waterman, M. S. 1995. Introduction to Computational Biology: Maps,
Sequences and Genomes. Chapman and Hall.

Zhang, K., M. Deng, T. Chen, M. S. Waterman, F. Sun. 2002.
A dynamic programming algorithm for haplotype block parti-
tioning. Proc. National Acad. Sci. USA 99 7335–7339.


