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Abstract

In a clustering problem one has to partition a set of elements into homogeneous and well-separated subsets. From a graph
theoretic point of view, a cluster graph is a vertex-disjoint union of cliques. The clustering problem is the task of making the
fewest changes to the edge set of an input graph so that it becomes a cluster graph. We study the complexity of three variants
of the problem. In the Cluster Completion variant edges can only be added. In Cluster Deletion, edges can only be deleted. In
Cluster Editing, both edge additions and edge deletions are allowed. We also study these variants when the desired solution
must contain a prespecified number of clusters. We show that Cluster Editing is NP-complete, Cluster Deletion is NP-hard to
approximate to within some constant factor, and Cluster Completion is polynomial. When the desired solution must contain
exactlyp clusters, we show that Cluster Editing is NP-complete for eyery?; Cluster Deletion is polynomial fop = 2 but
NP-complete fop > 2; and Cluster Completion is polynomial for apyWe also give a constant factor approximation algorithm
for a variant of Cluster Editing whep = 2.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Problem definition and motivatio@lustering is a central optimization problem with applications in numerous fields including
computational biology (cfl18]), image processing (cf19]), VLSI design (cf.[9]), and many more. The input to the problem
is typically a set of elements and pairwise similarity values between elements. The goal is to partition the elements into subsets,
which are callectlusters so that two meta-criteria are satisfietbmogeneity-elements inside a cluster are highly similar to
each other; andeparatior—elements from different clusters have low similarity to each other. Concrete realizations of these
criteria generate a variety of combinatorial optimization problgtoé

In the basic graph theoretic approach to clustering, one builds from the rawslatdeaity graphwhose vertices correspond
to elements and there is an edge between two vertices if and only if the similarity of their corresponding elements exceeds a
predefined threshold0,11] Ideally, the resulting graph would bechuster graphthat is, a graph composed of vertex-disjoint
cliques. In practice, it is only close to being such, since similarity data is experimental and, therefore, error-prone.

A preliminary version of this paper appeared in the Proceedings of the 27th International Workshop Graph-Theoretic Concepts in
Computer Science [17].
* Corresponding author.
E-mail addressesshamir@tau.ac.{R. Shamir) roded@icsi.berkeley.ediR. Sharan)dekelts@tau.ac.{D. Tsur).

0166-218X/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2004.01.007


http://www.elsevier.com/locate/dam
mailto:rshamir@tau.ac.il
mailto:roded@icsi.berkeley.edu
mailto:dekelts@tau.ac.il

174 R. Shamir et al./Discrete Applied Mathematics 144 (2004) 173—-182

Following [3] we formalize the resulting problem as the task of changing (adding or deleting) the fewest edges of an input
graph so as to obtain a cluster graph. We call this prolumster Editing In the relatedCluster DeletionrespectivelyCluster
Completion problem one has to remove (respectively, add) fewest edges from (respectively, to) an input graph so that it becomes
a cluster graph. Completion (respectively, deletion) problems arise when the data contains only false negative (respectively,
positive) errors. The above problems belong to the classigé modification problengsf. [15]), in which one has to minimally
change the edge set of a graph so as to satisfy a certain property. Another variant of these problems arises when the solution is
also required to consist of a prespecified number of clusters. This variant is motivated by many real-life applications in which a
partition of elements into a known number of categories is desired (sed1¢89.,

Previous resultsEdge modification problems were studied extensivell ], where earlier studies are also reviewed. Most
of these problems were shown to be NP-complete. Polynomial algorithms were given for bounded degree input graphs. In
particular, a constant factor approximation algorithm was given for editing and deletion problems with respect to any property
that can be characterized by a finite set of forbidden induced subgraphs. Since a graph is a cluster graph if and Galréé is
(i.e., it does not contain an induced path of two edges), this result implidsapf@oximation algorithm for Cluster Editing and
Cluster Deletion on input graphs with degree bounded.by

The Cluster Editing problem was first studied by Ben-Dor ef3jl. who presented a polynomial algorithm that solves the
problem with high probability under a stochastic data model. The complexity of the problem was left open. Cluster Deletion
was shown to be NP-complete by Natanib4).

Contribution of this papeWe prove that Cluster Editing is NP-complete, Cluster Deletion is NP-hard to approximate to
within some constant factor, and Cluster Completion is polynomial. We also stugyGhester versions of these problems, in
which the required graph must also be a vertex-disjoint unignadiques. We show thgi-Cluster Editing is NP-complete for
everyp> 2; p-Cluster Deletion is polynomial fgp = 2 but NP-complete fop > 2; andp-Cluster Completion is polynomial for
anyp. We also give a 0.878-approximation algorithm for a weighted variant of 2-Cluster Editing.

Organization of the papegection 2 contains terminology and problem definitions. In Section 3 we prove the NP-completeness
of the Cluster Editing variants, and provide a 0.878-approximation algorithm for a weighted variant of 2-Cluster Editing. In
Section 4 we give polynomial algorithms for the Cluster Completion variants. Finally, in Section 5 we study the complexity of
the Cluster Deletion variants.

2. Preliminaries

All graphs in this paper are simple, i.e., contain no parallel edges or self-loops.+€tV, E) be a graph. We denote its set
of edges byE(G). For a setS € V, we denote byG s the subgraph o6 induced by the vertices i For two disjoint subsets
A, B € V, we denote byt 4 p the set of all edges with one endpointArand the other irB. The complement grapbf G is
G = (V,{(u,v) € (V x V)\E : u # v}). Seel4] for more definitions of graphs and hypergraphs.

A graphG = (V, E) is called acluster graphf every connected component Gfis a complete grapl® is called gp-cluster
graphifitis a cluster graph witlp connected components or, equivalently, if it is a vertex-disjoint unignatifjues. IfG is any
graph and® C V x VissuchthatG’ = (V, EAF) is a cluster graph, thefis called aCluster Editing sefor G (EAF denotes
the symmetric difference betwe&uandF, i.e.,(E\F) U (F\FE)). Ifin addition F C E, thenF is called aCluster Deletion set
for G. If F N E = ¢ thenF is called aCluster Completion sdor G. For a constanp, p-Cluster Editing setp-Cluster Deletion
set andp-Cluster Completion sedre similarly defined. We denote ®/( F) the partition ofV into disjoint subsets of vertices
according to the connected components (cliques}’ofFor a partitionP = (V1, ..., V;) of V, we denote by7 (P) the Cluster
Editing set implied byP, that is,

l
F(P):U{(u,v)géE:u,veV,-}U{(u,v)eE:ueVi,ver,i;éj}.
i=1

The problems we study in this paper are of two types:

Problem 1 (Cluster Editing/Completion/Deletion Given a graphG and an integerk, determine ifG has a Cluster
Editing/Completion/Deletion set of size at mést

Problem 2 (p-Cluster Editing/Completion/Deletion Given a graphG and an integek, determine ifG has ap-Cluster
Editing/Completion/Deletion set of size at mast
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3. Cluster Editing
We prove in this section that Cluster Editing is NP-complete by reduction from a restriction of exact cover by 3-sets:

Problem 3 (3-Exact 3-Cover (3X3@Q) Given a collectiorC of triplets of elements from a sét={u1, ..., u3,}, such that each
element ofU is a member of at most 3 triplets, determine if there is a sub-colleétionC of sizen which coverdJ.

The 3X3C problem is known to be NP-complée Problem SP2]
Theorem 4. Cluster Editing is NP-complete.

Proof. Membership in NP is trivial. We prove NP-hardness by reduction from 3X3Cmlet 30n. Given an instancéC, U)
of 3X3C we build a grapltz = (V, E) as follows:

V= U {vs1, .- vsmUU,

SeC
E=FE1UE»UE3,
E1={(vs;,u): S € C,1<i<m,u € S},
E2={(vs i, vs,j): S €C, 1<i < j<m},
E3={(u,u’):3S e C s.t.u,u’ € S}.

In words, we build a clique of size + 3 around each triple by fully connectingSandm additional vertices. For each triplet
S e Cwedenote/s={vs 1, ..., vs ,} and call the elements dfs, S-verticesLetg =) ¢ 15|=3|C|. DefineN = m(q—3n)
andM = |E3| — 3n. We prove that there is an exact covetif and only if there is a Cluster Editing set f& of size at most
N+ M:

(=) Suppose that C C is an exact cover of). Let F1 = {(vg ;,u) : S¢ 1, 1<i<m,u € S} and letFy = {(u,u’) € E3 :
AS e I st.u,u’ € S). Itis easy to verify thaF = F1 U F, is a Cluster Editing set faB, whose size i$F | = | Fy| + | Fp| =N + M.

(<) Suppose thaG has an editing set of size at mast+ M. Let F be an editing set o6 of minimum size. Clearly,
|F|< N+ M. We shall prove that one can derive fréhan exact cover dfl. Since each element bfoccurs in at most 3 triplets,
q<9n. Thus,|E3|< g< 9n and|F|< N + M< 6mn + 6n = 1802 + 6n < 2 (% — 2).

Let G’ = (V, EAF) be the cluster graph obtained by editi@gccording ta= and letP (F) be the partition o¥/ according
to the cliques ofG’. We shall prove that for every subsgte C there is a unique clique i6’ which containsVg. To this end,
we first show that there is a cliqu€s in G’ such thajKg N Vg|>m/2 + 3: Suppose that the vertices 8§ are partitioned
amongk cliquesX1, ..., X5 in G'. Lets(X;) = |Vs N X;|,i =1, ..., k. Suppose to the contrary thatX;)<m/2 + 2 for
all i. Therefore,

k k
F12 5 D s —sxon= 33 sk (5 -2) =5 (5 -2).
i=1 i=1

A contradiction follows.

Let Ks be the cliqueX; for whichs(X;) is maximum (Kg N Vg|>m/2 + 3). We next prove thats € Kg € Vg U S. Let
x = |Kg\(Vg U S)|. Consider a new partitio®’ of V, which is obtained fronP (F) by splitting K 5 into Kg N (Vg U S) and
Ks\(VsUS). Clearly,|F| — |[F(P")|> (m/2+ 3)x — 3x = xm/2. SinceF is an optimum Cluster Editing set, we conclude that
x=0andKgs € Vg US.ToseethaKs 2 Vg, suppose to the contrary that there is some index<{m such thawg ; ¢ K.
Let K’ be the clique inG” which containsg ;. Let P” be a new partition 0¥/, which is obtained fronP () by movingvyg ;
from K’ to Kg. Then|F| — |[F(P")|>m/2 + 3 — (m/2 — 4 + 3) = 4, a contradiction. We conclude that for evesr C there
is a unique clique irG’ which contain¥’s and is contained ivg U S.

Let F1 = F N E1. Examine an elememt € U which is a member of (at least) two subs&{s So € C. By the previous claim,
Vs, and Vs, are subsets of distinct cliques @. Hence, eitheEVsl,{u} CF, orEVSZ,{u} C F (or both). Therefore,F1|> N.

Moreover, sincé F1|< N + M and M < 6n, each vertexx € U must be adjacent iG’ to the Svertices of exactly one s&
whereu € S. Call this set thés-sewf u.

Let F» = F\Fy. For every two vertices, u’ € U such that(u, u’) € E, and theS-sets ofu andu’ differ, we must have
(u,u’) € F,. Since each subset @contains 3 eIementS}’U is a union of cliques of size at most 3. It is easy to verify that the
maximum number of edges in suchaertex graph is 3, and that number is obtained if and onlﬂb is a union of triangles
only. Therefore|F>| = |E3| — |E(G’U)|> M with equality if and only if there is a partition d&f into triplets of elements, such
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that the elements of each triplet have the s&wset. Sincd F|< N + M, we must havéF| = N + M and the implied partition
into triplets induces an exact coverdf O

We note, that the same construction can be used to show that Cluster Deletion is NP-complete.

3.1. p-Cluster Editing

In this section we study theCluster Editing problem. We first show that 2-Cluster Editing is NP-complete. We then conclude
thatp-Cluster Editing is NP-complete for evep 2.
To prove the hardness of 2-Cluster Editing, we define the following problem.

Problem 5 (balanced 2-Coloring of a 3-Uniform HypergraphGiven a 3-Uniform hypergrapls, determine if there is a
2-Coloring of G such that the number of vertices that are colored by each color is the same.

This problem can be shown to be NP-complete by a trivial reduction from 2-Coloring of a 3-Uniform Hypergraph, whose
NP-completeness was proven by LoviE3].

Theorem 6. 2-Cluster Editing is NP-complete.

Proof. Membership in NP is trivial. We reduce from Balanced 2-Coloring of a 3-Uniform Hypergraph. Given a hypergraph
G = (V, E), we build an instance of 2-Cluster Editing’ = (V’, E’), k) as follows: Letn andm be the number of vertices

and hyperedges, respectively,® and assume that = {1, ...,n}. Let M = 2:3. Each vertex of G is associated with a

set ofM verticesV; = {v; ; : j =1,..., M} in G', which we call acluster We defineV’ = | J/_, V;. For a triplet of indices

1I<i < j<li<ndefinethe sek; ;; = ((vir, vj,), Vjr41, vyr)s (VU g1, Vi ry1)}, Wherer = 2(n2i +nj +1) — 1. The edge

set of G’ is defined as

n
E = U EijV U {(vi,j,vig) 1 J # k).
i<j<l,(i,j,)¢E i=1

In words, we build a clique around eadh, and add the edges d&; ;,; for every non-hyperedge @. Finally, we setk =
2 (”éz) (M2 — (n — 2)) + (%)Z(n — 2) — m. For convenience we also define a graph= (V’, E”), which is built like G’
except that it contains the edges#p ; ; for every tripleti < j </, that is,

E'"=E'U U Eij.
i<j<l,(i,jl)eE

We now prove that there is a balanced 2-Coloringaf and only if there is a 2-Cluster Editing set 6f of size at mosk.

(=) Suppose thaf : V — {0, 1} is a balanced 2-Coloring @. LetS={J;. ;=i and letF’, F" be the 2-Cluster Editing
sets ofG’ andG”, respectively, that correspond to the partiti®r= (S, V\S). Sincef is balanced, each side Bfconsists of}
clusters. We first compute the size®f. For two distinct cluster¥; andV;,i < j, each setof the forni; ;;, E;; j, Or Ey ; ;
contains exactly one edge betweénandV ;. Therefore, there are exactly— 2 edges between every pair of clustergih. It

follows thatF” contains 2(”42) (M2 — (n — 2)) edges that are not ia” between clusters on the same side of the partition, and

(%)Z(n —2) edges inE” between clusters on different sides of the partition. Thigg| =2 <”£2) (M2—(n—2))+ (%)z(n -2).

We now compute the size d@f’: For each hyperedgé, j,1) € E, the edges df; ;; in G” contribute two edges t&"” (as
the clustersy;, V;, andV; are not all on the same side of the partition), while the non-existence of the edggs pfn G’
contributes only one edge #© (between the two clusters on the same side of the partition). It followsfhet | F”| — m =k.

(<) Suppose that’ has a 2-Cluster Editing set of size at mkstet F be a 2-Cluster Editing set fa&’ of minimum size.
Clearly,| F|< k. We shall prove that one can construct fréma balanced 2-Coloring d&.

Let P(F) be the partition(S, V/\S). We say thatP (F) splitsa clusterV; if V; NS # ¢ andV; ZS. We first claim thatP (F)
splits no cluster. Suppose to the contrary tRaF’) splits at least one cluster. F(F) splits more than one cluster then lét
be a split cluster whose intersection wiihas minimum cardinality, and 1ét; be a split cluster whose intersection wilas
maximum cardinality angl # i. Denotea = |V; N S| andb = |V; N S|. Choose some vertexe V; NS and avertexw € V;\S.
Let S’ =S U {w}\{u}, and letF’ be the 2-Cluster Editing set that corresponds to the partisonv’’\S’). We will show that
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|F| — |[F'|>0. Note that if{i, j, I} # {i’, j, 1’} then the edges of; ;; are incident on different vertices than the edges of
Ey i . Therefore, every € V; has at most one neighbor outsidelgf If such a neighbor exists, denote it by.
The edges iif that are incident o or w are

(1) M — a edges (inE’) betweeru andV;\ S.
(2) A possible edge (it’) betweeru andn,, (if n, exists andi, € V/\S).
(3) Either|S| —a or|S| —a — 1 edges (notirE’) betweeru andS\ (V; N S) (the second term is for the case thatexists and
ny €8).
(4) bedges (inE’) betweerwandV; N S.
(5) A possible edge (') betweenw andny, (if n,, exists andiy, € S).
(6) EithernM —|S| — (M —b) ornM — |S| — (M — b) — 1 edges (notirE’) betweerw andV/\S\(V;\S) (the second term
is for the case when,, exists andi, € V'\5).
The total number of these edges is at leadt — 2a + 2b — 2.
Similarly, the edges iF’ that are incident oo or w are

(1) a — 1 edges (inE’) betweeru andV; N S\ {u}.
(2) A possible edge (i£’) betweeru andn,,.
(3) EithernM — |S| — (M —a) —1lornM — |S| — (M — a) — 2 edges (not irE”) betweeru and V/\ S\ (V;\ $)\{w}.
(4) M — b — 1 edges (inE’) betweerw andV;\ S\ {w}.
(5) A possible edge (') betweenw andn,,.
(6) Either|S| —b — 1l or|S| — b — 2 edges (not irE’) betweenv andS\(V; N S)\{u}.
The total number of these edges is at mogt + 2a — 2b — 2. It follows that

|F| — |F'|> (M —2a+2b —2) — (WM +2a — 2b — 2) = 4(b — a)> 0.

If a < b, we have thatF’| < | F|, in contradiction to the minimality df. If a = b, we have thatF’| = | F|. In this case we build a
setS” from S’ using the same process as above, and s$ice S’ | is not equal amongst the clusters, it follows that the 2-Cluster
Editing setF” that corresponds to the partitiof”, V\S”) satisfie§ F”’| < |F’| = | F|, and again we arrive at a contradiction.

Now suppose that the partitiaR(F) splits exactly one cluster, and denote this clustevpyLeta = |V; N S|. Out of the
remaining: — 1 clusters, suppose thatlusters are contained § andn — r — 1 clusters are contained '\ S. W.l.0.g. suppose
thatn — r — 1<r, and sincenis even we have — r — 1<r — 1. DefineS’ = S\ V;, and letF’ be the corresponding 2-Cluster
Editing set. For each € V; N S, there are at leastM — 1 edges irF betweenv andS\ V; (the term—1 is due to the possibility
thatn, exists andi, € S\V;) andM — a edges betweenandV;\S. Hence, the number of edgeshrthat are incident on is
atleastrM — 1+ M — a. On the other hand, an edge /i that is incident orv is either between andn,, or betweerv and
(V/\$)\V;. The number of edges of the latter typers— 1 — r) M, so the number of edges ithat are incident o is at most
n—1—rM + 1< (r — )M + 1. It follows that

|F| = |F|2aM —14+M—a—(r =DM +1)=a(@M —a —2)>0,

in contradiction to the minimality of. ThereforeF splits no cluster.
We now claim thaScontains exactly = % clusters. Conversely, suppose w.l.0.g. thatn /2. LetV; be some cluster contained
in S LetS’ = S\V; and letF’ be the corresponding 2-Cluster Editing set. Similar to the above, we have that

|FI = F'lZ2M((r =DM — 1~ ((n =M +1)> MM —2) >0,

a contradiction. Henc§contains% clusters.

Define a coloringf : V — {0, 1} by f(i) =0ifand only if V; C S. Clearly,fis balanced. It remains to show tHas a legal
2-coloring. For a hyperedgg, j, k) € E, if i, j, k have the same color theéf' N E; ; ;| = 3. Otherwise|F N E; ; ;| = 1 since
two of the edges iiE; ; ; must cross the partitiofs, V/\S). Hence, each monochromatic hyperedge increidsgsy 2. By the
first direction of the proof, the editing set that corresponds to a legal 2-coloring is of size axallys, no monochromatic
hyperedge is possible flt follows thatf is a balanced 2-coloring @&. O

Corollary 7. p-Cluster Editing is NP-complete for apy 2.

Proof. Fix p > 2. We provide a reduction from 2-Cluster Editing. Given an input instaéce (V, E), k) of 2-Cluster Editing,
|V| = n, we form an instanceG’ = (V', E’), k) of p-Cluster Editing as follows: Defin&’ = vV U Uf:lz V;, whereV; =

{w;j:j=1...,n?). DefineE’ = E U Uf’:_lz{(w,-,j, w;i 1)k # j}. Thatis,p — 2 disjoint cliques of size? each are added
to G.
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Clearly, every 2-Cluster Editing set &fis ap-Cluster Editing set o&’ (of the same size). Conversely, suppose fifas a
p-Cluster Editing set o&;’ of size at mosk, and letP (F') = (S1. ..., S) be the corresponding partition. We show tidtis
also a 2-Cluster Editing set f@.

If there is a seV; such thatV; N S; # ¢ and‘/igSj for somej, thenF’ containsEVimSj,Vi\Sj. The number of such edges

is at least? — 1> k, a contradiction. Therefore, evely is contained in some S8t Furthermore, every; contains at most

one setV; since, otherwise, we havé’|> n* > k, a contradiction. Ifs; 2 V; thenS; = V; using a similar argument. It follows
that all edges inF’ are incident on vertices &f, implying thatF’ is a 2-Cluster Editing set . O

3.2. A 0.878-approximation algorithm

In this section we give a polynomial approximation algorithm for a weighted variant of 2-Cluster Editing which is defined as
follows:

Problem 8 (Weighted 2-Cluster Editing Given a graplG and a weight function on vertex paits: E(G) U E(G) — .V, find
in G a 2-Cluster Editing set with maximum total weight of unedited vertex pairs.

Note, that the decision version of Weighted 2-Cluster Editing reduces to that of 2-Cluster Editingv#hédn(i.e.,w(e) =1
for everye € E(G) U E(G)).

Let G = (V, E, w) be an input weighted graph withvertices. LetS,, denote ther-dimensional unit sphere. We define the
following semi-definite relaxation of Weighted 2-Cluster Editing:

1

maxz | 3 @@ )A+v v+ Y @l ))A v v))
(i,j)eE (. )EE

St v; € Sy Vi,

We claim that this is indeed a relaxation of Weighted 2-Cluster Editing, that is, for every paRitioA, B) of G there exist
vectorsvy, ..., v, € S, such that the total weight of unedited vertex pairs as implie® lis/%[z(i’j)eE(w((i, NA+ v -
vj))+ Z(i,j)ﬂ(w((i, 7N —v;-v;)] Indeed, le(A, B) be a partition ofs. Letvg be any unit vector ir,,. For everyi € A
setv; = vg, and for every € B setv; = —vg. The claim follows.

Our approximation algorithm solves this semi-definite relaxation and then rounds the solution obtained using the random
hyperplane techniqué].

Theorem 9. The algorithm approximates Weight2eCluster Editing with an expected approximation ratio of at |6h8f8.

Proof. Follows directly from[7, Theorem 6.1] O

4. Cluster Completion

The Cluster Completion problem is trivially polynomial: The optimum solution is obtained by simply transforming each
connected component of the input graph into a complete graph. In this section we give a polynomial algorg@tufsier
Completion, for any fixegh> 2.

LetG =(V, E) be aninput graph with vertices and connected components:l& p we outputFalse We assume henceforth
thatt> p. To find the optimum completion set we compute partitions of teenponents ofs into p sets (splitting no connected
components) and choose the partition which results in a minimum completion set. Using dynamic programming, we only need
to consider a polynomial number of partitions. Note that since we only add edges, we seek to minimize the sum of the number
of edges in each of thesets of the partition, or equivalently, the sum of the squared sizes of the sets.

LetCy, ..., C; be the cardinalities of the connected componen@.i®ur algorithm will denote each possible partition by a
(p — D-long vector of integers, which describes the sizes of the sets in the partition (the size of the last set is the difference from
n). We will maintain a ses; of the vectors that correspond to all possible partitions of theiftethnected components. The
algorithm is given irFig. L The actual partition can be obtained by maintaining for eaehS; a pointer to its parent vector in
Si—l-
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So = {(07)0)}
Fori=1tot do:

Si = Sz’—l U {'U+Ci€j NS Si—lyj = 1,.. P — ].}
Pick in S; a vector v* minimizing Y77} v + (n — Y07} v;)2.
Output the completion set that corresponds to v*.

Fig. 1. An algorithm fop-Cluster Completione; denotes dp — 1)-dimensional unit vector with 1 in positign
Theorem 10. The algorithm correctly solves p-Cluster CompletiorOian?~1) time.

Proof. LetF be thep-completion set returned by the algorithm. It suffices to proveRhigbptimum. LetP (F) = (V1, ..., V)).
Then

— (1l 1§ 2 1gs y2_n
|F|=Z( » )—|E|=§Z<|v,-| —Vih = [El=35 ) IVil* = 5 — |E].
i=1 i=1 i=1
Let F* be an optimunp-Cluster Completion set @, and letP (F*) = (V{, ..., V). Then|F*| = %Zle |Vl.*|2 -5 —|E|
By the algorithm/ F|< | F*|, implying thatF is optimum. O

5. Cluster Deletion

In this section we study the Cluster Deletion problem. We shall give a gap preserving reduct[@g]jdirom a restricted
version of SET-COVER to Cluster Deletion. This reduction implies that there is some const@rguch that it is NP-hard to
approximate Cluster Deletion to within a factor of-1e. We begin by introducing the SET-COVER restriction.

Problem 11 (Minimum Restricted Exact Cover (REC)he inputis a selV = {u1, ..., u;}, and a collectiorC of subsets otJ
which satisfies the following conditions:

There is a constarty > 0 such that for eacl € C, |S|< k1.
There is a constartb > 0 such that foralk € U, |{S € C : u € S}|< ko.
If S e CandS’ c SthenS’ e C.

UsecS=U.
The goalis to find a sub-collectidnc C of minimum cardinality, such that) ¢ ; S=U, and the sets ihare pairwise-disjoint.

Note, that the third and fourth conditions guarantee that a solution to REC always exists. REC can be shown to be MAX-SNP
complete by a simple L-reduction from a restriction of SET-COVER in which the size of every set is bounded and each element
occurs in a bounded number of sets. The latter problem is known to be MAX-SNP corfiiktelence, there is a constant
JOrec > 0 such that it is NP-hard to approximate REC to within a factor ¢fdrec.

Theorem 12. There is some constant- 0 such that it is NP-hard to approximate Cluster Deletion to within a factdt ¢fc.

Proof. By a gap preserving reduction from REC (similar to the one in Theorem 4). For an indtaaeef REC, the re-
duction produces in polynomial time an instangg) of Cluster Deletion such thaipt (IRec) < ¢ impliesopt (Icp)< ¢’ and
opt(IReC) > (1 + Srec)c impliesopt (Icp) > (1 + &)c’, whereopt (I') denotes the optimal value for instarice

We now describe the reduction. Letec = (U, C), and let|U| = ¢. Suppose that each set@has size at mogt;, and each
element occurs in at mogp sets. Letn = k%kz/éREC and letg = Y ¢.c|S]. We build an instancécp = (G = (V, E)) of
Cluster Deletion as follows:

V= U {vs1, - v . wstUU,
SeC
E=FE1UE>U E3U Ey4,
E1={(vs;,u): S € C,1<i<m,u € S},
Er={(vg,;,vs,j):S€C, 1<i<j<m},
E3={(u,u’):3S e C s.t.u,u’ € S},
E4={(U5’i, wg): S eC,1<i<m}.
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Let Cy,...,Cy be the connected components of G.
Fori=1,...,t do:

If C; is not bipartite then output False and halt.

Else find a bipartition (A4;, B;) of C; such that |A;| > |B].
Output F((A1U...UA, BiU...UB)).

Fig. 2. An algorithm for 2-Cluster Deletion.

In words, for eacts € C we form a cliqgue orSand a set ofn new vertices, and also connect all the new vertices to a single
extra vertexwg. For each subset € C we denoteVg = {vg 1, ..., vs )} and call the elements dfg, S-vertices. Note, that
|E3|< (k1 — kot /2 < k1kot /2 andg < kot. Clearly,7/ k1< opt (IRec)< t. Letc be any constant such thatk1< ¢< . Define
' = (g —t+c)m+|E3| ande = Srec/(2k1k2 + SreC). We prove that this reduction is gap preserving:

(=) Suppose thatpt (Irec)< c. Let] € C be an exact cover &, |7|< c¢. Foru € U denote by, the setin which contains
u. Let7 =C\I.

To obtain a cluster subgrag of G we delete the following edges:

(1) ForallS € I,u € S delete all the edges iiy; (-
(2) Foralls e I delete all the edges iy, (-
(3) Forallu € U,u’ € U\I, delete the edgéu, u') if it exists.

One can easily verify thaf’ is a cluster graph and, thereforgt (Icp)< (¢ —t + c)m + |E3| =¢'.

(«) Suppose thabpt(Irec) > (1 + drec)c. Observe that in any cluster subgraph@feveryu € U is adjacent to the
Svertices of at most one s&te C. Furthermore, there exists an optimum solutionf Icp for which: If a vertexu € U is
adjacentto asvertex in(V, E\F), for someS e C, thenF contains all the edges iy, sy} and does not contain any edges
in Eyg. (4)- Indeed, ifF” is a Cluster Deletion set such that, . .., u, (1< r< k1) are adjacent to agvertex in(V, E\F’), then
F"=(F'U Ey tws)P\(Ui—1 Evs,{u;) U lvs,i, vs,j 1 i # j}) is also such a Cluster Deletion set, gt |< |F'|.

Examine now the Cluster Deletion getFor eachu € U, eitherEy\y 4,y € F or there exists a single sste C such that
Ey, € F and Evyg (w(s)) S F. Letk be the number of verticas € U for which the latter case applies, and letbe the
collection of all setsSsuch that(vs ;, ) € E\F for someu € U, i. It follows that|F|> (¢ — k + |7 |)m. The sets i7" cover
k elements ofJ, s0|.7 |> opt (IRec) — (t — k) (sinceC contains all singleton sets). We conclude that

opt(Icp)= (g — t + opt(IREC))m > (q — t + (14 SReQ)c)m = ¢’ + (OrRecem — |E3))
N ORecem — |E3| Y OReC(t/k1)m — kykot /2
> |14+ ——)>c |1+
qgm + |E3| kotm + kykot /2
20 k1 — k1k 0
_ (1 RECM/ k1 — k1 2> _ (1+ REC
2kom + k1ko 2k1ko + OREC

> =c(1+9). O
5.1. p-Cluster Deletion

In this section we give a polynomial algorithm for the optimization version of 2-Cluster Deletion. We then shpvCiiater
Deletion is NP-complete for eveny > 2.

Let G = (V, E) be an input graph. W.l.0.gG is connected as, otherwise, eitliis already a 2-cluster graph, or we output
False The algorithm is described fig. 2

Theorem 13. The algorithm correctly solves 2-Cluster DeletionO: + |E(G)|) time.

Proof (Correctnesy Since the complement of a 2-cluster graph is a complete bipartite graph, a solution exists if and only if
G is bipartite. Hence, the algorithm outpufalseif and only if no solution exists. Moreover, the partition produced by the
algorithm has the property that if two vertices are assigned to the same set then they are adjacent. Therefore, the set of edge:
F=F({(ALU---UA;, BLU---U By)) returned by the algorithm is a 2-deletion se@fit suffices to prove thef is optimum.

DenoteS = A1 U --- U A;. Clearly, F consists of edges i with one endpoint inS and the other inV\S. Therefore,
|F|=|Es v\sl=1S|(n —|S]) — E(G). Let F* be a smallest 2-deletion set®f and letP (F*) = (5*, V\§*), where|S*|< 512
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It follows that| F*| =|S*|(n — | S*|) — E(G). For everyi < t, eitherA; € §* or B; € $* and, thereford,S|< | S*|< 5, implying
that|F|< | F*|. HenceF is an optimum 2-deletion set @.

ComplexityThe bottleneck in the complexity of the algorithm is computing the connected componeftaraf finding a
bipartition for each of them. These tasks can be performedirdO £(G)|) total time. O

Theorem 14. p-Cluster Deletion is NP-complete for apy: 3.

Proof. Membership in NP is trivial. We provide a reduction frgmColoring. Given an input grap& = (V, E), the reduction
outputs its complemert@ = (V, E) and a bound = | E|. A p-coloringf of G trivially translates into g@-deletion sef(u, v) ¢ E :
f) # f(v)}of G of size at mosk. Conversely, suppose tHais ap-deletion set of7 with | F|< k, and letC1, ..., Cp be the
cliques of(V, E\F). The coloringf defined byf (v) =i for all v € C; is ap-coloring of G. [

Note that the reduction works with aky | E| and in fact shows that even deciding whether a graph lpaSlaster Deletion
set is NP-hard, fop> 3.

6. Concluding remarks

After the submission of the paper we discovered that the Cluster Editing problem was studied independently by Chen et al.
[5] and Bansal et aJ2]. Chen et al. study Cluster Editing in the context of phylogeny reconstruction, and show that the problem
is NP-hard. Bansal et al. show the NP-hardness of the problem and give a constant factor approximation algorithm for it.
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