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ABSTRACT

The interpretation of large-scale protein network data depends on our ability to identify
significant substructures in the data, a computationally intensive task. Here we adapt and
extend efficient techniques for finding paths and trees in graphs to the problem of identifying
pathways in protein interaction networks. We present linear-time algorithms for finding
paths and trees in networks under several biologically motivated constraints. We apply
our methodology to search for protein pathways in the yeast protein–protein interaction
network. We demonstrate that our algorithm is capable of reconstructing known signaling
pathways and identifying functionally enriched paths and trees in an unsupervised manner.
The algorithm is very efficient, computing optimal paths of length 8 within minutes and
paths of length 10 in about three hours.
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1. INTRODUCTION

Amajor challenge of postgenomic biology is to understand the complex networks of interacting
genes, proteins, and small molecules that give rise to biological form and function. Protein–protein in-

teractions are crucial to the assembly of protein machinery and the formation of protein signaling cascades.
Hence, the dissection of protein interaction networks has great potential to improve the understanding of
cellular machinery and to assist in deciphering protein function.

The available knowledge about protein interactions in a single species can be represented as a protein
interaction graph whose vertices represent proteins and whose edges represent protein interactions; each
edge can be assigned a weight indicating the strength of evidence for the existence of the corresponding
interaction. An important class of protein signaling cascades can be described as chains of interacting
proteins in which protein interactions enable each protein in the path to modify its successor so as to
transmit biological information. Such structures correspond to simple paths in the protein interaction graph
(Kelley et al., 2003).
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Steffen et al. (2002) studied the problem of identifying pathways in a protein network. They applied
an exhaustive search procedure to an unweighted interaction graph, considering all interactions equally
reliable. To score the biological relevance of an identified path, they scored the tendency of its genes to
have similar expression patterns. The approach was successful in detecting known signaling pathways in
yeast. We have also conducted a related study (Kelley et al., 2003) aimed at identifying pathways that are
conserved across two species. The study employed a more efficient way of detecting simple paths in a
graph that is based on finding acyclic orientations of the graph’s edges.

The present work advances the methodology of searching for signaling cascades in two ways: first,
by assigning well-founded reliability scores to protein–protein interactions, rather than putting all such
interactions on the same footing; and second, by exploiting a powerful algorithmic technique of Alon et al.
(1995), called color coding, to find high-scoring paths efficiently. The color-coding approach reduces the
running time of the search algorithm by orders of magnitude compared both to exhaustive search and
to the faster acyclic orientation approach, thus enabling the search for longer paths. We also extend the
color-coding method to incorporate biologically motivated constraints on the types of proteins that may
occur in a path and the order of their occurrence and to search for structures more general than paths, such
as trees and two-terminal series-parallel graphs.

As evidence of the success of our approach, we show that our method accurately recovers well-known
MAP kinase and ubiquitin-ligation pathways, that many of the pathways we discover are enriched for
known cellular functions, and that the pathways and trees we find score higher than those found in random
networks obtained by shuffling the edges and weights of the original network while preserving vertex
degrees.

The paper is organized as follows: Section 2 presents the path finding problem and describes the color-
coding approach. In Section 3, we develop biologically motivated extensions of the color-coding approach.
Section 4 describes the estimation of protein interaction reliabilities and the path scoring methods used.
Finally, Section 5 presents the applications of our method to yeast protein interaction data.

2. FINDING SIMPLE PATHS: THE COLOR CODING TECHNIQUE

Alon et al. (1995) devised a novel randomized algorithm, called color coding, for finding simple paths
and simple cycles of a specified length k, within a given graph. In this section, we describe this approach.
Our presentation generalizes that found in Alon et al. (1995) in order to allow succinct description of
biologically motivated extensions of the basic technique.

Consider a weighted interaction graph in which each vertex is a protein and each edge (u, v) represents
an experimentally observed interaction between proteins u and v and is assigned a numerical value p(u, v)

representing the probability that u and v interact (computed as per Section 4 below). Each simple path in
this graph can be assigned a score equal to the product of the values assigned to its edges. Among paths of
a given length, those with the highest scores are plausible candidates for being identified as linear signal
transduction pathways. Given a set I of possible start vertices, we would like to find the highest-scoring
paths from I to each vertex of the graph. In the case of signaling pathways, I might be the set of all
receptor proteins or a single protein of particular interest.

We begin by framing the problem mathematically. In order to work with an additive weight rather than
a multiplicative one, we assign each edge (u, v) a weight w(u, v) ≡ − log p(u, v). We define the weight
of a path as the sum of the weights of its edges and the length of a path as the number of vertices it
contains. Given an undirected weighted graph G = (V , E, w) with n vertices, m edges, and a set I of start
vertices, we wish to find, for each vertex v, a minimum-weight simple path of length k that starts within I

and ends at v. If no such simple path exists, our algorithm should report this fact. This problem is distinct
from that of finding a path in G that somehow matches a given query path P , as in Zheng et al. (2002)
(or, more generally, subgraph matching [Conte et al., 2004]).

For general k, this problem is NP-hard, as the traveling-salesman problem is polynomial-time reducible
to it. The difficulty of the problem stems from the restriction to simple paths; without this restriction, the
best path of length k is easily found. A standard dynamic programming algorithm for the problem is as
follows. For each nonempty set S ⊆ V of cardinality at most k and each vertex v ∈ S, let W(v, S) be the



DETECTING SIGNALING PATHWAYS IN PROTEIN NETWORKS 135

minimum weight of a simple path of length |S| which starts at some vertex in I , visits each vertex in S,
and ends at v. If no such path exists, then W(v, S) = ∞. The following recurrence can be used to tabulate
this function by generating the values W(v, S) in increasing order of the cardinality of S:

W(v, S) = min
u∈S\{v} W(u, S \ {v}) + w(u, v), |S| > 1

where W(v, {v}) = 0 if v ∈ I and ∞ otherwise.
The weight of the optimal path to v is the minimum of W(v, S) over all pairs v, S such that |S| = k,

and the vertices of the optimal path can be recovered successively in reverse order by a standard dynamic
programming backtracking method. The running time of this algorithm is O(knk) and its space requirement
is O(nk).

The idea behind color coding is to assign each vertex a random color between 1 and k and, instead
of searching for paths with distinct vertices, search for paths with distinct colors. The complexity of the
dynamic programming algorithm is thereby greatly reduced, and the paths that are produced are necessarily
simple. However, a path fails to be discovered if any two of its vertices receive the same color, so many
random colorings need to be tried to ensure that the desired paths are not missed. The running time of the
color coding algorithm is exponential in k and linear in m, and the storage requirement is exponential in
k and linear in n. This method is superior when n is much larger than k, as is the case in our application,
where typical values are n = 4,500 and k = 8.

The color coding algorithm requires repeated randomized trials. In each trial, every vertex v ∈ V is
independently assigned a color c(v) drawn uniformly at random from the set {1, 2, . . . , k}. Call a path
colorful if it contains exactly one vertex of each color. We seek a minimum-weight colorful path from I

to each vertex v. This problem can be solved using the following dynamic programming algorithm, which
parallels the previous one: for each nonempty set S ⊆ {1, 2, . . . , k} and each vertex v such that c(v) ∈ S,
let W(v, S) be the minimum weight of a simple path of length |S| that starts within I , visits a vertex of
each color in S, and ends at v. This function can be tabulated (again, in increasing order of the cardinality
of S) using the following recurrence:

W(v, S) = min
u:c(u)∈(S\{c(v)}) W(u, S \ {c(v)}) + w(u, v), |S| > 1

where W(v, {c(v)}) = 0 if v ∈ I and ∞ otherwise.
The weight of a minimum-weight colorful path ending at v is W(v, {1, 2, . . . , k}). For every vertex v,

each trial yields a simple path of length k starting within I and ending at v, which is optimal among all the
paths that are colorful under the random coloring in that trial. The running time of each trial is O(2kkm)

and the storage requirement is O(2kn). For any simple path P of length k, the probability that the vertices
of P receive distinct colors in a given trial is k!/kk , which is at least e−k and is well approximated by√

2πke−k . Thus, the chance that a trial yields an optimal path to v for our original problem is at least
e−k; for any ε ∈ (0, 1), the chance that the algorithm fails to find such a path in ek ln 1

ε
trials is at most

ε. After ek ln n
ε

trials, the probability that there exists a vertex v for which an optimal path has not been
found is at most ε.

3. EXTENSIONS OF THE COLOR CODING METHOD

In this section, we present color-coding solutions to several biologically motivated extensions of the basic
path-finding problem. These include (1) constraining the set of proteins occurring in a path, (2) constraining
the order of occurrence of the proteins in a path, and (3) finding pathway structures that are more general
than simple paths.

3.1. Constraining the set of proteins

To ensure that a colorful path produced by our algorithm contains a particular protein, we can simply
assign a color uniquely to that protein. By adding counters to the state set of the dynamic programming
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recurrence, we can control the number of occurrences in the path of proteins from a specific family (e.g.,
proteins with a specific function). To enforce the constraint that our path must contain at least a and at
most b proteins from a set T , we can define W(v, S, c) as the minimum weight of a path of length |S|
ending at v that contains a vertex of each color in S and exactly c proteins from T . Here c ranges between
0 and b. This extension multiplies the storage requirement and running time of each trial by b +1. Several
counters can be added to enforce different constraints; each multiplies the time and storage requirement
by a constant factor and does not affect the probability that the optimal path is colorful in any given trial.

3.2. Constraining the order of occurrence: Segmented pathways

In many signaling pathways, the proteins occur in an inward order, from membrane proteins to nuclear
proteins and transcription factors (as will later be shown in Fig. 3a). The color-coding method can be
adapted to restrict attention to paths that respect such an ordering.

3.2.1. Unique labeling. We restrict attention to simple paths that are the concatenation of t (possibly
empty) ordered segments, where each segment contains proteins from a particular class (such as membrane
proteins), and each protein is assigned to exactly one class. Subject to this restriction, we seek, for each
vertex v, a minimum-weight simple path of length k from some vertex in I to v. The segments are
numbered successively in the order of their occurrence along the desired path. Depending on biological
information (e.g., cellular component annotation), each protein u is assigned an integer label L(u) which
uniquely specifies the segment in which the protein may occur. We require that the labels of the proteins
along the path form a monotonically nondecreasing sequence. Such a path is called monotonic.

As usual, in each trial we assign each vertex a color drawn uniformly at random from {1, 2, . . . , k}.
Since each vertex is restricted to a unique segment, the path will be simple provided that vertices in the
same segment are assigned different colors. For a vertex v and a subset of the colors S ⊇ {c(v)}, W(v, S, k)

is defined as the minimum weight of a simple monotonic path of length k from I to v, in which no two
vertices with the same label have the same color, and the set of colors assigned to vertices with label L(v)

is S. We can tabulate this function using the following recurrence:

W(v, {c(v)}, l) = min
u:L(u)<L(v)

min
S

W(u, S, l − 1) + w(u, v), l > 1

W(v, S, l) = min
u:L(u)=L(v),c(u)∈S\{c(v)} W(u, S \ {c(v)}, l − 1) + w(u, v), 1 < |S| ≤ l

where W(v, {c(v)}, 1) = 0 if v ∈ I and ∞ otherwise.
Suppose there are at most h vertices in each segment. Then each trial has a running time of O(2hhkm)

and a storage requirement of O(2hkn). For any simple path, the probability that all vertices in each segment
receive distinct colors is at least e−h. Thus, the expected number of trials to discover an optimal segmented
pathway with at most h proteins per segment is of order eh, which is much smaller than ek—the upper
bound on expectation in the nonsegmented case.

3.2.2. Interval restrictions. It may be unrealistic to assume that every protein can be assigned a priori
to a unique segment. Instead, we can assume that, for each protein, there is a lower bound L1(u) and an
upper bound L2(u) on the number of its segments. For example, if the successive segments correspond to
membrane, cytoplasm, nucleus, and transcription factor proteins, then a protein that is neither a membrane
protein nor a transcription factor will have a lower bound of 2 and an upper bound of 3.

A path (u1, u2, . . . , uk) is consistent with segmentation if it is possible to assign to each protein ui a
segment number si such that the sequence of segment numbers along the path is monotonically nonde-
creasing and, for each i, L1(ui) ≤ si ≤ L2(ui). We can reformulate this condition as follows: for any
path P , let s(P ) be the maximum, over all proteins u in P , of L1(u). Then the path (u1, u2, . . . , uk) is
consistent with segmentation if and only if, for all i, L2(ui) ≥ s(u1, u2, . . . , ui−1).

Let each vertex u be assigned a color c(u) drawn uniformly at random from {1, 2, . . . , k}. For each
vertex v, the color-coding method seeks a minimum-weight path of length k from I to v which is both
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colorful and consistent with segmentation. Define W(v, s, S), where L1(v) ≤ s ≤ L2(v), as the mini-
mum weight of a simple path P of length |S| from I to v that is consistent with the segmentation,
such that s(P ) = s and S is the set of colors assigned to the vertices in P . We obtain the following
dynamic programming recurrence:

W(v, L1(v), S) = min
u:c(u)∈(S\{c(v)}) min

s′≤L1(v)
W(u, s′, S \ {c(v)}) + w(u, v), |S| > 1

W(v, s, S) = min
u:c(u)∈(S\{c(v)}) W(u, s, S \ {c(v)}) + w(u, v), L1(v) < s ≤ L2(v), |S| > 1

where W(v, L1(v), {c(v)}) = 0 if v ∈ I and ∞ otherwise. The weight of a minimum-weight colorful path
ending at v and consistent with the segmentation is mins W(v, s, {1, 2, . . . , k}). The running time per trial
is O(2kktm) and the storage requirement is O(2ktn), where t is the number of ordered segments.

3.3. Finding more general structures

In general, signaling pathways need not consist of a single path. For instance, the high osmolarity
pathway in yeast starts with two separate chains that merge into a single path (Steffen et al., 2002). We
shall demonstrate that the color-coding method can be used to find high-scoring signaling pathways with a
more general structure. Our principal examples are rooted trees, which are common when several pathway
segments merge, and two-terminal series-parallel graphs, which capture parallel signaling pathways.

3.3.1. Rooted trees. Let G = (V , E) be a weighted graph with I ⊂ V , and let k be a positive integer.
For each vertex v, we wish to find a tree of minimum weight among all k-vertex subtrees in G that are
rooted at v and in which every leaf is an element of I . In each color coding trial, we assign each vertex
u a color drawn uniformly at random from {1, 2, . . . , k}. For v ∈ V and {c(v)} ⊆ S ⊆ {1, 2, . . . , k}, let
W(v, S) be the minimum weight of a subtree with |S| vertices that is rooted at v, contains a vertex of
each color in S, and whose leaves lie in I . The following recurrence can be used to compute W(v, S):

W(v, S) = min

{
min

u:c(u)∈S\{c(v)} W(u, S \ {c(v)}) + w(u, v),

min
(S1,S2):S1∩S2={c(v)},S1∪S2=S

W(v, S1) + W(v, S2)

}

where W(v, {c(v)}) = 0 if v ∈ I and ∞ otherwise. The running time for a trial is O(3kkm) and the storage
required is O(2kn). The factor of 3k in the running time comes from the second line of the recurrence,
which examines for each subset of S all possible bipartitions. This is equivalent to 3k , the number of ways
to divide k colors into three distinct groups.

3.3.2. Two-terminal series-parallel graphs. The definition of a two-terminal series-parallel graph (2SPG)
is recursive:

• Base case. The graph with two vertices u and v connected by an edge is a 2SPG between terminals u

and v.
• Series connection. If G1 is a 2SPG between u and v, G2 is a 2SPG between v and w, and G1 and G2

have no vertices in common except v, then G1 ∪ G2 is a 2SPG between u and w.
• Parallel connection. If G1 and G2 are 2SPGs between u and v and they have no vertices in common

except u and v, then G1 ∪ G2 is a 2SPG between u and v.

Our goal is to find, for each vertex v, a minimum-weight k-vertex 2SPG between some vertex in I

and v. Let W(u, v, S) be the minimum weight of a 2SPG between u and v with |S| vertices in which the
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set of colors occurring is S. Then, following the recursive definition of a 2SPG, we obtain

W(u, v, S) = min

{
min

w,S1,S2:S1∪S2=S,S1∩S2={c(w)} W(u, w, S1) + W(w, v, S2),

min
T1,T2:T1∩T2={c(u),c(v)},T1∪T2=S

W(u, v, T1) + W(u, v, T2)

}

where W(u, v, {c(u), c(v)}) = w(u, v) for every edge (u, v). The execution time of a trial is O(3kkn2)

and the storage requirement is O(2kn2).

4. ESTIMATION OF INTERACTION RELIABILITIES AND
EVALUATION OF PATHS

Since experimental interaction data are notoriously noisy (see, e.g., Deng et al. [2003] and Bader et al.
[2004]), estimating and incorporating the reliability of the observed interactions in the path detection
process are key to its success. Several authors have suggested methods for evaluating the reliabilities
of protein interactions (Bader et al., 2004; Deng et al., 2003; von Mering et al., 2002). Karaoz et al.
(2004) used one such method in the process of predicting protein function. Here, we use a method we
have previously developed (Sharan et al., 2005), which is based on a logistic regression model. For
completeness, we describe it briefly. We define the probability of a true interaction as a logistic function of
three observed random variables on a pair of proteins: (1) the number of times an interaction between the
proteins was experimentally observed; (2) the Pearson correlation coefficient of expression measurements
for the corresponding genes (using 794 expression profiles obtained from the Stanford Microarray Database
(Gollub et al., 2003)); and (3) the proteins’ small world clustering coefficient (Goldberg and Roth, 2003),
which is defined as minus the logarithm of the hypergeometric p-value for the overlap in the neighborhoods
of two proteins.

According to the logistic distribution, the probability of a true interaction Tuv given the three input
variables, X = (X1, X2, X3), is

Pr(Tuv|X) = 1

1 + exp

(
−β0 −

3∑
i=1

βiXi

)

where β0, . . . , β3 are the parameters of the distribution. Given training data, one can optimize the distri-
bution parameters so as to maximize the likelihood of the data. As positive examples, we used the MIPS
(Mewes et al., 2004) interaction data, which is an accepted gold standard for yeast interactions. Motivated
by the large fraction of false positives in interaction data, we considered observed interactions chosen at
random as negative examples. We treated the chosen negative data as noisy indications that the correspond-
ing interactions were false and assigned those interactions a probability of 0.1397 for being true, where
this value was optimized using cross-validation.

Denote the reliability of an edge (u, v) by p(u, v). We use the estimated probabilities to assign weights
to the interaction graph edges, where edge (u, v) is assigned the weight − log p(u, v). Under these assign-
ments, we seek minimum weight subnetworks of specified sizes.

We use two quality measures to evaluate the subnetworks we compute: weight p-value and functional
enrichment. Given a subnetwork with weight w, its weight p-value is defined as the percent of top-scoring
subnetworks in random networks (computed, in all cases, using the same algorithm and parameters that
are applied to the real network—see below) that have weight w or lower, where random networks are
constructed by shuffling the edges and weights of the original network, preserving vertex degrees. Edges
whose weights differ by more than a factor of two are not shuffled in order to approximately preserve, for
each vertex, the sum of the weights of the edges touching it.

To evaluate the functional enrichment of a subnetwork N , we associate its proteins with known biological
processes using the gene ontology (GO) annotations (The Gene Ontology Consortium, 2000). We then
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compute the tendency of the proteins to have a common annotation using a method developed by Sharan
et al. (2005). The scoring is done as follows: define a protein to be below a GO term t if it is associated
with t or any other term that is a descendant of t in the GO hierarchy. For each GO term t with at least
one protein assigned to it, we compute a hypergeometric p-value based on the following quantities: (1) the
number of proteins in N that are below t ; (2) the total number of proteins below t ; (3) the number of
proteins in N that are below all parents of t ; and (4) the total number of proteins below all parents of t .
The p-value is further Bonferroni corrected for multiple testing.

5. APPLICATION TO THE YEAST PROTEIN NETWORK

We implemented color-coding methods for finding both simple paths and rooted trees in a graph. The
algorithm maintains a heap of the best subnetworks found throughout the iterations and, thus, is able to
report suboptimal subnetworks in addition to optimal ones. Table 1 presents a benchmark of the running
time of the path search across a network with ∼4,500 nodes and ∼14,500 edges (the yeast network
described below), when varying the desired path length, the probability of success, and the number of
required paths. In all these runs, the paths were constrained to start at a membrane protein and end at a
transcription factor (see details below). The algorithm runs in minutes when searching for a path of length
8 with success probability of 99.9% and in just over three hours when searching for a path of length 10. In
comparison, the running time of our implementation of an exhaustive search approach was approximately
1.5-fold lower for length-7 paths (69 seconds), 2-fold higher for length-8 paths (866 seconds), and 7-fold
higher for length-9 paths (15,120 seconds).

Note that because the runtime for exhaustive search is proportional to the number of subnetworks to
be examined, the difference in runtime between the color-coding and the exhaustive search algorithms
grows much wider when the endpoints of the paths are not constrained, or when looking for more general
structures such as trees. For instance, while the yeast network contains on the order of 91 million length-7
paths in the constrained case, the total number of unconstrained paths of the same length is over 28 billion.
Since this difference has comparatively little impact on the color-coding method, the speedup in runtime
for length-7 paths is already 117-fold (138 seconds for color coding, 16,387 seconds for exhaustive search).

We applied our algorithm to search for paths and rooted trees in the yeast protein interaction network.
Protein–protein interaction data were obtained from the Database of Interacting Proteins (Xenarios et al.,
2002) (February 2004 download) and contained 14,319 interactions among 4,389 proteins in yeast.

As a first test, we applied the algorithm to compute optimal paths and trees of size 8. Paths were
constrained to start at a membrane protein (GO:0005886 or GO:0004872) and end at a transcription factor
(GO:0030528). Rooted trees were constrained to be rooted at a membrane protein and have all leaf nodes
be transcription factors. In order to prevent a large number of minor variations on a small set of high-
scoring subnetworks from dominating our results, the heap was used to filter subnetworks with more
than 70% of their proteins in common (the one of lowest weight was retained, and all others removed).

Table 1. Running Times of the Path-Finding Algorithm
for Different Parameter Settings

Path length Success probability # Paths Time (sec)

10 99.9% 100 11,650
9 99.9% 100 2,149
8 99.9% 500 498
8 99.9% 300 460
8 99.9% 100 435
8 90% 100 303
8 70% 100 269
8 50% 100 257
7 99.9% 100 97
6 99.9% 100 32
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With success probability set to 99.9%, the 100 best subnetworks of each type were recorded, and for each
we evaluated its weight p-value and functional enrichment. The results are depicted in Figs. 1 and 2.
Clearly, both measures significantly exceed the random expectation. In particular, 68% of the identified
paths and 63% of the identified trees had a significant biological process annotation (p < 0.05).

Next, we wished to test the utility of the algorithm in reconstructing known pathways in yeast. To this
end, we concentrated on three MAPK signal transduction pathways that were also analyzed by Steffen
et al. (2002): pheromone response, filamentous growth, and cell wall integrity. For each of the pathways,
we searched the network for paths of lengths 6–10 using the pathway’s endpoints to define the start and
end vertices. In all cases, our results matched the known pathways well. We describe these findings in
detail below.

The pheromone response (mating type) pathway prepares the yeast cells for mating by inducing polarized
cell growth toward a mating partner, cell cycle arrest in G1, and increased expression of proteins needed for
cell adhesion, cell fusion, and nuclear fusion. The main chain of this pathway (consisting of nine proteins)
is shown in Fig. 3a. In addition, proteins Bem1p, Rga1p, Cdc24p, Far1p, Ste50p, and Ste5p contribute to
the operation of the pathway by interacting with proteins in the main chain.

Looking for the optimal path of length 9 in the yeast network yielded the path depicted in Fig. 3b.
This path mainly consists of proteins in the pheromone response pathway, with the exception of Kss1p,
which is a MAP kinase redundant to Fus3p, and Akr1p, which is a negative regulator of this pathway. The
occurrence of the latter protein is an artifact that arises because the direct link between Ste3p and Ste4p
is missing from the interaction data.

The aggregate of all the paths that the algorithm computed between Ste3p and Ste12p, across a range
of lengths (6–10), is depicted in Fig. 3c. All the proteins that we have identified are part of the pathway,
except for Kss1p and Akr1p (see discussion above). A previous study by Steffen et al. (2002) reported
similar results for this pathway. In comparison to Fig. 3c, Steffen et al. identified three additional pro-
teins (Sst2p, Mpt5p, and Sph1p), which are related to the pathway, but are not part of the main chain.

FIG. 1. Cumulative distributions of functional enrichment p-values; x-axis: p-value; y-axis: percent of paths or trees
with p-value x or better.
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FIG. 2. Cumulative distributions of weight p-values; x-axis: p-value; y-axis: percent of paths or trees with p-value
x or better.

Steffen et al. failed to recover the true positive Cdc42p. Interestingly, this latter protein participates mainly
in paths of length 9 and 10 in our computations (only two additional paths of length 8 contained this
protein). Such long paths are very costly to compute using an exhaustive approach.

The filamentous growth pathway is induced under stress conditions and causes yeast diploid cells to
grow as filaments of connected cells. The pathway is depicted in Fig. 4a. Searching the network for the
minimum-weight path of the same length as the known pathway (length 8), yielded the path shown in
Fig. 4b, which largely matches the known pathway. The introduction of the proteins Cdc25p and Hsp82p
is again an artifact that arises due to a missing link between Ras2p and Cdc42p in the network data.

The cell wall integrity pathway mediates cell cycle regulated cell wall synthesis. It is depicted in
Fig. 4c. A search for the minimum-weight path of the same length starting at Ras2p and ending at Tec1p
yielded the path shown in Fig. 4d. Again, the identified path matches the known pathway well. The only
falsely detected protein, Rom2p, could be explained by the fact that the network does not contain a direct
interaction between Mid2p and Rho1p.

In addition, we used our algorithm to search for the high osmolarity MAPK pathway, starting at Sln1p
and ending at Hog1p (leading to several transcription factors, including Mcm1p and Msn2/4p [Roberts
et al., 2000]). For this run, although we could recover the exact known pathway, it was only the 11th-scoring
among the 64 identified paths.

As a final test, we applied our algorithm to look for ubiquitin-ligation pathways by searching for paths
of length 4–6 that start at a cullin (Cdc53p or Apc2p) and end at an F-box protein (Met30p, Cdc4p,
or Grr1p). For each pair of endpoints, we output the best path for each specified length. To evaluate our
success, we computed the enrichment of the identified proteins within the GO category “cellular catabolism”
(GO:0044248). In total, 18 paths were computed, all of which were found to be highly enriched for this
GO category (p < 0.01). A more careful examination of these paths revealed that they highly overlapped:
In addition to their endpoints, these paths spanned four other proteins (Skp1p, Cdc34p, Hrt1p, and Sgt1p),
all of which are known ubiquitin-ligation proteins.



142 SCOTT ET AL.

FIG. 3. The pheromone response signaling pathway in yeast. (a) The main chain of the known pathway, adapted
from Roberts et al. (2000). (b) The best path of the same length (9) in the network. (c) The assembly of all light-weight
paths starting at STE3 and ending at STE12 that were identified in the network. Nodes that occur in at least half of
the paths are drawn larger than the rest. Nodes that occur in less than 10% of the paths are omitted.
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FIG. 4. Search results for the filamentous growth and cell wall integrity pathways. (a) The known filamentous growth
pathway, adapted from Roberts et al. (2000). (b) The best path of length 8 between RAS2 and TEC1. (c) The known
cell wall integrity pathway (Roberts et al., 2000). (d) The best path of length 7 between MID2 and RLM1.

6. CONCLUSIONS

We have presented efficient algorithms for finding simple paths and rooted trees in graphs based on the
color-coding technique and several biologically motivated extensions of this technique. We applied these
algorithms to search for protein interaction pathways in the yeast protein network. Sixty-eight percent
of the identified paths and 63% of the identified trees were significantly functionally enriched. We have
also shown the utility of the algorithm in recovering known MAP-kinase and ubiquitin-ligation pathways
in yeast. While these results are promising, there are a number of possible improvements that could
be incorporated into this framework: (1) adapt the color-coding methodology to identify more general
subnetworks, building on our ideas for detecting trees and two-terminal series-parallel subgraphs, and
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(2) extend the framework to identify conserved pathways across multiple species, similarly to Kelley
et al. (2003). In addition, our algorithms could be applied to other biological networks, most evidently to
metabolic networks.
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