
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 8, Number 4, 2001
Mary Ann Liebert, Inc.
Pp. 361–371

On the Complexity of Positional Sequencing
by Hybridization

A. BEN-DOR,1 I. PE’ER,2 R. SHAMIR,2 and R. SHARAN2

ABSTRACT

In sequencing by hybridization (SBH), one has to reconstruct a sequence from its l-long
substrings. SBH was proposed as an alternative to gel-based DNA sequencing approaches,
but in its original form the method is not competitive. Positional SBH (PSBH) is a recently
proposed enhancement of SBH in which one has additional information about the possible
positions of each substring along the target sequence. We give a linear time algorithm for
solving PSBH when each substring has at most two possible positions. On the other hand, we
prove that the problem is NP-complete if each substring has at most three possible positions.
We also show that PSBH is NP-complete if the set of allowed positions for each substring
is an interval of length k and provide a fast algorithm for the latter problem when k is
bounded.

Key words: Positional sequencing by hybridization, complexity, Eulerian graphs, NP-hardness,
parameterized algorithms.

1. INTRODUCTION

Sequencing by hybridization (SBH) was proposed in the late eighties as an alternative to gel-
based DNA sequencing (Bains and Smith, 1988; Lysov et al., 1988; Southern, 1988; Drmanac and

Crkvenjakov, 1987; Macevics, 1989). Using DNA chips, cf. Southern (1996), one can in principle determine
exactly which l-mers (l-tuples) appear as substrings in a target that needs sequencing and try to infer its
sequence. Practical values of l are 8 to 10.

The fundamental computational problem in SBH is the reconstruction of a sequence from its spectrum—
the list of all l-mers that are included in the sequence along with their multiplicities. It was shown by
Pevzner (1989) that the reconstruction problem can be solved ef� ciently by a reduction to � nding an
Eulerian path in the following graph: Vertices correspond to .l ¡ 1/-tuples, and for each l-tuple in the
spectrum, an edge is directed from the vertex corresponding to its .l¡1/-long pre� x to that of its .l¡1/-long
suf� x.

The main handicap of SBH is ambiguity of the solution. Alternative solutions are manifested as branches
in the graph (i.e., two or more edges leaving the same vertex), and unless the number of branches is
very small, there is no good way to determine the correct sequence. Theoretical analysis and simulations
(Southern et al., 1992; Pevzner and Lipshutz, 1994; Arratia et al., 1997; Dyer et al., 1994) have shown that

1Agilent Laboratories and University of Washington.
2School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.

361

362 BEN-DOR ET AL.

the average length of a uniquely reconstructible sequence using an 8-mer chip is only about two hundred,
far below a single read length on a commercial gel-lane machine.

Due to the centrality of the sequencing problem in biotechnologyand in the Human Genome Project, and
due to its mathematical elegance, SBH continues to draw a lot of attention. Many authors have suggested
ways to improve the basic method. Alternative chip designs (Bains and Smith, 1988; Khrapko et al.,
1989; Pevzner et al., 1991; Preparata et al., 1999), usage of prior sequence information (Pe’er and Shamir,
2000), as well as interactive protocols (Skiena and Sundaram, 1995; Frieze and Halldorsson, 2001) were
suggested. An effective and competitive sequencing solution using SBH has yet to be demonstrated.

Recently, several authors have suggested enhancements of SBH based on adding location information
to the spectrum (Adleman, 1998; Broude et al., 1994; Hannenhalli et al., 1996; Gus� eld et al., 1998;
Shamir and Tsur, 2001). In positional sequencing by hybridization (PSBH), additional information is
gathered concerning the position of the l-mers in the target sequence. More precisely, for each l-mer in the
spectrum its allowed positions along the target are registered. The reduction to the Eulerian path problem
still applies, but for each edge in Pevzner’s graph we now have constraints restricting its position in the
Eulerian path. Mathematically, this gives rise to the positional Eulerian path problem (PEP): Given a
directed graph with a list of allowed positions for each edge, decide if there exists an Eulerian path in
which each edge appears in one of its allowed positions. Observe that the graph theoretic problem, PEP, is
more general than PSBH, since it assumes no string assignment to vertices and edges. Hannenhalli et al.
(1996) showed that PEP is NP-complete, even if all the lists of allowed positions are intervals of equal
length. Note that this leaves open the complexity of the more restricted PSBH in this case. They also gave
a polynomial algorithm for the problem when the length of the intervals is bounded.

In this paper, we � rst address the positional sequencing by hybridization problem in the case that the
number of allowed positions per l-mer is bounded and the positions need not be consecutive. The case of
nonconsecutive positions is mainly of theoretical interest, though some application has been suggested by
Adleman (1998). After reviewing de� nitions (Section 2), we give a linear time algorithm for solving the
positional Eulerian path problem and, hence, the PSBH problem, in the case that each edge is allowed at
most two positions (Section 3). On the negative side, we prove the NP-completeness of PEP, even when
restricted to the case where each edge is allowed at most three positions (Section 4). We conclude that
PSBH is NP-complete, even if each l-mer has at most three allowed positions and multiplicity one (Section
5). We also study the complexity of PSBH in the case that the set of allowed positions for each substring
is an interval of bounded length. We strengthen the results of Hannenhalli et al. (1996) with respect to
this problem in two ways. First, we show that PSBH (and not only PEP) is NP-complete, even if all sets
of allowed positions are k-long intervals (Section 5). Second, we give a faster parameterized algorithm
for the problem, where the parameter k is an upper bound on the size of the intervals (Section 6). Our
algorithm requires O.mk1:54k/ time, compared to the O.mk3 logk4k/ bound of Hannenhalli et al. (1996).
For brevity, some proof details are omitted. Full details are given in Ben-Dor et al. (2001).

2. PRELIMINARIES

All graphs in this paper are � nite and directed. Let D D .V; E/ be a graph. We denote m D jEj
throughout. For a vertex v 2 V , we de� ne its in-neighbors to be the set of all vertices from which there
is an edge directed into v. We denote this set by Nin.v/ D fu : .u; v/ 2 Eg. We de� ne the in-degree of v

to be jNin.v/j. The out-neighbors Nout .v/ and out-degree are similarly de� ned.
Let E D fe1; : : : ; emg and let P be a function mapping each edge of D to a nonempty set of integer

labels from f1; : : : ; mg. The set P .e/ is called the set of allowed positions of edge e. The pair (D; P)
is called a positional graph. If for all e, jP .e/j · k, then .D; P / is called a k-positional graph. Let
¼ D ¼.1/; : : : ; ¼.m/ be a permutation of the edges in E. If ¼ de� nes a (directed) path, i.e., for each
1 · i < m, ¼.i/ D .u; v/ and ¼.i C 1/ D .v; w/, for some u, v, w 2 V , then we say that ¼ is an Eulerian
path in D.

An Eulerian path ¼ in D complies with the positional graph .D; P /, if ¼¡1.e/ 2 P .e/ for every e 2 E;
that is, each edge in ¼ occupies an allowed position. The positional Eulerian path problem is de� ned as
follows:

COMPLEXITY OF POSITIONAL SEQUENCING BY HYBRIDIZATION 363

Problem 1 (PEP)
Instance: A positional graph .D; P /.
Question: Is there an Eulerian path which complies with .D; P /?

If each P .e/ is a subinterval of [1; m], then the problem is called Interval PEP. If .D; P / is a k-positional
graph then the problem is called k-positional Eulerian path (k-PEP).

Let
P

D fA; C; G; T g. The p-spectrum of a string X 2
P¤ is the multi-set of all p-long substrings of

X. The problem of sequencing by hybridization is de� ned as follows:

Problem 2 (SBH)
Instance: A multi-set S of p-long strings.
Question: Is S the p-spectrum of some string X?

For simplicity, we shall call the input multi-set a spectrum, even if it does not correspond to a sequence.
The SBH problem is solvable in polynomial time by a reduction to � nding an Eulerian path in Pevzner’s
graph (Pevzner and Lipshutz, 1994). Speci� cally, construct a graph D whose vertices correspond to
.p ¡ 1/-long substrings of strings in S and in which edges are directed from ¾1 ¢ ¢ ¢ ¾p¡1 to ¾2 ¢ ¢ ¢ ¾p

for each ¾1 ¢ ¢ ¢ ¾p 2 S. Then every SBH solution ¾1 ¢ ¢ ¢ ¾mCp¡1 naturally corresponds to an Eulerian path
¾1 ¢ ¢ ¢ ¾p¡1; ¢ ¢ ¢ ; ¾mC1 ¢ ¢ ¢ ¾mCp¡1 in D.

The positional SBH problem is de� ned as follows:

Problem 3 (PSBH)
Instance: A multi-set S of p-long strings. For each s 2 S; a set P .s/ µ f0; : : : ; jSj ¡ 1g.
Question: Is S the p-spectrum of some string X such that for each s 2 S its position along X is in P .s/?

If the set of allowed positions for each string is of size at most k, then the corresponding problem is
called k-positional SBH, or k-PSBH, which is linearly reducible to k-PEP in an obvious manner. If, for
each s 2 S, P .s/ is a sub-interval of [0; jSj ¡ 1], the problem is called Interval PSBH.

3. A LINEAR ALGORITHM FOR 2-POSITIONAL EULERIAN PATH

In this section, we provide a linear time algorithm for solving the 2-positional Eulerian path problem.
A key element in our algorithm is a reduction to 2-SAT. Before the reduction can be applied, the input
must be preprocessed, discarding unrealizable edge labels (positions).

Let .D D .V ; E/; P / be the input 2-positional graph. For every 1 · t · m, de� ne 1.t/ to be the set of
edges allowed at position t , i.e., 1.t/ ´ fe 2 E : t 2 P .e/g. We call a position t for which 1.t/ D feg
and jP .e/j > 1, a resolvable position.

The � rst phase of the algorithm applies the following preprocessing step:

While there exists a resolvable position t , do:
Suppose 1.t/ D feg and P .e/ D ft; t 0g.
1.t 0/ Ã 1.t 0/nfeg.
P .e/ Ã ftg.

If at any stage we � nd that some set 1.t/ is empty, we output False and halt, as no edge can be labeled t .

Lemma 1. The preprocessing step does not change the set of Eulerian paths which comply with .D; P /.
This step can be implemented in linear time.

364 BEN-DOR ET AL.

In the following, .D; P / and 1 refer to the positional graph obtained after the preprocessing phase.

Lemma 2. In .D; P / each position is allowed for at most two edges.

Proof. The preprocessing ensures that, if for some position t , j1.t/j D 1, then e 2 1.t/ satis� es
jP .e/j D 1. Let R be the set of positions t with j1.t/j D 1, and let r D jRj. Then there are m¡ r positions
t for which j1.t/j ¸ 2 and r 0 ¸ r edges e with jP .e/j D 1. Thus,

2.m ¡ r/ ·
X

t =2R

j1.t/j D
X

t

j1.t/j ¡ r
X

e

jP .e/j ¡ r D 2m ¡ r 0 ¡ r · 2.m ¡ r/:

Hence, r D r 0 and each label t =2 R occurs exactly twice, implying that j1.t/j 2 f1; 2g for all t .

For every vertex v 2 V , de� ne In.v; t / as the set of t -labeled edges entering v, i.e., I n.v; t / ´ f.u; v/ :
.u; v/ 2 1.t/g. Similarly, de� ne Out.v; t/ ´ f.v; u/ : .v; u/ 2 1.t/g. We say that a vertex v is � xed to
position t in .D; P / if I n.v; t / D 1.t/ or Out.v; t C 1/ D 1.t C 1/. In other words, any Eulerian path
compliant with .D; P / must have v as the .t C 1/-st vertex in the path. De� ne Boolean variables Xt

e for
every e, t such that t 2 P .e/ (2m ¡ r variables in total). Examine the following sets of Boolean clauses:

Xt
e for every e; t such that P .e/ D ftg: (1)

Xt
e1

© Xt
e2

for every e1; e2; t such that 1.t/ D fe1; e2g: (2)

Xt1
e © Xt2

e for every e; t1; t2 such that P .e/ D ft1; t2g: (3)

x t
a;b , XtC1

.b;c/ for every t 2 P ..a; b//; t C 1 2 P ..b; c// such that b is not � xed to position t : (4)

X
t

.u;v/ for every t 2 P ..u; v//; t < m such that Out.v; t C 1/ D ;: (5)

X
t
.u;v/ for every t 2 P ..u; v//; t > 1 such that I n.u; t ¡ 1/ D ;: (6)

Lemma 3. There is a positional Eulerian path which complies with .D; P / if and only if the set of
clauses (1)–(6) is satis� able.

Proof. The proof is trivial, since a positional Eulerian path induces an obvious truth assignment and
vice versa.

Theorem 4. 2-PEP is solvable in linear time.

Proof. The preprocessing phase is linear by Lemma 1. Clearly, the number of clauses (1)–(6) is O.m/.
Each exclusive OR clause in (2)–(3) and each equivalence clause in (4) can be written as two OR clauses.
It can be shown that generating all clauses takes linear time. By Lemma 3, the problem is reduced to an
instance of 2-SAT which is solvable in linear time (Apsvall et al., 1979).

Corollary 1. 2-PSBH is solvable in linear time.

4. 3-POSITIONAL EULERIAN PATH IS NP-COMPLETE

In this section we prove that 3-PEP is NP-complete.

Theorem 5. 3-PEP is NP-complete.

COMPLEXITY OF POSITIONAL SEQUENCING BY HYBRIDIZATION 365

Proof. Membership in NP is trivial. We prove NP-hardness by reduction from 3-SAT. We � rst provide
a sketch of the construction. For each occurrence of a literal in the formula, a special vertex is introduced.
Special vertices corresponding to the same literal are connected serially to form a literal path. Two literal
paths of a variable and its negation are connected in parallel to form a variable subgraph. For each clause
in the formula, the corresponding special vertices are connected by three edges to form a clause triangle.
Finally, for each special vertex, we introduce a triangle incident on it, called its bypass triangle (see Fig. 1).

The sets of allowed positions are chosen so that they force every compliant Eulerian path to visit the
literal paths one by one. A compliant Eulerian path corresponds to a satisfying truth assignment. When
a special vertex is visited, either its clause triangle or its bypass triangle is traversed. Traversing the
clause triangle while passing through a certain literal’s path corresponds to this literal satisfying the clause.
Eventually, we enable visiting all unvisited bypass triangles.

We now give the construction in detail. Let F be a 3-CNF formula with N variables x1; : : : ; xN , and
M clauses C1; : : : ; CM . We assume, w.l.o.g., that each clause contains three distinct variables, and that all
2N literals occur in F . Denote Xi D fxig [fx ig. For a literal L 2 Xi , let aL denote the number of its
occurrences in F . For 1 · j · aL, de� ne L.j/ ´ .L; j /. Thus, L.1/; : : : ; L.aL/ is an enumeration of L’s
occurrences in F . For a clause C D L _ L0 _ L00 introducing the j -th .j 0; j 00/ occurrence of L (L0, L00,
respectively), we write C D L.j/ _ L0.j 0/ _ L00.j 00/. We shall construct a directed graph D D .V ; E/ and
a map P from E to integer sets of size at most three, such that F is satis� able if and only if .D; P / has
a compliant Eulerian path. We introduce the following vertices:

² ui , Oui for each variable xi , 1 · i · N .
² vL.j/, OvL.j/ for each occurrence L.j/ of the literal L. We call vL.j/ special. For L 2 Xi , we shall denote

ui also by vL.0/ and Oui also by vL.aLC1/.
² r.Cc/ for each clause Cc , 1 · c · M , identifying OuN as r.C0/ and u1 as r.CMC1/.

FIG. 1. An example of the construction for the formula .x1 _ x2 _ x3/ ^ .x1 _ x2 _ x3/. The variable subgraphs
are at the center; bypass triangles are at the top and bottom parts. Different bypass triangles of the same clause use
the same clause vertex, but for clarity this vertex is drawn multiple times. For example, the two large vertices denoted
r.C1/ and the large vertex in the bypass triangle of vx2.1/ are actually the same vertex. The � gure includes three
variable subgraphs. The � rst variable, x1, whose subgraph is the leftmost, has two positive occurrences. Each of the
two other variables has a single positive occurrence and a single negated one.

366 BEN-DOR ET AL.

We also introduce the following edges:

² For each clause C D L.j/ _ L0.j 0/ _ L00.j 00/, a clause triangle consisting of the edges f.vL.j/; vL0.j 0//;

.vL0.j 0/; vL00.j 00//; .vL00.j 00/; vL.j//g.
² For each occurrence L.j/ of a literal L in a clause C, a bypass triangle with the edges f.vL.j/; OvL.j//;

. OvL.j/; r.C//; .r.C/; vL.j //g.
² A literal path lp.L/: f.ui; vL.1//; .vL.1/; vL.2//; .vL.2/; vL.3//; : : : ; .vL.aL/; Oui/g for each literal L 2 Xi .
² For i D 1; : : : ; N; back edges . Oui ; ui/. For i D 1; : : : ; N ¡ 1; forward edges . Oui ; uiC1/.
² A � nishing path f. OuN ; r.C1//; .r.C1/; r.C2//; .r.C2/; r.C3//; : : : ; .r.CM /; u1/g.

Figure 1 shows an example of the constructed graph. The motivation for this construction is the following:
Using the position sets, we intend to force the literal paths of the different variables to be traversed in the
natural order, where the only degree of freedom is switching the order between lp.xi/ and lp.xi/. This
switch will correspond to a truth assignment for the variable xi , by assigning True to the literal in Xi

whose path was visited � rst. After visiting a special vertex along this � rst path, we visit either its clause
triangle or its bypass triangle. Along the other path (of the literal assigned False), only a bypass triangle
can be visited.

Eventually, the � nishing path is traversed. Upon visiting a vertex r.C/, we visit only one bypass
triangle—the yet unvisited triangle among those corresponding to the literals of clause C. The truth
assignment will satisfy that literal.

We now describe the sets P .e/. We use the following notation:

BaseL D BaseL D Basei D 4
iX

jD1

.axi
C ax i

/ C 4.i ¡ 1/ for L 2 Xi :

AlternateL D Basei C 4aL C 2 for L 2 Xi :

ClauseBasec D BaseNC1 C 4c 0 · c · M:

² For each forward edge e D . Oui¡1; ui/, 2 · i · N , we set P .e/ D fBaseig. This is intended to ensure
that the literal paths are traversed in a constrained order: lp.xi/ and lp.xi/ are allocated a time interval
[Basei C 1; BaseiC1 ¡ 1] of length 4.axi

C axi
/ C 3 during which they must be traversed.

² For each back edge e D . Oui; ui/, we set P .e/ D fAlternatex i
; Alternatexi

g. This enables either visiting
lp.xi/ � rst, then e and lp.xi/; or visiting lp.x i/ � rst, followed by e and lp.xi/.

² For each literal path edge e D .vL.j/; vL.jC1//, with L 2 Xi , 0 · j · aL, we set P .e/ D fBasei C 4j C
1; AlternateL C 4j C 1g. Consecutive edges in a literal path are thus positioned four time units apart.

² For each clause C D L1.j1/ _ L2.j2/ _ L3.j3/ with the clause triangle fe1 D .vL1.j1/; vL2.j2//, e2 D
.vL2.j2/; vL3.j3//, e3 D .vL3.j3/; vL1.j1//g such that Lk 2 Xik , de� ne tk ´ Baseik C 4jk ¡ 2 and set

P .e1/ D ft1; t3 C 1; t2 C 2g; P .e2/ D ft2; t1 C 1; t3 C 2g; P .e3/ D ft3; t2 C 1; t1 C 2g:

This means that the edges of a clause triangle must be visited consecutively during the traversal of
lp.Lk/ for some k. Furthermore, note that this may happen only if lp.Lk/ is traversed immediately after
time BaseLk , that is, only if it precedes lp.Lk/.

² For each � nishing edge e D .r.Cc/; r.CcC1//, 0 · c · M , we set P .e/ D fClauseBasecg, thus
determining the order of visiting the vertices of the � nishing path, allowing a time slot [ClauseBasec C
1; ClauseBasecC1 ¡ 1] of length three for the bypass triangle visited while traversing r.Cc/.

² For a bypass triangle with edges fe D .vL.j/; OvL.j//, e0 D . OvL.j/; r.Cc//, e00 D .r.Cc/; vL.j//g, set:

P .e/ D fBaseL C 4j ¡ 2; AlternateL C 4j ¡ 2; ClauseBasec ¡ 2g;

P .e0/ D fBaseL C 4j ¡ 1; AlternateL C 4j ¡ 1; ClauseBasec ¡ 1g;

P .e00/ D fBaseL C 4j; AlternateL C 4j; ClauseBasec ¡ 3g:

COMPLEXITY OF POSITIONAL SEQUENCING BY HYBRIDIZATION 367

This implies that the bypass triangle edges must be visited consecutively, and there are three possible time
slots for that: 1) While traversing lp.L/, before traversing lp.L/; 2) while traversing lp.L/, after traversing
lp.L/; 3) while traversing r.Cc/ along the � nishing path.

The reduction is obviously polynomial. We now prove validity of the construction.

(Suppose that F is satis� able. We will show that .D; P / is a “yes” instance of the 3-positional Eu-
lerian path problem. Let Á be a truth assignment satisfying F . For each clause Cc, let Lc.jc/ be a
speci� c literal occurrence satisfying Cc . We describe the Eulerian path ¼ in D. Set ¼.ClauseBasec/ D
.r.Cc/; r.CcC1// for c D 0; : : : ; M. Set ¼.Basei/ D . Oui¡1; ui/ for i D 2; : : : ; N . For all i, if
Á.xi/ D True, set ¼.Alternatex i

/ D . Oui; ui/. Otherwise, set ¼.Alternatexi
/ D . Oui ; ui/. Consider a

literal L 2 Xi :
—If Á.L/ D True: For each 0 · j · aL, set ¼.Basei C 4j C 1/ D .vL.j/; vL.jC1// (see Fig. 2, top).

We further distinguish between two cases:
¤ If L.j/ D Lc.jc/ for the clause Cc D L.j/ _ L0.j 0/ _ L00.j 00/ in which L.j/ occurs, then set ¼ at

times BaseL C 4j ¡ 2; : : : ; BaseL C 4j to visit the edges of the clause triangle of Cc starting (and
ending) at vL.j/. Furthermore, in this case, we set ¼ at times ClauseBasec ¡3; : : : ; ClauseBasec ¡1
to visit the edges of the bypass triangle of L.j/ starting at r.Cc/.

¤ Otherwise, L.j/ 6D Lc.jc/ for the clause Cc in which L.j/ occurs. In this case, we set ¼ at times
BaseL C 4j ¡ 2; : : : Base; L C 4j to visit the edges of the bypass triangle of L.j/ starting at vL.j/.

—If Á.L/ D False: For each 0 · j · aL, set ¼.AlternateL C 4j C 1/ D .VL.j/; vL.jC1//. Further-
more, in this case, we set ¼ at times AlternateL C 4j ¡ 2; : : : ; AlternateL C 4j to visit the edges of
the bypass triangle of L.j/ starting at vL.j/ (see Fig. 2, bottom).

It is easy to see that ¼ is an Eulerian path. Furthermore, by our construction, ¼ complies with .D; P /,
proving that .D; P / is a “yes” instance.

) Let ¼ be an Eulerian path compliant with .D; P /. We shall construct an assignment Á satisfying F . In
order to determine Á.xi/, we consider the edge ¼.BaseiC1/. By construction, ¼.BaseiC1/ D .ui ; vL.1//

for L 2 Xi . We therefore set Á.L/ D True (and Á.L/ D False). We observe that, for any other edge
e0 D .VL.j/; vL.jC1// along lp.L/, we must have ¼.Basei C 4j C 1/ D e0 if and only if Á.L/ D True.

We now prove that Á satis� es each clause Cc D L1.j1/ _ L2.j2/ _ L3.j3/ of F . Consider the clause
triangle of Cc: fe1 D .vL1.j1/; vL2.j2//, e2 D .vL2.j2/; vL3.j3//, e3 D .vL3.j3/; vL1.j1//g. Denote tk D BaseLk

C
4jk ¡ 2. By the positional constraints, there exists some 1 · k · 3 for which ¼.tk/ D ek . The edge e

preceding ek in ¼ must have tk ¡ 1 D BaseLk
C 4.jk ¡ 1/ C 1 2 P .e/. The only such edge entering vLk.jk/

is the literal path .vLk.jk ¡1/; vLk .jk //. Therefore, Á.Lk/ D True, satisfying Cc .
Hence, F is satis� able if and only if .D; P / is a “yes” instance, completing the proof of Theorem 5.

Corollary 2. 3-PEP is NP-complete, even on graphs with all in-degrees and out-degrees at most four.

Henceforth, we call this restricted problem (3,4)-PEP. We comment that a slight modi� cation of the
construction results in a graph whose in-degrees and out-degrees are at most two.

FIG. 2. Either a clause triangle or a bypass triangle must be traversed upon visiting a special vertex vL.j/, due to
time constraints. Edge positions in case L assigned True (False) are shown at the top (bottom).

368 BEN-DOR ET AL.

5. HARDNESS OF POSITIONAL SBH

We show in this section that PSBH with at most 3 positions per spectrum element is NP-complete, even
if each element in the spectrum is unique. We also prove the NP-completeness of Interval PSBH, settling
a problem that was left open by Hannenhalli et al. (1996).

Theorem 6. 3-PSBH is NP-complete, even if all spectrum elements are of multiplicity one.

Proof. Clearly, the problem is in NP. We reduce (3,4)-PEP to 3-PSBH. Let .D D .V; E/; P / be an
instance of (3,4)-PEP. Let k D dlog4 jV je C 2, p D 3k C 1, and c D p C 1. In order to construct an instance
of 3-PSBH, we � rst encode the edges and vertices of D. In the following, we denote string concatenation
by j. We let ¾1 D “A,” ¾2 D “C,” ¾3 D “G,” and ¾4 D “T.”

To each v 2 V , we assign a distinct string in
Pk¡2. We add a leading “T” symbol and a trailing “T”

symbol to this string and call the resulting k-long string the name of v. We also assign the string “A : : :

A” of length k to encode a space. Each vertex is encoded by a 3k-long string containing two copies of
its name separated by a space. We denote the encoding of v by en.v/. Each edge .u; v/ 2 E is encoded
by two symbols chosen as follows: Let Nout .u/ D fv1; : : : ; vlg, where v D vi for some i and l · 4. Let
Nin.v/ D fu1; : : : ; ur g, where u D uj for some j and r · 4. Then .u; v/ is encoded by ¾ij¾j , and we
denote its encoding by en.u; v/. We call EN.u; v/ ´ en.u/jen.u; v/jen.v/ the representative string of
.u; v/ (see Fig. 3).

We now construct a 3-PSBH instance, i.e., a spectrum S with position constraints T , as follows: For
every edge .u; v/ 2 E the set S contains all p-long substrings of the 2p-long string EN.u; v/ (c substrings
in total). Let s i

.u;v/ denote the i-th such substring, i D 0; : : : ; p. Let P ..u; v// D ft1; : : : ; tlg, 1 · l · 3,

be the set of allowed positions for .u; v/. Then we set T .si
.u;v// D fc.t1 ¡ 1/ C i; : : : ; c.tl ¡ 1/ C ig for all

i (note that substring positions are numbered starting at zero).
We now show validity of the reduction.

(Suppose that ¼ D .v0; v1/; .v1; v2/; : : : ; .vm¡1; vm/ is a solution of the (3,4)-PEP instance. We claim
that X D en.v0/jen.v0; v1/jen.v1/jen.v1; v2/jen.v2/j : : : jen.vm¡1/jen.vm¡1; vm/jen.vm/ is a solution
of the 3-PSBH instance. It is not hard to show that each of the p-long substrings in S is unique and,
therefore, each p-long substring of X occurs exactly once in X. As ¼ visits all edges in D, we have
that S is the p-spectrum of X. The fact that position constraints are satis� ed follows directly from the
construction.

) Let X be a solution of the 3-PSBH instance. Consider the m substrings of length p, whose starting
positions in X are integer multiples of c. By the position constraints, the r-th such substring is an
encoding of some vertex vr followed by a symbol ¾ir . Denote by wr the ir -th out-neighbor of vr . We
prove that ¼ D .v1; w1/; : : : ; .vm; wm/ is an Eulerian path compliant with .D; P /.

Since each string in the p-spectrum of X is unique, ¼ is a permutation of the edges in D. To prove that
¼ is a path in D we have to show that wr D vrC1 for r D 1; : : : ; m ¡ 1. Let x be the p-long substring

FIG. 3. The encoding of vertices and edges into representative strings.

COMPLEXITY OF POSITIONAL SEQUENCING BY HYBRIDIZATION 369

of X starting at position .r ¡ 1/c C 2k. We observe that x must begin with the last k symbols of en.vr/,
which compose name.vr /, followed by ¾ir , some symbol, and the � rst 2k ¡ 1 symbols of en.vrC1/, which
contain name.vrC1/. The uniqueness of name.vr/, name.vrC1/, and the index ir among the out-neighbors
of vr implies that wr D vrC1. The claim now follows, since position constraints are trivially satis� ed
by ¼ .

Theorem 7. The Interval PSBH problem is NP-complete, even if all sets of allowed positions are
intervals of equal length.

Proof. Interval PEP is NP-complete, even if each vertex has in-degree and out-degree at most two,
and the sets of allowed positions are intervals of equal length (Hannenhalli et al., 1996). This restriction
of Interval PEP is reducible to Interval PSBH. The reduction is analogous to the one used in the proof of
Theorem 6.

6. A PARAMETERIZED ALGORITHM FOR INTERVAL PSBH

Hannenhalli et al. have given a linear-time algorithm to solve the parametric version of Interval PEP (and
hence, Interval PSBH), where the parameter k is an upper bound on the sizes of the intervals of allowed
positions for each edge (Hannenhalli et al., 1996). We provide a faster algorithm for the problem, which
uses the same basic idea. Our algorithm runs in O.mk1:54k/ time, improving upon the O.mk3 log k4k/

time bound of Hannenhalli et al. (1996).
For simplicity, we shall describe our algorithm when all allowed intervals have length exactly k. Let

.D D .V; E/; P / be the input positional graph, where P .e/ D [le; le C k ¡ 1] for every e 2 E. For every
1 · i · m, de� ne õ ´ maxfi ¡ k C 1; 1g and { ´ minfi C k ¡ 1; mg. For every 1 · i · m, de� ne
±i ´ fe 2 E : le D ig and 1i ´ fe 2 E : i 2 P .e/g. That is, 1i is the set of edges for which position i is
allowed.

Trying all possible Eulerian paths in D and testing for each one whether it complies with P might take
exponential (in m) time. Instead, we iteratively construct, for every i D 1; : : : ; m C 1, a list 8i of pairs
.v; S/, such that v is the last vertex of some path of length i ¡ 1 and S is the list of edges that may extend
the path from v. The algorithm is summarized below:

Compute ±i for all i; If for some i, j±i j > k then return False.
Initialize 81 Ã f.v; ±1/ : 9w; .v; w/ 2 ±1g, 8mC1 Ã ;, 11 Ã ±1, i Ã 1.
While 8i 6D ; and i · m do:

i Ã i C 1:

1i Ã 1i¡1 [±in±i¡1; If j1i j ¸ 2k then return False.
8i Ã f.w; S [±inf.v; w/g/ : .v; S/ 2 8i¡1; .v; w/ 2 S; S \ ±i¡1 µ f.v; w/gg:

If 8mC1 6D ; then return True; Else return False.

The following lemma, which is mentioned by Hannenhalli et al. (1996), is crucial for the analysis of
the algorithm. The subsequent theorem proves the correctness of the algorithm.

Lemma 8. If (D, P) has a compliant Eulerian path, then j1ij · 2k ¡ 1 for all i.

Proof. Let ¼ be an Eulerian path compliant with .D; P /. Then 1i µ f¼.i/; : : : ; ¼.{/g for all i.

Theorem 9. The algorithm returns True if and only if there is an Eulerian path compliant with .D; P /.

Proof. Call a pair .w; S/ i-valid if there exists a path fw1; : : : ; wi D wg in D such that: (1)
j 2 P ..wj ; wjC1// for all 1 · j < i; (2) S D 1inf.w1; w2/; : : : ; .wi¡1; wi/g; and (3)

Si¡1
jD1 ±j µ

f.w1; w2/; : : : ; .wi¡1; wi/g. Intuitively, (1) ensures that all edges in the path occupy allowed positions,

370 BEN-DOR ET AL.

(2) ensures that the next (i-th) edge is both allowed for position i and was not used already, and � nally,
(3) ensures that any edge that had to be used before position i was indeed used. By induction on i, one
can show that 8i is the set of all i-valid pairs. It follows that .v0; : : : ; vm/ is an Eulerian path compliant
with .D; P / if and only if .vm; ;/ is an .m C 1/-valid pair.

We now analyze the complexity of the algorithm. De� ne 9i ´ fS : 9w; .w; S/ 2 8ig and Vi ´ fv :
9S; .v; S/ 2 8ig. A simple induction argument establishes the following lemma:

Lemma 10. For each i there exists a constant si , such that all sets S 2 9i satisfy jSj D si .

Corollary 3. For all i, j9i j D O
±

4k
p

k

²
:

Proof. Every set S 2 9i satis� es S µ 1i . Hence, using Lemma 8 j9i j ·
¡j1i j

si

¢
·

¡2k¡1
k

¢
D O

±
4k
p

k

²
.

Theorem 11. The algorithm can be implemented in O.mk1:54k/ time and O.m C k1:54k/ space.

Proof. Both time and space bottlenecks involve computing the sets 8i . The above bounds are attained
by using the following data structure: For each v 2 Vi , we keep a linked list Li.v/ containing all sets
S 2 9i such that .v; S/ 2 8i . We represent a subset S µ 1i by a .2k¡1/-bit vector, whose bits correspond
to 1i edges. Since jLi.v/j D O.j9i j/ for each v 2 Vi , 8iC1 can be computed from 8i in O.j1i j ¢ j9i j ¢k/

time and space. By Lemma 8 and Corollary 3, this amounts to O.k1:54k/ time (per iteration) and space.
Management of the data structure requires additional O.m/ space.

We note that the algorithm can be modi� ed to generate also one (or all) of the compliant Eulerian paths,
e.g., by keeping a record of the last edge(s) leading to each i-valid pair. We also note that our algorithm
can be extended to handle the PEP problem even when the sets of allowed positions for each edge need
only be subsets of � xed-length intervals.

ACKNOWLEDGMENTS

A. Ben-Dor was supported by the Program for Mathematics and Molecular Biology. I. Pe’er was sup-
ported by the Clore Foundation scholarship. R. Shamir was supported in part by a grant from the Ministry
of Science, Israel. R. Sharan was supported by an Eshkol fellowship from the Ministry of Science, Israel.

REFERENCES

Adleman, L.M. 1998. Location sensitive sequencing of DNA. Technical report, University of Southern California.
Apsvall, B., Plass, M.F., and Tarjan, R. 1979. A linear-time algorithm for testing the truth of certain quanti� ed Boolean

formulas. Information Processing Letters 8(3), 121–123.
Arratia, R., Martin, D., Reinert, G., and Waterman, M.S. 1997. Poisson process approximation for sequence repeats,

and sequencing by hybridization. J. Comp. Biol. 3(3), 425–463.
Bains, W., and Smith, G.C. 1988. A novel method for nucleic acid sequence determination. J. Theor. Biol. 135,

303–307.
Ben-Dor, A., Pe’er, I., Shamir, R., and Sharan, R. 1999. On the complexity of positional sequencing by hybridization,

in Crochemore, M., and Paterson, M., eds. Proc. 10th Annual Symposium on Combinatorial Pattern Matching, vol.
1645 of Lecture Notes in Computer Science, 88–100, Springer-Verlag, Berlin.

Ben-Dor, A., Pe’er, I., Shamir, R., and Sharan, R. 2001. Positional sequencing by hybridization. The Electronic
Colloquium on Computational Complexity, TR01-054, July 2001.

Broude, S.D., Sano, T., Smith, C.S., and Cantor, C.R. 1994. Enhanced DNA sequencing by hybridization. Proc. Natl.
Acad. Sci. USA 91, 3072–3076.

Drmanac, R., and Crkvenjakov, R. (1987). Yugoslav Patent Application 570.

http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-0190^28^298:3L.121[aid=1442378]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1066-5277^28^293:3L.425[aid=1442379]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-5193^28^29135L.303[aid=193052]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2991L.3072[aid=1189713]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-5193^28^29135L.303[aid=193052]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2991L.3072[aid=1189713]

COMPLEXITY OF POSITIONAL SEQUENCING BY HYBRIDIZATION 371

Dyer, M., Frieze, A., and Suen, S. 1994. The probability of unique solution of sequencing by hybridization. J. Comp.
Biol. 1, 105–110.

Frieze, A., and Halldorsson, B. 2001. Optimal sequencing by hybridization, in Proc. 5th Annual Int. Conf. on Com-
putational Molecular Biology (RECOMB’01), 141–148.

Gus� eld, D., Karp, R., Wang, L., and Stelling, P. 1998. Graph traversals, genes and matroids: An ef� cient case of the
travelling salesman problem. Discrete Applied Mathematics 88, 167–180.

Hannenhalli, S., Pevzner, P., Lewis, H., and Skiena, S. 1996. Positional sequencing by hybridization. Computer Applic.
Biosci. 12, 19–24.

Khrapko, K.R., Lysov, Y.P., Khorlyn, A.A., Shick, V.V., Florentiev, V.L., and Mirzabekov, A.D. 1989. An oligonu-
cleotide hybridization approach to DNA sequencing. FEBS Letters 256, 118–122.

Lysov, Y., Floretiev, V., Khorlyn, A., Khrapko, K., Shick, V., and Mirzabekov, A. 1988. DNA sequencing by hybridiza-
tion with oligonucleotides. Dokl. Acad. Sci. USSR 303, 1508–1511.

Macevics, S.C. 1989. International Patent Application PS US89 04741.
Pe’er, I., and Shamir, R. 2000. Spectrum alignment: Ef� cient resequencing by hybridization, in Proc. 8th Int. Conf.

on Intelligent Systems in Molecular Biology (ISMB’00), 260–268.
Pevzner, P.A. 1989. l-tuple DNA sequencing: Computer anaylsis. J. Biomol. Struct. Dyn. 7, 63–73.
Pevzner, P.A., and Lipshutz, R.J. 1994. Towards DNA sequencing chips, in Symposium on Mathematical Foundations

of Computer Science, 143–158. Springer, LNCS vol. 841.
Pevzner, P.A., Lysov, Y.P., Khrapko, K.R., Belyavsky, A.V., Florentiev, V.L., and Mirzabekov, A.D. 1991. Improved

chips for sequencing by hybridization. J. Biomol. Struct. Dyn. 9, 399–410.
Preparata, F., Frieze, A., and Upfal, E. 1999. On the power of universal bases in sequencing by hybridization, in Proc.

3rd Annual Int. Conf. on Computational Molecular Biology (RECOMB’99), 295–301.
Shamir, R., and Tsur, D. 2001. Large scale sequencingby hybridization,in Proc. 5th Annual Int. Conf. on Computational

Molecular Biology (RECOMB’01), 269–277.
Skiena, S.S., and Sundaram, G. 1995. Reconstructing strings from substrings. J. Comput. Biol. 2, 333–353.
Southern, E. 1988. UK Patent Application GB8810400.
Southern, E.M. 1996. DNA chips: Analysing sequence by hybridization to oligonucleotides on a large scale. Trends

in Genetics 12, 110–115.
Southern, E.M., Maskos, U., and Elder, J.K. 1992. Analyzing and comparing nucleic acid sequences by hybridization

to arrays of oligonucleotides: Evaluation using experimental models. Genomics 13, 1008–1017.

Address correspondence to:
Itsik Pe’er

School of Computer Science
Lebanon Street

Tel Aviv University
Tel Aviv 69978, Israel

E-mail: izik@tau.ac.il

http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1066-5277^28^291L.105[aid=193054]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0166-218X^28^2988L.167[aid=1442380]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0266-7061^28^2912L.19[aid=1442381]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0014-5793^28^29256L.118[aid=1442382]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0739-1102^28^297L.63[aid=193134]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0739-1102^28^299L.399[aid=1442384]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1066-5277^28^292L.333[aid=1442385]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0168-9525^28^2912L.110[aid=1442386]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0888-7543^28^2913L.1008[aid=188970]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1066-5277^28^291L.105[aid=193054]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0266-7061^28^2912L.19[aid=1442381]
http://pippo.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0168-9525^28^2912L.110[aid=1442386]

