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Abstract

In a clustering problem one has to partition a set of elements into homogeneous and well-separated subsets. From a graph
theoretic point of view, a cluster graph is a vertex-disjoint union of cliques. The clustering problem is the task of making the
fewest changes to the edge set of an input graph so that it becomes a cluster graph. We study the complexity of three variants
of the problem. In the Cluster Completion variant edges can only be added. In Cluster Deletion, edges can only be deleted. In
Cluster Editing, both edge additions and edge deletions are allowed. We also study these variants when the desired solution
must contain a prespecified number of clusters. We show that Cluster Editing is NP-complete, Cluster Deletion is NP-hard to
approximate to within some constant factor, and Cluster Completion is polynomial. When the desired solution must contain
exactlyp clusters, we show that Cluster Editing is NP-complete for everyp�2; Cluster Deletion is polynomial forp = 2 but
NP-complete forp>2; and Cluster Completion is polynomial for anyp.We also give a constant factor approximation algorithm
for a variant of Cluster Editing whenp = 2.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Problem definition and motivation.Clustering is a central optimization problemwith applications in numerous fields including
computational biology (cf.[18]), image processing (cf.[19]), VLSI design (cf.[9]), and many more. The input to the problem
is typically a set of elements and pairwise similarity values between elements. The goal is to partition the elements into subsets,
which are calledclusters, so that two meta-criteria are satisfied:Homogeneity—elements inside a cluster are highly similar to
each other; andseparation—elements from different clusters have low similarity to each other. Concrete realizations of these
criteria generate a variety of combinatorial optimization problems[10].
In the basic graph theoretic approach to clustering, one builds from the raw data asimilarity graphwhose vertices correspond

to elements and there is an edge between two vertices if and only if the similarity of their corresponding elements exceeds a
predefined threshold[10,11]. Ideally, the resulting graph would be acluster graph, that is, a graph composed of vertex-disjoint
cliques. In practice, it is only close to being such, since similarity data is experimental and, therefore, error-prone.

�A preliminary version of this paper appeared in the Proceedings of the 27th International Workshop Graph-Theoretic Concepts in
Computer Science [17].
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Following [3] we formalize the resulting problem as the task of changing (adding or deleting) the fewest edges of an input
graph so as to obtain a cluster graph. We call this problemCluster Editing. In the relatedCluster Deletion(respectively,Cluster
Completion) problem one has to remove (respectively, add) fewest edges from (respectively, to) an input graph so that it becomes
a cluster graph. Completion (respectively, deletion) problems arise when the data contains only false negative (respectively,
positive) errors. The above problems belong to the class ofedge modification problems(cf. [15]), in which one has to minimally
change the edge set of a graph so as to satisfy a certain property. Another variant of these problems arises when the solution is
also required to consist of a prespecified number of clusters. This variant is motivated by many real-life applications in which a
partition of elements into a known number of categories is desired (see, e.g.,[1,8]).

Previous results.Edge modification problems were studied extensively in[15], where earlier studies are also reviewed. Most
of these problems were shown to be NP-complete. Polynomial algorithms were given for bounded degree input graphs. In
particular, a constant factor approximation algorithm was given for editing and deletion problems with respect to any property
that can be characterized by a finite set of forbidden induced subgraphs. Since a graph is a cluster graph if and only if it isP2-free
(i.e., it does not contain an induced path of two edges), this result implies a 3d-approximation algorithm for Cluster Editing and
Cluster Deletion on input graphs with degree bounded byd.
The Cluster Editing problem was first studied by Ben-Dor et al.[3], who presented a polynomial algorithm that solves the

problem with high probability under a stochastic data model. The complexity of the problem was left open. Cluster Deletion
was shown to be NP-complete by Natanzon[14].

Contribution of this paper.We prove that Cluster Editing is NP-complete, Cluster Deletion is NP-hard to approximate to
within some constant factor, and Cluster Completion is polynomial. We also study thep-Cluster versions of these problems, in
which the required graph must also be a vertex-disjoint union ofp cliques. We show thatp-Cluster Editing is NP-complete for
everyp�2;p-Cluster Deletion is polynomial forp=2 but NP-complete forp>2; andp-Cluster Completion is polynomial for
anyp. We also give a 0.878-approximation algorithm for a weighted variant of 2-Cluster Editing.

Organization of the paper.Section 2 contains terminology and problemdefinitions. In Section 3we prove theNP-completeness
of the Cluster Editing variants, and provide a 0.878-approximation algorithm for a weighted variant of 2-Cluster Editing. In
Section 4 we give polynomial algorithms for the Cluster Completion variants. Finally, in Section 5 we study the complexity of
the Cluster Deletion variants.

2. Preliminaries

All graphs in this paper are simple, i.e., contain no parallel edges or self-loops. LetG= (V ,E) be a graph. We denote its set
of edges byE(G). For a setS ⊆ V , we denote byGS the subgraph ofG induced by the vertices inS. For two disjoint subsets
A,B ⊆ V , we denote byEA,B the set of all edges with one endpoint inA and the other inB. Thecomplement graphof G is
G= (V , {(u, v) ∈ (V × V )\E : u 	= v}). See[4] for more definitions of graphs and hypergraphs.
A graphG= (V ,E) is called acluster graphif every connected component ofG is a complete graph.G is called ap-cluster

graphif it is a cluster graph withp connected components or, equivalently, if it is a vertex-disjoint union ofp cliques. IfG is any
graph andF ⊂ V ×V is such thatG′ = (V ,E
F) is a cluster graph, thenF is called aCluster Editing setfor G (E
F denotes
the symmetric difference betweenE andF, i.e.,(E\F) ∪ (F\E)). If in additionF ⊆ E, thenF is called aCluster Deletion set
for G. If F ∩ E = � thenF is called aCluster Completion setfor G. For a constantp, p-Cluster Editing set, p-Cluster Deletion
set, andp-Cluster Completion setare similarly defined. We denote byP(F) the partition ofV into disjoint subsets of vertices
according to the connected components (cliques) ofG′. For a partitionP = (V1, . . . , Vl) of V, we denote byF(P ) the Cluster
Editing set implied byP, that is,

F(P )=
l⋃
i=1

{(u, v) /∈E : u, v ∈ Vi} ∪ {(u, v) ∈ E : u ∈ Vi, v ∈ Vj , i 	= j}.

The problems we study in this paper are of two types:

Problem 1 (Cluster Editing/Completion/Deletion). Given a graphG and an integerk, determine if G has a Cluster
Editing/Completion/Deletion set of size at mostk.

Problem 2 (p-Cluster Editing/Completion/Deletion). Given a graphG and an integerk, determine ifG has ap-Cluster
Editing/Completion/Deletion set of size at mostk.
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3. Cluster Editing

We prove in this section that Cluster Editing is NP-complete by reduction from a restriction of exact cover by 3-sets:

Problem 3 (3-Exact 3-Cover (3X3C)). Given a collectionCof triplets of elements from a setU ={u1, . . . , u3n}, such that each
element ofU is a member of at most 3 triplets, determine if there is a sub-collectionI ⊆ C of sizenwhich coversU.

The 3X3C problem is known to be NP-complete[6, Problem SP2].

Theorem 4. Cluster Editing is NP-complete.

Proof. Membership in NP is trivial. We prove NP-hardness by reduction from 3X3C. Letm ≡ 30n. Given an instance〈C,U〉
of 3X3C we build a graphG= (V ,E) as follows:

V=
⋃
S∈C

{vS,1, . . . , vS,m} ∪ U,

E=E1 ∪ E2 ∪ E3,
E1={(vS,i , u) : S ∈ C,1� i�m, u ∈ S},
E2={(vS,i , vS,j ) : S ∈ C,1� i < j�m},
E3={(u, u′) : ∃S ∈ C s.t.u, u′ ∈ S}.

In words, we build a clique of sizem+ 3 around each tripletSby fully connectingSandmadditional vertices. For each triplet
S ∈ C we denoteVS={vS,1, . . . , vS,m} and call the elements ofVS ,S-vertices. Letq=∑

S∈C |S|=3|C|. DefineN ≡ m(q−3n)
andM ≡ |E3| − 3n. We prove that there is an exact cover ofU if and only if there is a Cluster Editing set forG of size at most
N +M:
(⇒) Suppose thatI ⊆ C is an exact cover ofU. Let F1 = {(vS,i , u) : S /∈ I,1� i�m, u ∈ S} and letF2 = {(u, u′) ∈ E3 :

�S ∈ I s.t.u, u′ ∈ S}. It is easy to verify thatF =F1∪F2 is a Cluster Editing set forG, whose size is|F |=|F1|+|F2|=N+M.
(⇐) Suppose thatG has an editing set of size at mostN + M. Let F be an editing set ofG of minimum size. Clearly,

|F |�N+M.We shall prove that one can derive fromF an exact cover ofU. Since each element ofU occurs in at most 3 triplets,
q�9n. Thus,|E3|� q�9n and|F |�N +M�6mn+ 6n= 180n2 + 6n< m

2 (
m
2 − 2).

LetG′ = (V ,E
F) be the cluster graph obtained by editingG according toF and letP(F) be the partition ofV according
to the cliques ofG′. We shall prove that for every subsetS ∈ C there is a unique clique inG′ which containsVS . To this end,
we first show that there is a cliqueKS in G′ such that|KS ∩ VS |�m/2+ 3: Suppose that the vertices ofVS are partitioned
amongk cliquesX1, . . . , Xk in G

′. Let s(Xi) = |VS ∩ Xi |, i = 1, . . . , k. Suppose to the contrary thats(Xi)�m/2 + 2 for
all i. Therefore,

|F |� 1

2

k∑
i=1

s(Xi)(m− s(Xi))� 1

2

k∑
i=1

s(Xi)
(m
2

− 2
)

= m

2

(m
2

− 2
)
.

A contradiction follows.
LetKS be the cliqueXi for which s(Xi) is maximum (|KS ∩ VS |�m/2+ 3). We next prove thatVS ⊆ KS ⊆ VS ∪ S. Let

x = |KS\(VS ∪ S)|. Consider a new partitionP ′ of V, which is obtained fromP(F) by splittingKS intoKS ∩ (VS ∪ S) and
KS\(VS ∪ S). Clearly,|F | − |F(P ′)|� (m/2+ 3)x − 3x = xm/2. SinceF is an optimum Cluster Editing set, we conclude that
x = 0 andKS ⊆ VS ∪ S. To see thatKS ⊇ VS , suppose to the contrary that there is some index 1� i�m such thatvS,i /∈KS .
LetK ′ be the clique inG′ which containsvS,i . Let P ′′ be a new partition ofV, which is obtained fromP(F) by movingvS,i
fromK ′ toKS . Then|F | − |F(P ′′)|�m/2+ 3− (m/2− 4+ 3)= 4, a contradiction. We conclude that for everyS ∈ C there
is a unique clique inG′ which containsVS and is contained inVS ∪ S.
LetF1=F ∩E1. Examine an elementu ∈ U which is a member of (at least) two subsetsS1, S2 ∈ C. By the previous claim,

VS1 andVS2 are subsets of distinct cliques inG
′. Hence, eitherEVS1,{u} ⊆ F , orEVS2,{u} ⊆ F (or both). Therefore,|F1|�N .

Moreover, since|F1|�N +M andM�6n, each vertexu ∈ U must be adjacent inG′ to theS-vertices of exactly one setS
whereu ∈ S. Call this set theS-setof u.
Let F2 = F\F1. For every two verticesu, u′ ∈ U such that(u, u′) ∈ E, and theS-sets ofu andu′ differ, we must have

(u, u′) ∈ F2. Since each subset inC contains 3 elements,G′
U
is a union of cliques of size at most 3. It is easy to verify that the

maximum number of edges in such a 3n-vertex graph is 3n, and that number is obtained if and only ifG′
U
is a union of triangles

only. Therefore,|F2| = |E3| − |E(G′
U
)|�M with equality if and only if there is a partition ofU into triplets of elements, such
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that the elements of each triplet have the sameS-set. Since|F |�N +M, we must have|F | =N +M and the implied partition
into triplets induces an exact cover ofU. �

We note, that the same construction can be used to show that Cluster Deletion is NP-complete.

3.1. p-Cluster Editing

In this section we study thep-Cluster Editing problem.We first show that 2-Cluster Editing is NP-complete.We then conclude
thatp-Cluster Editing is NP-complete for everyp�2.
To prove the hardness of 2-Cluster Editing, we define the following problem.

Problem 5 (balanced 2-Coloring of a 3-Uniform Hypergraph). Given a 3-Uniform hypergraphG, determine if there is a
2-Coloring ofG such that the number of vertices that are colored by each color is the same.

This problem can be shown to be NP-complete by a trivial reduction from 2-Coloring of a 3-Uniform Hypergraph, whose
NP-completeness was proven by Lovasz[13].

Theorem 6. 2-Cluster Editing is NP-complete.

Proof. Membership in NP is trivial. We reduce from Balanced 2-Coloring of a 3-Uniform Hypergraph. Given a hypergraph
G = (V ,E), we build an instance of 2-Cluster Editing〈G′ = (V ′, E′), k〉 as follows: Letn andm be the number of vertices
and hyperedges, respectively, inG, and assume thatV = {1, . . . , n}. LetM ≡ 2n3. Each vertexi of G is associated with a
set ofM verticesVi = {vi,j : j = 1, . . . ,M} in G′, which we call acluster. We defineV ′ = ⋃n

i=1Vi . For a triplet of indices

1� i < j < l� n define the setEi,j,l = {(vi,r , vj,r ), (vj,r+1, vl,r ), (vl,r+1, vi,r+1)}, wherer = 2(n2i + nj + l)− 1. The edge
set ofG′ is defined as

E′ =
⋃

i<j<l,(i,j,l)/∈E
Ei,j,l ∪

n⋃
i=1

{(vi,j , vi,k) : j 	= k}.

In words, we build a clique around eachVi , and add the edges ofEi,j,l for every non-hyperedge ofG. Finally, we setk ≡
2

(
n/2
2

)
(M2 − (n − 2)) + ( n2)2(n − 2) − m. For convenience we also define a graphG′′ = (V ′, E′′), which is built likeG′

except that it contains the edges inEi,j,l for every tripleti < j < l, that is,

E′′ = E′ ∪
⋃

i<j<l,(i,j,l)∈E
Ei,j,l .

We now prove that there is a balanced 2-Coloring ofG if and only if there is a 2-Cluster Editing set ofG′ of size at mostk.
(⇒) Suppose thatf : V → {0,1} is a balanced 2-Coloring ofG. LetS=⋃

i:f (i)=0Vi , and letF
′, F ′′ be the 2-Cluster Editing

sets ofG′ andG′′, respectively, that correspond to the partitionP = (S, V \S). Sincef is balanced, each side ofP consists ofn2
clusters. We first compute the size ofF ′′. For two distinct clustersVi andVj , i < j , each set of the formEi,j,l ,Ei,l,j , orEl,i,j
contains exactly one edge betweenVi andVj . Therefore, there are exactlyn− 2 edges between every pair of clusters inG′′. It
follows thatF ′′ contains 2

(
n/2
2

)
(M2− (n−2)) edges that are not inE′′ between clusters on the same side of the partition, and

( n2)
2(n−2) edges inE′′ between clusters on different sides of the partition. Thus,|F ′′|=2

(
n/2
2

)
(M2−(n−2))+( n2)2(n−2).

We now compute the size ofF ′: For each hyperedge(i, j, l) ∈ E, the edges ofEi,j,l in G
′′ contribute two edges toF ′′ (as

the clustersVi , Vj , andVl are not all on the same side of the partition), while the non-existence of the edges ofEi,j,l in G
′

contributes only one edge toF ′ (between the two clusters on the same side of the partition). It follows that|F ′| = |F ′′| −m= k.
(⇐) Suppose thatG′ has a 2-Cluster Editing set of size at mostk. Let F be a 2-Cluster Editing set forG′ of minimum size.

Clearly,|F |� k. We shall prove that one can construct fromF a balanced 2-Coloring ofG.
LetP(F) be the partition(S, V ′\S). We say thatP(F) splitsa clusterVi if Vi ∩ S 	= � andVi�S. We first claim thatP(F)

splits no cluster. Suppose to the contrary thatP(F) splits at least one cluster. IfP(F) splits more than one cluster then letVi
be a split cluster whose intersection withShas minimum cardinality, and letVj be a split cluster whose intersection withShas
maximum cardinality andj 	= i. Denotea= |Vi ∩ S| andb= |Vj ∩ S|. Choose some vertexu ∈ Vi ∩ S and a vertexw ∈ Vj \S.
Let S′ = S ∪ {w}\{u}, and letF ′ be the 2-Cluster Editing set that corresponds to the partition(S′, V ′\S′). We will show that
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|F | − |F ′|�0. Note that if{i, j, l} 	= {i′, j ′, l′} then the edges ofEi,j,l are incident on different vertices than the edges of
Ei′,j ′,l′ . Therefore, everyv ∈ Vi has at most one neighbor outside ofVi . If such a neighbor exists, denote it bynv .
The edges inF that are incident onu orw are

(1) M − a edges (inE′) betweenu andVi\S.
(2) A possible edge (inE′) betweenu andnu (if nu exists andnu ∈ V ′\S).
(3) Either|S| − a or |S| − a− 1 edges (not inE′) betweenu andS\(Vi ∩ S) (the second term is for the case thatnu exists and

nu ∈ S).
(4) b edges (inE′) betweenw andVj ∩ S.
(5) A possible edge (inE′) betweenw andnw (if nw exists andnw ∈ S).
(6) EithernM − |S| − (M − b) or nM − |S| − (M − b)− 1 edges (not inE′) betweenw andV ′\S\(Vj \S) (the second term

is for the case whennw exists andnw ∈ V ′\S).
The total number of these edges is at leastnM − 2a + 2b − 2.
Similarly, the edges inF ′ that are incident onu orw are

(1) a − 1 edges (inE′) betweenu andVi ∩ S\{u}.
(2) A possible edge (inE′) betweenu andnu.
(3) EithernM − |S| − (M − a)− 1 ornM − |S| − (M − a)− 2 edges (not inE′) betweenu andV ′\S\(Vi\S)\{w}.
(4) M − b − 1 edges (inE′) betweenw andVj \S\{w}.
(5) A possible edge (inE′) betweenw andnw.
(6) Either|S| − b − 1 or |S| − b − 2 edges (not inE′) betweenw andS\(Vj ∩ S)\{u}.
The total number of these edges is at mostnM + 2a − 2b − 2. It follows that

|F | − |F ′|� (nM − 2a + 2b − 2)− (nM + 2a − 2b − 2)= 4(b − a)�0.

If a <b, we have that|F ′|< |F |, in contradiction to the minimality ofF. If a=b, we have that|F ′|= |F |. In this case we build a
setS′′ fromS′ using the same process as above, and since|Vl ∩S′| is not equal amongst the clusters, it follows that the 2-Cluster
Editing setF ′′ that corresponds to the partition(S′′, V \S′′) satisfies|F ′′|< |F ′| = |F |, and again we arrive at a contradiction.
Now suppose that the partitionP(F) splits exactly one cluster, and denote this cluster byVi . Let a = |Vi ∩ S|. Out of the

remainingn−1 clusters, suppose thatr clusters are contained inS, andn− r−1 clusters are contained inV ′\S.W.l.o.g. suppose
thatn− r − 1� r, and sincen is even we haven− r − 1� r − 1. DefineS′ = S\Vi , and letF ′ be the corresponding 2-Cluster
Editing set. For eachv ∈ Vi ∩ S, there are at leastrM − 1 edges inF betweenv andS\Vi (the term−1 is due to the possibility
thatnv exists andnv ∈ S\Vi ) andM − a edges betweenv andVi\S. Hence, the number of edges inF that are incident onv is
at leastrM − 1+M − a. On the other hand, an edge inF ′ that is incident onv is either betweenv andnv , or betweenv and
(V ′\S)\Vi . The number of edges of the latter type is(n− 1− r)M, so the number of edges inF that are incident onv is at most
(n− 1− r)M + 1� (r − 1)M + 1. It follows that

|F | − |F ′|� a(rM − 1+M − a − ((r − 1)M + 1))= a(2M − a − 2)>0,

in contradiction to the minimality ofF. Therefore,F splits no cluster.
Wenowclaim thatScontains exactlyr= n

2 clusters. Conversely, supposew.l.o.g. thatr >n/2. LetVi be some cluster contained
in S. Let S′ = S\Vi and letF ′ be the corresponding 2-Cluster Editing set. Similar to the above, we have that

|F | − |F ′|�M((r − 1)M − 1− ((n− r)M + 1))�M(M − 2)>0,

a contradiction. Hence,Scontainsn2 clusters.
Define a coloringf : V → {0,1} by f (i)= 0 if and only ifVi ⊆ S. Clearly,f is balanced. It remains to show thatf is a legal

2-coloring. For a hyperedge(i, j, k) ∈ E, if i, j, k have the same color then|F ∩Ei,j,l | = 3. Otherwise,|F ∩Ei,j,l | = 1 since
two of the edges inEi,j,l must cross the partition(S, V

′\S). Hence, each monochromatic hyperedge increases|F | by 2. By the
first direction of the proof, the editing set that corresponds to a legal 2-coloring is of size exactlyk. Thus, no monochromatic
hyperedge is possible inf. It follows thatf is a balanced 2-coloring ofG. �

Corollary 7. p-Cluster Editing is NP-complete for anyp�2.

Proof. Fix p>2.We provide a reduction from 2-Cluster Editing. Given an input instance〈G= (V ,E), k〉 of 2-Cluster Editing,
|V | = n, we form an instance〈G′ = (V ′, E′), k〉 of p-Cluster Editing as follows: DefineV ′ = V ∪ ⋃p−2

i=1 Vi , whereVi =
{wi,j : j = 1, . . . , n2}. DefineE′ = E ∪ ⋃p−2

i=1 {(wi,j , wi,k) : k 	= j}. That is,p − 2 disjoint cliques of sizen2 each are added
toG.
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Clearly, every 2-Cluster Editing set ofG is ap-Cluster Editing set ofG′ (of the same size). Conversely, suppose thatF ′ is a
p-Cluster Editing set ofG′ of size at mostk, and letP(F ′) = (S1, . . . , Sp) be the corresponding partition. We show thatF ′ is
also a 2-Cluster Editing set forG.
If there is a setVi such thatVi ∩ Sj 	= � andVi�Sj for somej, thenF ′ containsEVi∩Sj ,Vi\Sj . The number of such edges

is at leastn2 − 1>k, a contradiction. Therefore, everyVi is contained in some setSj . Furthermore, everySj contains at most

one setVi since, otherwise, we have|F ′|� n4>k, a contradiction. IfSj ⊇ Vi thenSj =Vi using a similar argument. It follows
that all edges inF ′ are incident on vertices ofV, implying thatF ′ is a 2-Cluster Editing set ofG. �

3.2. A 0.878-approximation algorithm

In this section we give a polynomial approximation algorithm for a weighted variant of 2-Cluster Editing which is defined as
follows:

Problem 8 (Weighted 2-Cluster Editing). Given a graphG and a weight function on vertex pairsw : E(G)∪E(G) → N, find
in G a 2-Cluster Editing set with maximum total weight of unedited vertex pairs.

Note, that the decision version ofWeighted 2-Cluster Editing reduces to that of 2-Cluster Editing whenw ≡ 1 (i.e.,w(e)= 1
for everye ∈ E(G) ∪ E(G)).
LetG = (V ,E,w) be an input weighted graph withn vertices. LetSn denote then-dimensional unit sphere. We define the

following semi-definite relaxation of Weighted 2-Cluster Editing:

max
1

2


 ∑
(i,j)∈E

(w((i, j))(1+ vi · vj ))+
∑

(i,j)/∈E
(w((i, j))(1− vi · vj ))




s.t. vi ∈ Sn ∀i.

We claim that this is indeed a relaxation of Weighted 2-Cluster Editing, that is, for every partitionP = (A,B) of G there exist
vectorsv1, . . . , vn ∈ Sn such that the total weight of unedited vertex pairs as implied byP is 1

2[∑(i,j)∈E(w((i, j))(1+ vi ·
vj ))+

∑
(i,j)/∈E(w((i, j))(1− vi · vj ))]. Indeed, let(A,B) be a partition ofG. Letv0 be any unit vector inSn. For everyi ∈ A

setvi = v0, and for everyi ∈ B setvi = −v0. The claim follows.
Our approximation algorithm solves this semi-definite relaxation and then rounds the solution obtained using the random

hyperplane technique[7].

Theorem 9. The algorithm approximates Weighted2-Cluster Editing with an expected approximation ratio of at least0.878.

Proof. Follows directly from[7, Theorem 6.1]. �

4. Cluster Completion

The Cluster Completion problem is trivially polynomial: The optimum solution is obtained by simply transforming each
connected component of the input graph into a complete graph. In this section we give a polynomial algorithm forp-Cluster
Completion, for any fixedp�2.
LetG=(V ,E) be an input graph withnvertices andt connected components. Ift <p we outputFalse.We assume henceforth

thatt�p. To find the optimum completion set we compute partitions of thet components ofG intop sets (splitting no connected
components) and choose the partition which results in a minimum completion set. Using dynamic programming, we only need
to consider a polynomial number of partitions. Note that since we only add edges, we seek to minimize the sum of the number
of edges in each of thep sets of the partition, or equivalently, the sum of the squared sizes of the sets.
LetC1, . . . , Ct be the cardinalities of the connected components inG. Our algorithm will denote each possible partition by a

(p−1)-long vector of integers, which describes the sizes of the sets in the partition (the size of the last set is the difference from
n). We will maintain a setSi of the vectors that correspond to all possible partitions of the firsti connected components. The
algorithm is given inFig. 1. The actual partition can be obtained by maintaining for eachv ∈ Si a pointer to its parent vector in
Si−1.
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Fig. 1. An algorithm forp-Cluster Completion.ej denotes a(p − 1)-dimensional unit vector with 1 in positionj.

Theorem 10. The algorithm correctly solves p-Cluster Completion inO(tnp−1) time.

Proof. LetF be thep-completion set returned by the algorithm. It suffices to prove thatF is optimum. LetP(F)= (V1, . . . , Vp).
Then

|F | =
p∑
i=1

( |Vi |
2

)
− |E| = 1

2

p∑
i=1

(|Vi |2 − |Vi |)− |E| = 1

2

p∑
i=1

|Vi |2 − n

2
− |E|.

LetF ∗ be an optimump-Cluster Completion set ofG, and letP(F ∗)= (V ∗
1 , . . . , V

∗
p ). Then|F ∗| = 1

2
∑p
i=1 |V ∗

i
|2 − n

2 − |E|.
By the algorithm,|F |� |F ∗|, implying thatF is optimum. �

5. Cluster Deletion

In this section we study the Cluster Deletion problem. We shall give a gap preserving reduction (cf.[12]) from a restricted
version of SET-COVER to Cluster Deletion. This reduction implies that there is some constant�>0 such that it is NP-hard to
approximate Cluster Deletion to within a factor of 1+ �. We begin by introducing the SET-COVER restriction.

Problem 11 (Minimum Restricted Exact Cover (REC)). The input is a setU = {u1, . . . , ut }, and a collectionC of subsets ofU
which satisfies the following conditions:

• There is a constantk1>0 such that for eachS ∈ C, |S|� k1.
• There is a constantk2>0 such that for allu ∈ U , |{S ∈ C : u ∈ S}|� k2.
• If S ∈ C andS′ ⊂ S thenS′ ∈ C.
• ⋃

S∈CS = U .
The goal is to find a sub-collectionI ⊆ C ofminimumcardinality, such that

⋃
S∈I S=U , and the sets inI are pairwise-disjoint.

Note, that the third and fourth conditions guarantee that a solution to REC always exists. REC can be shown to be MAX-SNP
complete by a simple L-reduction from a restriction of SET-COVER in which the size of every set is bounded and each element
occurs in a bounded number of sets. The latter problem is known to be MAX-SNP complete[16]. Hence, there is a constant
�REC>0 such that it is NP-hard to approximate REC to within a factor of 1+ �REC.

Theorem 12. There is some constant�>0 such that it is NP-hard to approximate Cluster Deletion to within a factor of1+ �.

Proof. By a gap preserving reduction from REC (similar to the one in Theorem 4). For an instanceIREC of REC, the re-
duction produces in polynomial time an instanceICD of Cluster Deletion such thatopt(IREC)� c impliesopt(ICD)� c′ and
opt(IREC)> (1+ �REC)c impliesopt(ICD)> (1+ �)c′, whereopt(I ) denotes the optimal value for instanceI.
We now describe the reduction. LetIREC= 〈U,C〉, and let|U | = t . Suppose that each set inC has size at mostk1, and each

element occurs in at mostk2 sets. Letm ≡ k21k2/�REC and letq ≡ ∑
S∈C |S|. We build an instanceICD = 〈G = (V ,E)〉 of

Cluster Deletion as follows:

V=
⋃
S∈C

{vS,1, . . . , vS,m,wS} ∪ U,

E=E1 ∪ E2 ∪ E3 ∪ E4,
E1={(vS,i , u) : S ∈ C,1� i�m, u ∈ S},
E2={(vS,i , vS,j ) : S ∈ C,1� i < j�m},
E3={(u, u′) : ∃S ∈ C s.t.u, u′ ∈ S},
E4={(vS,i , wS) : S ∈ C,1� i�m}.
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Fig. 2. An algorithm for 2-Cluster Deletion.

In words, for eachS ∈ C we form a clique onSand a set ofmnew vertices, and also connect all the new vertices to a single
extra vertexwS . For each subsetS ∈ C we denoteVS = {vS,1, . . . , vS,m} and call the elements ofVS , S-vertices. Note, that
|E3|� (k1 − 1)k2t/2<k1k2t/2 andq� k2t . Clearly,t/k1� opt(IREC)� t . Let c be any constant such thatt/k1� c� t . Define
c′ ≡ (q − t + c)m+ |E3| and� ≡ �REC/(2k1k2 + �REC). We prove that this reduction is gap preserving:
(⇒) Suppose thatopt(IREC)� c. LetI ⊆ C be an exact cover ofU, |I |� c. Foru ∈ U denote byIu the set inI which contains

u. Let Ī = C\I .
To obtain a cluster subgraphG′ of Gwe delete the following edges:

(1) For allS ∈ Ī , u ∈ S delete all the edges inEVS,{u}.
(2) For allS ∈ I delete all the edges inEVS,{wS }.
(3) For allu ∈ U, u′ ∈ U\Iu delete the edge(u, u′) if it exists.
One can easily verify thatG′ is a cluster graph and, therefore,opt(ICD)� (q − t + c)m+ |E3| = c′.
(⇐) Suppose thatopt(IREC)> (1 + �REC)c. Observe that in any cluster subgraph ofG, everyu ∈ U is adjacent to the

S-vertices of at most one setS ∈ C. Furthermore, there exists an optimum solutionF of ICD for which: If a vertexu ∈ U is
adjacent to anS-vertex in(V ,E\F), for someS ∈ C, thenF contains all the edges inEVS,{w(S)} and does not contain any edges
in EVS,{u}. Indeed, ifF ′ is a Cluster Deletion set such thatu1, . . . , ur (1� r� k1) are adjacent to anS-vertex in(V ,E\F ′), then
F ′′ = (F ′ ∪ EVS,{w(S)})\(

⋃r
i=1EVS,{ui } ∪ {vS,i , vS,j : i 	= j}) is also such a Cluster Deletion set, and|F ′′|� |F ′|.

Examine now the Cluster Deletion setF. For eachu ∈ U , eitherEV \U,{u} ⊆ F or there exists a single setS ∈ C such that
EVS,{u}�F andEVS,{w(S)} ⊆ F . Let k be the number of verticesu ∈ U for which the latter case applies, and letT be the
collection of all setsSsuch that(vS,i , u) ∈ E\F for someu ∈ U, i. It follows that|F |� (q − k + |T|)m. The sets inT cover
k elements ofU, so|T|� opt(IREC)− (t − k) (sinceC contains all singleton sets). We conclude that

opt(ICD)� (q − t + opt(IREC))m> (q − t + (1+ �REC)c)m= c′ + (�RECcm− |E3|)
> c′

(
1+ �RECcm− |E3|

qm+ |E3|
)
>c′

(
1+ �REC(t/k1)m− k1k2t/2

k2tm+ k1k2t/2
)

= c′
(
1+ 2�RECm/k1 − k1k2

2k2m+ k1k2
)

= c′
(
1+ �REC

2k1k2 + �REC

)
= c′(1+ �). �

5.1. p-Cluster Deletion

In this section we give a polynomial algorithm for the optimization version of 2-Cluster Deletion.We then show thatp-Cluster
Deletion is NP-complete for everyp>2.
LetG= (V ,E) be an input graph. W.l.o.g.,G is connected as, otherwise, eitherG is already a 2-cluster graph, or we output

False. The algorithm is described inFig. 2.

Theorem 13. The algorithm correctly solves 2-Cluster Deletion inO(n+ |E(G)|) time.

Proof (Correctness). Since the complement of a 2-cluster graph is a complete bipartite graph, a solution exists if and only if
G is bipartite. Hence, the algorithm outputsFalse if and only if no solution exists. Moreover, the partition produced by the
algorithm has the property that if two vertices are assigned to the same set then they are adjacent. Therefore, the set of edges
F =F((A1∪ · · · ∪At , B1∪ · · · ∪Bt )) returned by the algorithm is a 2-deletion set ofG. It suffices to prove thatF is optimum.
DenoteS = A1 ∪ · · · ∪ At . Clearly,F consists of edges inG with one endpoint inS and the other inV \S. Therefore,

|F | = |ES,V \S | = |S|(n− |S|)−E(G). LetF ∗ be a smallest 2-deletion set ofG, and letP(F ∗)= (S∗, V \S∗), where|S∗|� n
2.
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It follows that|F ∗|= |S∗|(n−|S∗|)−E(G). For everyi� t , eitherAi ⊆ S∗ orBi ⊆ S∗ and, therefore,|S|� |S∗|� n
2, implying

that|F |� |F ∗|. Hence,F is an optimum 2-deletion set ofG.
Complexity.The bottleneck in the complexity of the algorithm is computing the connected components ofG and finding a

bipartition for each of them. These tasks can be performed in O(n+ |E(G)|) total time. �

Theorem 14. p-Cluster Deletion is NP-complete for anyp�3.

Proof. Membership in NP is trivial. We provide a reduction fromp-Coloring. Given an input graphG= (V ,E), the reduction
outputs its complementG= (V ,E) and a boundk=|E|. A p-coloringf ofG trivially translates into ap-deletion set{(u, v) /∈E :
f (u) 	= f (v)} ofG of size at mostk. Conversely, suppose thatF is ap-deletion set ofG with |F |� k, and letC1, . . . , Cp be the
cliques of(V ,E\F). The coloringf defined byf (v)= i for all v ∈ Ci is ap-coloring ofG. �

Note that the reduction works with anyk� |E| and in fact shows that even deciding whether a graph has ap-Cluster Deletion
set is NP-hard, forp�3.

6. Concluding remarks

After the submission of the paper we discovered that the Cluster Editing problem was studied independently by Chen et al.
[5] and Bansal et al.[2]. Chen et al. study Cluster Editing in the context of phylogeny reconstruction, and show that the problem
is NP-hard. Bansal et al. show the NP-hardness of the problem and give a constant factor approximation algorithm for it.
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