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ABSTRACT

Association studies in populations relate genomic variation among individuals with medical
condition. Key to these studies is the development of efficient and affordable genotyping
techniques. Generic genotyping assays are independent of the target SNPs and offer great
flexibility in the genotyping process. Efficient use of such assays calls for identifying sets
of SNPs that can be interrogated in parallel under constraints imposed by the genotyping
technology. In this paper, we study problems arising in the design of genotyping experiments
using generic assays. Our problem formulation deals with two main factors that affect the
genotyping cost: the number of assays used and the number of PCR reactions required
for sample preparation. We prove that the resulting computational problems are hard, but
provide approximate and heuristic solutions to these problems. Our algorithmic approach
is based on recasting the multiplexing problems as partitioning and packing problems on a
bipartite graph. We tested our algorithmic approaches on an extensive collection of synthetic
data and on data that was simulated using real SNP sequences. Our results show that the
algorithms achieve near-optimal designs in many cases and demonstrate the applicability of
generic assays to SNP genotyping.

Key words: genotyping, multiplexing, experimental design, synchronized matching, graph
partitioning, graph packing, approximation algorithms.

1. INTRODUCTION

Single nucleotide polymorphisms (SNPs) are differences in a single base, across the population,
within an otherwise conserved genomic sequence. SNPs account for most of the genomic variation

in human (Patil et al., 2001) and are often associated with medical condition or specific drug response.
Thus, efficient methods for determining SNP variants across a population are of great clinical, scientific,
and commercial value.

SNP genotyping is the process of determining, for a given set of SNPs and a given individual, the
SNP variants, or alleles, which are present in the genomic sequence of that individual. Most current SNP
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genotyping techniques (Syvanen, 1999; Ross et al., 1998) are problem specific in the sense that at least
some of the reagents used in the assay have to be specifically tailored to the set of SNPs under interrogation.
Generic methods are techniques that defer all problem-specific components to the assay-planning stage and
to the result-interpretation stage. For example, Sampson et al. (2001) present a method that uses natural
and mass-modified generic mixtures of oligonucleotides. A target-mediated enzymatic reaction produces a
mixture, whose mass-spectrum is indicative of the sample genotype.

Multiple SNP sites can be genotyped simultaneously in a single assay under certain conditions, a
process called multiplexed genotyping. Examples include utilizing primer extension and MALDI-TOF
mass spectrometry, relying on the natural masses of the extended specifically designed primers (Ross
et al., 1998; Aumann et al., 2003). Typically, not all SNPs in a set of interest can be genotyped together;
any given genotyping method imposes a set of constraints regarding which SNPs can be assayed together
and which cannot. In order to achieve high multiplexing rates and, thus, reduce the genotyping cost, it is
necessary to carefully plan the genotyping assays. The design should allow simultaneous genotyping of as
many SNPs as possible, on the one hand, while conforming to the constraints, on the other.

Here, we present methods for achieving high multiplexing rates for a family of generic SNP genotyping
techniques. We model all the applications in a unified framework in which each allele is assigned a set of
features and the multiplexing problem translates to that of finding a minimum partition of the allele set
into subsets such that every allele has a feature which is unique with respect to its subset; each of these
sets can then be typed using a single assay.

We also study an important variant of this multiplexing problem in which the designed experiments have
to meet an additional requirement: The two alleles of every SNP have to be assigned to the same assay.
Imposing this requirement is important in practice, since it allows considerable savings in the number of
PCR reactions needed for sample preparation, reducing the overall genotyping cost.

We provide both theoretical and practical results for the resulting multiplexing problems. On the theoret-
ical side, we study the partitioning problems and related variants in which one has to find a maximum set
of alleles (or SNPs) that can be typed using one assay. We prove that all these problems are NP-hard and
devise constant-factor approximation algorithms for them, exploiting the fact that the sequences associated
with each SNP have bounded length. Our algorithmic approaches are based on representing the input data
using a bipartite graph and solving the resulting partitioning and packing problems using maximum flow
techniques. In particular, we give a polynomial time approximation scheme for a problem that is reminis-
cent of that of packing paths of length 2. In addition, we develop practical heuristic approaches for the
multiplexing problem and devise lower bounds for evaluating the performance of the different algorithms.

On the practical side, we conduct extensive benchmarking of the algorithmic approaches on synthetic
data and on data that was simulated using real SNP sequences from various sources. Our tests show that
one of the heuristic approaches outperforms the other approaches and achieves experimental designs that
use an optimal or near-optimal number of assays in many cases. More importantly, when comparing the
two variants of the multiplexing problem—with and without the additional requirement on co-assigning
the two alleles of an SNP, we discover that imposing this requirement has little effect on the number of
assays in the solution, but has great impact on the saving in PCR reactions needed. We also show that for
datasets that consist of several hundreds known SNPs in the region of disease-related genes, few assays
(up to seven) are sufficient for the genotyping task, demonstrating the applicability of generic assays for
SNP genotyping.

The paper is organized as follows: In Section 2, we describe the genotyping process and present the
main multiplexing problems that are studied in the paper. In Section 3, we present the main hardness
results. In Sections 4 and 5, we provide algorithmic approaches to the two variants of the multiplexing
problem. The heuristic approaches are described in Section 6. Section 7 contains our results on synthetic
and simulated data.

2. GENOTYPING METHODS AND PROBLEM STATEMENT

2.1. Generic genotyping techniques

Polymerase extension is a widely used technique for interrogating DNA sequences. Typically, all methods
based on this technique utilize extension of specifically designed primers and are not generic. For example,
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in an array polymerase extension assay (APEX) (Kurg et al., 2000; Syvanen, 1999) the target sample is
annealed to array bound probes that are complementary to subsequences upstream from the polymorphic
sites. Four fluorescently labeled dideoxynucleotides are used in a primer extension reaction for extending
the array probes. The fluorescence signal of the extended probes allows the determination of SNP variants
present in the sample. Note that the array needs to be specifically designed to address the input set of SNPs.

In a generic polymerase extension assay, the target sample reacts with a generic set of primers, e.g.,
all k-mers (DNA sequences of length k). These primers are extended, or not, depending on the target.
A detection step follows, wherein the extended primers are determined, based on their altered properties.
Information on the target is obtained by an interpretation process. We provide two concrete examples
of such techniques below. For convenience, here and in the description of the algorithmic approaches in
later sections, we consider a primer sequence s′ to hybridize to a target sequence s if s′ occurs in s (as a
subsequence). In practice, both the sequence s and its Watson–Crick complement are present in the sample,
so s′ will hybridize to s if it occurs in any of them. Two alleles that correspond to the same SNP are
called mates.

All k-mer Arrays. First, assume that a single site is to be genotyped. The genotyping protocol is as
follows:

1. The target region is PCR amplified.
2. The sequence is hybridized to the array and a polymerase reaction is started, in the presence of single

labeled dideoxynucleotides.
3. k-mers that occur in nonpolymorphic parts of the amplicon will hybridize to the target, get extended,

and produce fluorescence signals.
4. The hybridization signals obtained for k-mers that span the site depend on the alleles of this SNP in

the genotyped individual.

The genotype of the sample at the interrogated site can be determined by analyzing the hybridization
signature, provided that there is at least one k-mer for each allele that does not appear in the sequence of
its mate.

In a multiplexed assay, several targets are jointly interrogated. The set can be jointly interrogated as
long as each allele has at least one unique k-mer that does not occur in the sequence of any other allele
in the set.

Native/tagged mass-spectrometry. This process involves the following components (Sampson et al.,
2001):

1. A mixture of primers is applied to the target in the presence of polymerase and all 4 dideoxynucleotides,
allowing for single base extension to occur in a specific, target-mediated manner.

2. Extended primers are separated from the mixture, e.g., by high performance liquid chromatography,
and are analyzed by mass spectrometry.

Under complete stringency assumptions, the output mass spectrum will have peaks only at masses that
correspond to extended primers that occur in the target sequence. A set of SNPs can be jointly interrogated
as long as each of the respective alleles has a corresponding extended primer with a unique mass, different
from that potentially arising from any other allele in the set.

A similar genotyping process uses cleavable mass-tags that are attached to the original primers and
then cleaved after the separation of the extended products. (Here we assume that the number of available
distinguishable tags exceeds the number of primers.) The tags, rather than the extended primers, are
analyzed by mass spectrometry. The spectrum will have peaks at masses of tags that correspond to primers
that occur in the target sequence. Again, a set of SNPs can be jointly interrogated as long as each of the
respective alleles has a corresponding extended primer with a unique tag, different from that potentially
arising from any other allele in the set.
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2.2. Problem formulation

In any of the embodiments, the target is typically a collection of short PCR amplicons, spanning bi-
allelic SNP sites. A SNP allele in a target can be determined if and only if the extension event, for one
of the k-mers spanning this site and corresponding to this allele, can be uniquely detected under the assay
conditions. This requirement can be abstracted as follows: Associate with each target sequence a list of
features at which it registers, e.g., all its constituent k-mers, the masses corresponding to all extended
primers, etc. This is the set of features potentially activated by the given target sequence. Furthermore,
the set of activated features can be partitioned into informative ones, being all features activated by the
amplicons corresponding to only one allele of this SNP, and common ones, being all features activated
by the amplicons corresponding to both alleles of this SNP. Obviously, all informative features span the
polymorphic site, while not every feature spanning the polymorphic site is necessarily informative. A set
of alleles is assignable if each allele in the set has an informative feature that is not potentially activated by
any other allele in the set. Efficient genotyping calls for partitioning the given set of SNPs into assignable
subsets. This partition constitutes a multiplexing scheme.

The objective of the multiplexing scheme can be modeled in two ways. Both formulations reflect the
fact that when a specific site is genotyped, both its alleles may activate features (indeed, this will be the
case if the sample is heterozygous) and there is no easy way to separate these sets of features one from
the other. In the first formulation, we seek a partition of the SNPs into a minimum number of assignable
subsets. The basic units here are allele-pairs (corresponding to SNPs). In the second variant we seek a
partition of the alleles into a minimum number of assignable subsets. The basic units here are single alleles,
dropping the constraint that two alleles corresponding to one SNP should be put in the same subset in
a partition. Solutions to the first variant have the advantage that they require a smaller number of PCR
reactions compared to the second variant, since every pair of mates that is split among two assays, requires
two amplification reactions instead of one. However, when studying the multiplexing problem in isolation,
the single-allele version is the more general one.

We now formulate the arising multiplexing problems. We represent an allele-pair as a pair (s, s′) of
l-long strings over {A,C,G,T }, such that s and s′ differ in a single position, which is referred to as the
SNP site of this pair. For a set A of allele-pairs, we call SA ≡ ⋃

(s,s′)∈A{s, s′} the allele set of A. Given
an allele s ∈ SA, we call a k-long string t a feature of s if s contains t as a substring. Given an allele-
pair (s, s′), we call a feature t informative if only one of s and s′ contains t . Thus, all occurrences of t

span the SNP site. Otherwise, if both s and s′ contain t , t is called noninformative. We call an informative
feature t of s unique with respect to A, if no string s′ ∈ SA, s′ �= s, contains t as a substring. A set S of
alleles is assignable if every s ∈ S has a unique (informative) feature. A set A of allele-pairs is assignable
if SA is assignable. The main problems that we study are the following:

• Minimum Assignable Cover (MAC): Given a set A of allele-pairs and feature length k, find a partition
of SA into a minimum number of assignable subsets.

• Minimum Allele-Pair Cover (MAPC): Given a set A of allele-pairs and feature length k, find a
partition of A into a minimum number of assignable subsets.

We also study the related problems that call for identifying a maximum subset of alleles or allele-pairs
that can be genotyped using one assay:

• Maximum Assignable Set (MAS): Given a set A of allele-pairs and feature length k, find an assignable
subset of SA of maximum size.

• Maximum Assignable Allele-Pair Set (MAPS): Given a set A of allele-pairs and feature length k,
find an assignable subset of A of maximum size.

3. COMPLEXITY ANALYSIS

In this section, we prove that the multiplexing problems MAC, MAPC, MAS, and MAPS are NP-
complete and hard to approximate.
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Theorem 1. MAPC and MAPS are NP-complete when the feature length k is at least logarithmic in
the number of allele-pairs.

Proof. Clearly, both problems are in NP. Below we prove the hardness of MAPS by reduction from
Independent Set (Garey and Johnson, 1979). The hardness proof for MAPC employs an analogous reduc-
tion from Coloring. Let (G = (V , E), r) be an instance of Independent Set, where V = {v1, . . . , vn}.
We transform this instance into an instance (A, k, r) of MAPS, where A denotes the set of allele-pairs, k

is the length of the features on the array, and r is the size of a requested assignable subset of A. We set
k ≡ 2�log n� + 4. We describe the construction using the alphabet {0, 1}, which implies hardness also for
larger-size alphabets. We use “·” to denote the concatenation of strings.

The allele-pair set A is constructed to contain, for every vi ∈ V , an allele-pair (s0
i , s1

i ). The building
blocks of our construction are strings 〈vi〉0 and 〈vi〉1 that encode vertices of V . We denote by 〈log i〉bin the
�log n�-long binary encoding of a positive integer i, 1 ≤ i ≤ n. We denote by 〈#〉 the (�log n� + 3)-long
string consisting of (�log n� + 1)-many 1’s flanked by two 0’s. We define

〈vi〉0 ≡ 0 · 〈#〉 · 〈log i〉bin,

〈vi〉1 ≡ 1 · 〈#〉 · 〈log i〉bin.

Given vi ∈ V , let N(vi) = {vj1 , . . . , vji
} denote the set of neighbors of vi in G. Define the strings

tneighbors(i),0 ≡ 〈vj1〉0 · 0 · 〈vj2〉0 · 0 · · · 0 · 〈vji
〉0,

tneighbors(i),1 ≡ 〈vj1〉1 · 0 · 〈vj2〉1 · 0 · · · 0 · 〈vji
〉1.

The allele-pair (s0
i , s1

i ) is represented by the following two sequences:

s0
i ≡ 〈vi〉0 · 0 · tneighbors(i),0 · 0 · tneighbors(i),1,

s1
i ≡ 〈vi〉1 · 0 · tneighbors(i),0 · 0 · tneighbors(i),1.

Consequently, s0
i and s1

i differ only in their first position. This position represents the SNP site of this
allele-pair. Finally, setting A ≡ { (s0

i , s1
i ) | 1 ≤ i ≤ n } completes our construction. In the following, we

prove that G has an independent set of size at least r if and only if A has an assignable subset of size at
least r .

(⇒) Let V ′ ⊆ V be an independent set of size r in G. Then A′ ≡ { (s0
i , s1

i ) | vi ∈ V ′ } is an assignable
set of size r , since for each i and for each allele b ∈ {0, 1}, b · 〈#〉 · 〈log i〉bin is a unique feature of sb

i .
(⇐) Let A′ ⊆ A be an assignable set of size r . We claim that V ′ = { vi ∈ V | (s0

i , s1
i ) ∈ A′ } is an

independent set of size r in G. Since A′ is assignable, each of its alleles sb
i has a unique feature. This

feature must span the SNP site or, else, it will be shared also by s
(1−b)
i . By construction, this feature must

be the substring b · 〈#〉 · 〈log i〉bin. The uniqueness of this feature implies that for any two alleles sb
i and

sb′
j , their corresponding vertices are not adjacent in G. To see this, suppose to the contrary that vi and vj

are adjacent. Then b · 〈#〉 · 〈log i〉bin is a substring of tneighbors(j),b and, consequently, it occurs in s0
j and

in s1
j . Thus, {sb

i , sb′
j } is not an assignable set, a contradiction.

Corollary 1. MAC and MAS are NP-complete.

Proof. One can use the same reductions as in the proof of Theorem 1. For one direction, note that
an assignable subset of allele-pairs implies that its constituent alleles also form an assignable subset. The
other direction follows by noting that the construction in the proof of Theorem 1 ensures that if an allele
is assigned to a subset S then its mate can also be assigned to S.

Since all the above reductions yield 1–1 correspondences between independent set or coloring solutions
and solutions to the multiplexing problems, one can use the hardness-of-approximation results of Håstad
(1999) to conclude the following:
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Corollary 2. It is NP-hard to approximate MAC, MAPC, MAS, and MAPS to within a factor of
|A|1−ε for any ε > 0, unless NP = ZPP.

We note that the above proofs can be easily extended to the case that the SNP site occupies the middle
position of its corresponding sequence.

4. APPROXIMATION ALGORITHMS FOR THE SINGLE-ALLELE CASE

In this section, we present an approximation algorithm for the multiplexing problem under the single-
allele variant. First, we devise a graph-theoretic formulation of the problem.

4.1. Graph-theoretic modeling

We model the input as an edge-colored bipartite graph G = (V , U, E) in which edges carry one of two
colors. We translate an allele-pair set A as follows to an edge-colored bipartite graph GA. Let V be the
allele set SA of A, and let U be the set of all possible features (here we focus on assays whose feature
set is the set of all k-mers). Vertices in V are called allele vertices, and vertices in U are called feature
vertices. We construct the set E of edges as follows: For an allele v ∈ V and a feature u ∈ U , we add a
red-colored edge (v, u) ∈ E if u is an informative feature of v. We add a black-colored edge (v, u) ∈ E

if u is a noninformative feature of v. If u is not a feature of v then there is no edge between u and v.
The edges colored red are called informative edges and are denoted by Einf . The edges colored black
are called noninformative edges and are denoted by Eni . By definition, E = Einf ∪ Eni . The resulting
graph GA is called an alleles-features (AF) graph.

Note that for every allele, k of its features (k-mers; not necessarily distinct) span the polymorphic site.
Therefore, in GA a vertex v ∈ V has at most k informative edges incident to it; and at most (l − k + 1)

noninformative edges, corresponding to (l − 2k + 1) k-mers that do not involve the polymorphic site and
k additional k-mers that constitute the informative features of the allele’s mate. Also note that not every
edge-colored bipartite graph can be realized as an AF graph (i.e., has a corresponding set of alleles and
features).

A matching in a graph is a subset of independent edges. A matching is said to cover a set of vertices if
its edges are incident to all those vertices. An induced matching is a matching such that no two edges of
the matching are connected by an edge.

In an AF graph, consider a subset V ′ ⊆ V of vertices corresponding to alleles. The set V ′ is called
assignable if there exists an induced matching M that covers V ′ such that M ⊆ Einf (i.e., M consists of
informative edges only). An assignable subset of alleles corresponds to an assignable set of allele vertices
in the corresponding AF graph, i.e., to an induced matching between the alleles and their unique features.
Observe that for a given set V ′ of allele vertices, one can test in linear time whether V ′ is assignable, by
checking if each allele in V ′ has an informative edge to a unique feature. However, as we have shown
above, the problem of identifying a maximum assignable set is NP-hard. The related problem of finding a
maximum induced matching was shown to be NP-hard for general bipartite graphs by Cameron (1989).

We approach MAS and MAC by studying relaxations of the corresponding problems on AF graphs.
These relaxations ask for matchings that are not necessarily induced. For the AF graph, this means that
we omit the noninformative edges Eni and consider only the informative edges Einf ; the resulting graph
is a general bipartite graph with no edge colors. The relaxed problem variants can be stated as follows:

• Minimum Matching Cover (MMC): Given a bipartite graph G′ = (V , U, E), find a minimum number
of matchings that cover V .

• Maximum Bipartite Matching: Given a bipartite graph G′ = (V , U, E), find a maximum matching
in G′.

Given an instance G = (V , U, Einf ∪Eni) of MAC, the cardinality of an optimum solution to MMC on
G′ = (V , U, Einf ) is a lower bound on the cardinality of any solution to MAC on G and, in particular, a
lower bound on the optimum MAC solution. We can compute this lower bound in polynomial time using
the algorithm of Aumann et al. (2003) for MMC.
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4.2. Approximating MAS and MAC

Our approximation algorithms rely on a general technique for partitioning a set of vertex-disjoint sub-
graphs into subsets such that the subgraphs in each subset are not connected by an edge. We start by
describing this technique.

Theorem 2. Let G = (V , U, E) be a bipartite graph with the degree of every v ∈ V bounded by d.
Let S be a set of vertex-disjoint induced subgraphs of G such that every G′ ∈ S contains at most one
vertex from V , whose degree in G′ is at least k. Then S can be partitioned into at most 2(d − k) + 1
subsets such that in every subset no two subgraphs are connected by an edge.

Proof. We generalize the coloring approach of Ben-Dor et al. (2003): We build an auxiliary directed
graph H , whose vertices correspond to the subgraphs in S. For any two subgraphs G1, G2 ∈ S whose
corresponding vertices in H are h1 and h2, we direct an edge in H from h1 to h2 if G1 contains a vertex
v ∈ V that is adjacent to some vertex u ∈ U in G2. By assumption, the maximum outdegree in H is
d − k. Therefore, the undirected graph which underlies H can be colored using smallest-last ordering
(SLO) coloring (Matula and Beck, 1983) by at most 2(d − k) + 1 colors. Each color class represents an
independent set of vertices, which correspond to a subset of S in which no two subgraphs are connected
by an edge.

The following theorem states our approximation result for MAC.

Theorem 3. There is a (2l + 1)-approximation algorithm to MAC, where l is the length of the input
allele sequences.

Proof. We find the approximate solution in two stages. The reader is referred to the example in Fig. 1
for further explanation and intuition about the algorithm. First, we construct the graph G′ = (V , U, Einf )

by removing the non-informative edges from G. We find a minimum matching cover E1, E2, . . . , Er of
G′ using the algorithm of Aumann et al. (2003). In the second stage, we use Theorem 2 to partition the
alleles covered by each matching Ei into at most (2l +1) assignable sets. This is possible since the degree
of each allele vertex is exactly 1 in the matching and at most l + 1 in G. Overall, the cardinality of our
solution is bounded from above by optMMC(G′) · (2l + 1) ≤ optMAC(G) · (2l + 1).

A similar approximation algorithm that is based on solving the maximum bipartite matching problem
can be devised for MAS, yielding the following result:

Theorem 4. There is a (2l + 1)-approximation algorithm to MAS on G, where l is the length of the
input allele sequences.

5. APPROXIMATION ALGORITHMS FOR THE ALLELE-PAIR CASE

In this section, we provide approximation algorithms to MAPS and MAPC. Similarly to the single allele
case, we recast the multiplexing problems as partition and packing problems on a bipartite graph and
derive the approximation algorithms by studying relaxations of the problems, in which one looks for sets
of disjoint triples consisting of an allele-pair and two informative features for each of its alleles, rather
than requiring the uniqueness of the features assigned to the alleles. The solutions to the relaxed problems
are then further modified to satisfy the uniqueness constraints.

5.1. Graph-theoretic modeling

We model the input as an edge-colored bipartite graph G = (V , U, E), similar to the AF graph in
Section 4.1 while here the edges carry one of three colors. We translate an allele-pair set A to such an
edge-colored bipartite graph GA as follows. The set V consists of the allele-pairs in the input set A, and
these vertices are consequently called allele-pair vertices. The set U of feature vertices consists of all
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FIG. 1. An example demonstrating the approximation algorithm for MAC. (A) The alleles–features graph. Informative
edges are solid; noninformative edges are dashed. E1 and E2 represent one possible optimal matching cover. (B) The
graph induced by the matching E1 in part A. (C) The auxiliary directed graph H constructed from the graph in
part B. The outdegree in H is at most 1, so H can be colored with 3 colors. Each color class corresponds to a
set of independent edges in E1. For example, the red color corresponds to the edges (a1, f1), (a6, f5). These edges
corresponds to the assignable allele set {a1, a6}.

possible features (k-mers). The set E of edges connects allele-pairs to features that are present in their
sequences. There are three kinds of features and, correspondingly, E is the union of edges of three types,
or colors: For every allele-pair v = (s, s′), there is a red edge (v, u) ∈ E if and only if u ∈ U is an
informative feature of s, and there is a blue edge (v, u) ∈ Eb if and only if u ∈ U is an informative feature
of s′. The set Er of red edges and the set Eb of blue edges comprise the informative edges. In addition,
there is a black edge (v, u) ∈ E if and only if u is a noninformative feature of s (and s′); these edges form
the set Eni and are called noninformative. A graph being generated from an allele-pair set in this way is
called a SNPs-features (SF) graph.

Given an SF graph G = (V , U, E), a triple of vertices (v, u, u′) with v ∈ V and u, u′ ∈ U is called a
synchronized triple if (v, u) ∈ Er and (v, u′) ∈ Eb. In words, a synchronized triple consists of an allele-pair
and two informative features, one for each of its alleles. A set of synchronized triples forms a synchronized
matching if all its triples are vertex-disjoint. We call a synchronized matching induced if no two of these
triples are joined by an edge in E = Er ∪ Eb ∪ Eni . A subset V ′ ⊆ V is called assignable if and only
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if there exists an induced synchronized matching that covers the vertices of V ′. Note that any assignable
subset of the allele-pair set A corresponds to an assignable set of allele-pair vertices in the corresponding
SF graph GA.

Much as we did in Section 4.1, we approach MAPS and MAPC by studying relaxations of the cor-
responding problems on SF graphs. We relax the requirements for an assignable set by considering syn-
chronized matchings that are not necessarily induced. For the SF graph, this means that we can ignore the
noninformative edges Eni and restrict attention to the informative edges in Er and Eb. For defining the
relaxations, it will be convenient for us to generalize the notion of synchronized triples to any bipartite
graph (V ′, U ′, E′) whose edges are colored with two colors. In this case, we define a synchronized triple
to be a triple (v, u, u′) ∈ V ′ × U ′ × U ′ such that (v, u) and (v, u′) are edges with different colors. The
relaxations that we study are defined as follows:

• Synchronized Matching Cover (SMC): Given a bipartite graph G = (V , U, E) with edges of two
colors, find a partition of V into a minimum number of subsets, each of which can be covered by a
synchronized matching in G.

• Maximum Synchronized Matching (MSM): Given a bipartite graph G = (V , U, E) with edges of
two colors, find a maximum synchronized matching in G.

Clearly, the cardinality of an optimum solution to MAPC for an allele-pair set A is bounded from below by
the cardinality of an optimum solution to SMC on the corresponding SF subgraph GA = (U, V, Er ∪Eb).
Similarly, the cardinality of an optimum solution to MAPS is bounded from above by the cardinality of
an optimum solution to MSM on the same instance.

Theorem 5. SMC is NP-complete, even on SF graphs.

Proof. Clearly, the problem is in NP. The NP-hardness of SMC is shown by a reduction from Edge
Coloring (Holyer, 1981). Let (G = (V , E), c) be an instance of Edge Coloring, asking whether the
edges of graph G can be colored by c colors such that no two adjacent edges are assigned the same color.
First, we show that SMC is NP-hard for general bipartite graphs with edges of two colors, and then we
prove hardness on SF graphs.

We construct an instance GA = (VA, UA, EA) of SMC as follows: VA ≡ { ve | e ∈ E }, UA ≡ { uv |
v ∈ V }, and EA contains, for every edge e = (w1, w2) ∈ E, a red-colored edge (ve, uw1) and a blue-
colored edge (ve, uw2). The correctness of the hardness proof is based on a 1–1 correspondence between
edge colorings for G and synchronized matching covers for GA: For all edges e = (w1, w2) ∈ E that
are assigned the same color in an edge coloring for G, the synchronized triples (ve, uw1 , uw2) form a
synchronized matching in GA.

We now construct a corresponding allele-pair set over the alphabet {0, 1}. The allele-pair set A is
composed of two sets of alleles: A set A′ that contains an allele-pair for every edge in E and a set A′′ of
“blocking” allele pairs. Let n = |V |. The building blocks of our construction are strings 〈vi〉 that encode
vertices of V by a length-n binary string with 1 at position i and 0 otherwise. For every edge e = (vi, vj ),
we have the allele-pair (s0

e , s1
e ):

s0
e ≡ 010 · 〈vi〉 · 01 · 0 · 10 · 〈vj 〉 · 011

s1
e ≡ 010 · 〈vi〉 · 01 · 1 · 10 · 〈vj 〉 · 011

where s0
e and s1

e are of length (2n+11) with the SNP site located in their middle position. We set the feature
length k ≡ n + 6. For constructing the additional blocking allele-pairs, consider the set B that contains,
for every e ∈ E, all length-k substrings of s0

e and s1
e that do not include the last position of s0

e and the
first position of s1

e , respectively. Define the mate of every substring in B to be the same substring with the
middle position flipped. For every pair of substring and its mate in B, we remove one of these arbitrarily.
Set A′′ is now defined to contain c allele-pairs for each substring in B, composed of the substring and its
mate. In particular, for any vi ∈ V , 010 · 〈vi〉 · 011 is not an allele in SA′′ .

By construction, two copies of an allele-pair in A′′ cannot be part of the same assignable set. Also,
there is a clear 1–1 correspondence between the edges of G and allele-pairs in A′. Hence, given an
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edge coloring of G, it induces a partition into assignable subsets. Conversely, in a partition to c assignable
subsets, no subset can contain two allele-pairs that correspond to adjacent edges. This holds, since for every
e = (vi, vj ) ∈ E, the unique features that correspond to s0

e or s1
e are 010 · 〈vj 〉 · 011 and 010 · 〈vi〉 · 011,

respectively, as all their other features are covered by the blocking alleles.

The following hardness-of-approximation result follows from Holyer (1981):

Corollary 3. It is NP-hard to approximate SMC to within a factor of (4/3 − ε), for any ε > 0.

The complexity of MSM is currently open. However, we can show that a natural extension of the
problem to SNPs with at most three alleles is NP-hard. In this extension, the input instance is an SF-like
graph, and the goal is to find a maximum number of vertex-disjoint synchronized quadruples, consisting
of a SNP and three informative features, one for each of its alleles. We do not report the result here as it
is out of scope.

5.2. Approximating MAPS

We now devise an approximation algorithm for MAPS. Let G be an input SF graph. The algorithm has
two stages. In its first stage, we compute a maximal synchronized matching in G; in the second stage,
we transform this matching into a collection of induced synchronized submatchings, choosing the largest
as the output assignable set. For the first stage we use an approximation algorithm to MSM, which we
present next.

Theorem 6. Maximum Synchronized Matching admits a polynomial-time approximation scheme.

Proof. Algorithm. We use a greedy algorithm to find a maximal synchronized matching. In its first
phase, we successively try to extend the current synchronized matching by adding a disjoint synchronized
triple. The first phase ends when no extension is possible. In the second phase, for a positive integer r , we
repeat the following step until no improvement is possible: For every set of r synchronized triples in the
current solution, we try to improve the solution by replacing the r synchronized triples with r+1 triples. We
denote the resulting two-phase greedy algorithm by Hr . Clearly, Hr is polynomial for constant r . Denote
the resulting synchronized matching by Mapp, and let Vapp be the set of allele-pair vertices included
in Mapp.

Approximation ratio. Let Mopt denote an optimum solution, and let Vopt denote the allele-pair vertices
occurring in Mopt . In the following, we will show that |Vopt | ≤ (1 + 2

r+1 )|Vapp|.
An allele-pair vertex in Vopt \ Vapp is called blocked. An allele-pair vertex in Vapp \ Vopt is called

greedy-only. For a blocked vertex v, participating in a synchronized triple (v, u1, u2) ∈ Mopt , define its set
dom(v) of dominating feature vertices as follows: For i = 1, 2, feature vertex ui is in dom(v) if ui occurs
in a triple of Mapp; inductively, u′

i ∈ dom(v) if there exist u′′
i ∈ dom(v) and v′ ∈ V such that the following

three conditions are satisfied: (a) Mopt contains a triple (v′, u′
1, u

′
2); (b) Mapp contains a triple (v′, u′′

1, u
′′
2);

and (c) u′
i occurs in a triple of Mapp. An example is given in Fig. 2. Note that a feature vertex can dominate

FIG. 2. Dominating features and dominating components. An example of an SF graph G = (V , U, Er ∪ Eb), where
blue edges appear dashed and red edges appear solid. Triples of an optimal solution are shown in gray; triples in
the solution found by the greedy algorithm appear in black. Vertices vblk, v

′
blk

are blocked; vertex vgo is greedy-
only. The sets dom(vblk) and dom(v′

blk
) are indicated; the corresponding dominating components are Udom(vblk) =

Udom(v′
blk

) = dom(vblk) ∪ dom(v′
blk

).
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at most one blocked allele-pair. Finally, we define the dominating component Udom(v) ⊆ U of a blocked
allele-pair vertex v as follows: Consider a graph Gdc on all blocked vertices in which two blocked vertices
v and v′ share an edge if there is a greedy-only allele-pair vertex v′′ with (v′′, u′′

1, u
′′
2) ∈ Mapp such that u′′

1
is a dominating vertex of v and u′′

2 is a dominating vertex of v′, or vice versa. Let C(v) be the connected
component containing v in Gdc. Then Udom(v) ≡ ⋃

v′∈C(v) dom(v′). Note that the maximum degree of a
vertex in Gdc is at most two. Therefore, the connected components of Gdc are either paths or cycles.

For a dominating component Udom(v), we let Vblk(v) ⊆ V denote the set of blocked vertices v′ for
which (v′, u′

1, u
′
2) ∈ Mopt while u′

1 ∈ Udom(v) or u′
2 ∈ Udom(v). We denote by Vgo(v) ⊆ V the set of

greedy-only vertices v′′ for which (v′′, u′′
1, u

′′
2) ∈ Mapp while u′′

1 ∈ Udom(v) or u′′
2 ∈ Udom(v). Thus, within

C(v), Vblk(v) are the allele-pair vertices that are “gained,” and Vgo(v) the allele-pair vertices that are “lost”
in Mopt compared to Mapp. The following two claims are essential in proving the approximation ratio:

1. |Vblk(v)| = |Vgo(v)| or |Vblk(v)| = |Vgo(v)| + 1. Clearly, |Vblk(v)| ≥ |Vgo(v)| or, else, Mopt could
be improved by (a) replacing the triples involving vertices of Vblk(v) with those in Mapp that involve
Vgo(v), and (b) replacing each triple (v, u, u′) ∈ Mopt that involves features from Udom(v) with a triple
from Mapp that includes v. Since the elements of Vblk(v) are the vertices of a connected component in
Gdc, whose edges are in 1–1 correspondence with Vgo(v), we must have |Vblk(v)| ≤ |Vgo(v)| + 1.

2. If |Vblk(v)| = |Vgo(v)|+1 then |Udom(v)| ≥ r +1. Suppose to the contrary that |Vblk(v)| = |Vgo(v)|+1
but |Udom(v)| ≤ r . Hence, Hr can remove all triples (at most r) from Mapp that contain a feature
from Udom(v) and replace them with the r + 1 triples in Mopt that involve the vertices in Vblk(v), a
contradiction.

Assume now that Gdc has d components, d ′ of which correspond to allele-pair vertices v such that
|Vblk(v)| = |Vgo(v)|+1. By claim (2), |Vapp| ≥ (d−d ′)+ d ′(r+1)

2 . Claim (1) implies that |Vopt | ≤ |Vapp|+d ′.
Therefore, the approximation factor can be bounded as follows:

|Vopt |
|Vapp| ≤

d + d ′(r + 1)

2

d − d ′ + d ′(r + 1)

2

≤
d + d(r + 1)

2
d(r + 1)

2

≤ 1 + 2

r + 1
.

Theorem 6 shows that the approximation ratio achieved by Hr is 1 + 2
r+1 , which can be easily shown

to be tight. It is interesting to compare this result to that obtained by De Bontridder et al. (2003). They
analyzed the same algorithm for the problem of packing paths of length 2 in a given graph (PP2). In contrast
to MSM, instances of PP2 are not necessarily bipartite, and their edges are not colored. De Bontridder
et al. show that for PP2, Hr achieves an approximation factor of 3 for r = 0 and of 2 for r = 1. For these
values of r , their results coincide with ours. However, they also show that PP2 is APX-hard, implying that
the approximation factor achieved by Hr converges to a constant greater than 1. In particular, they analyzed
the performance of Hr for r = 2, 3, 4 and prove that the factors achieved are 9

5 , 11
7 , and 3

2 , respectively,
different than our results for MSM. We note that for PP2 it remains open to determine the exact constant
to which the approximation ratio of the greedy algorithm converges with growing values of r .

We are now also ready to state our approximation algorithm for MAPS.

Theorem 7. There is a polynomial approximation algorithm to MAPS with ratio (2l − 1)(1 + 2
r+1 ),

where l is the length of the input sequences.

Proof. Our approximation algorithm has two stages. In the first stage, we compute an approximate
synchronized matching in G, using the greedy algorithm Hr given in the proof of Theorem 6. In the
second stage, we partition the allele-pairs in this synchronized matching into assignable subsets using
the method of Theorem 2. Since each allele-pair has at most l + 1 distinct features (at most l − 2k + 1
noninformative and at most 2k informative features), two of which participate in a synchronized triple with
that allele-pair, we can partition the allele-pairs into at most 2l − 1 assignable subsets. Finally, we pick the
largest assignable subset to be the output solution. In combination with the result of Theorem 6, we get
the stated ratio.
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It is interesting to note that MAPS is fixed-parameter tractable with respect to fixed feature length k,
i.e., solvable in f (k) · |A|O(1) time for some function f : The algorithm iterates over all possible feature
sets. For each set F , the algorithm checks whether there exists a corresponding assignable allele-pair set,
whose unique features are exactly the features in F . This is done by building a graph in which the vertices
are the features in F , and the edges connect two features f and f ′ for which there exists an allele-pair v

such that (v, f, f ′) is a synchronized triple and v is not adjacent to any other feature in F . An assignable
set exists if and only if the latter graph has a perfect matching. The largest feature set identified by the
algorithm yields the maximum allele-pair set.

5.3. Approximating MAPC

In this section, we present our results for MAPC and the related Synchronized Matching Cover prob-
lem. Our main result is a polynomial 2-approximation algorithm for Synchronized Matching Cover,
leading to a polynomial-time (4l − 2)-approximation algorithm for MAPC, where l denotes the length of
the input sequences.

Theorem 8. There is a polynomial 2-approximation algorithm to Synchronized Matching Cover.

Proof. The algorithm works in two phases: In the first phase we use maximum network flow to
find a lower bound copt on the optimum solution and to choose for each allele-pair two representative
(informative) features. In the second phase, we partition the resulting triples into assignable sets using
graph coloring. In the following, we describe the two phases in detail.

In the first phase, we restrict attention to the subgraph G′ = (V , U, Er ∪Eb) of the SF graph G, spanning
only the informative edges, and convert it into a network graph N = (U ′, E′), as illustrated in Fig. 3. The
vertex set U ′ consists of a source vertex s, two vertices v′ and v′′ for each vertex v ∈ V , the vertices
in U , and a sink vertex t . The edge set E′ contains capacity-1 edges (s, v′) and (s, v′′), for every v ∈ V ;
capacity-1 edges (v′, u) for all (v, u) ∈ Er ; capacity-1 edges (v′′, u) for all (v, u) ∈ Eb; and capacity-c
edges (u, t), for all u ∈ U . For c = 1, 2, . . . we compute a maximum network flow in N from s to t and
stop when the value of the flow reaches 2|V |. The value of c at that point, denoted copt , serves as a lower
bound on the size of a synchronized matching cover of G.

In the second phase, we use the flow computed in the previous phase to construct a conflict graph C =
(V , E′′). With each allele-pair, we associate a synchronized triple that contains this pair, as implied by
the computed flow. There is an edge in C between two allele-pairs if and only if their associated triples
overlap (i.e., share some feature). We now color this graph using SLO coloring. Clearly, each color class
corresponds to an assignable set of allele-pairs. Due to the capacity constraints on the network flow, the
maximum degree of a vertex in C is 2(copt − 1). Hence, C can be colored using at most 2copt − 1 colors.
The approximation ratio follows.

Corollary 1. There is a polynomial approximation algorithm to MAPC with ratio 4l − 2, where l is
the length of the allele-pair sequences.

FIG. 3. Network graph construction. (A) The subgraph G′ = (V , U, Er ∪ Eb) of the allele-pair graph (edges in Er

are dashed and edges in Eb are solid). (B) The corresponding network graph N (unlabeled edges have capacity 1).
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FIG. 4. The minimal partition (A) and maximal set (B) algorithmic schemes. The input allele-pair set is A =
{q1, . . . , qn}.

Proof. We apply the approximation algorithm to SMC on the input graph G. We then use the method
described in the proof of Theorem 7 to transform each synchronized matching in the cover into a collection
of at most (2l − 1) assignable subsets.

We note that a similar algorithmic problem has been studied by Kivija et al. (2002).

6. HEURISTIC APPROACHES

In addition to the approximation algorithm, we devised two heuristic approaches to MAC and MAPC.
For simplicity, we present these approaches for the allele-pair case, but similar procedures are applied also
in the single-allele case.

The first heuristic is called minimal partition (MP). We allocate one SNP at a time, inserting it into
the subset of the given allele-pair set A that “best” accommodates it. Subsets are ranked by a potential
function σ : 2A × A → R which assigns every pair of A′ ⊆ A and q ∈ A a real-valued “potential”
σ(A′, q). We start a new subset only when the target cannot be accommodated in an existing subset. The
second heuristic is called maximal set (MS). We attempt to construct a large assignable subset of SNPs,
each time adding to the current set a SNP whose ranking according to the potential function is the lowest.
When this set cannot be extended anymore, we iteratively call the process on the remaining SNPs. These
schemes are given in Fig. 4.

We experimented with several potential functions σ(A′, q), described below. For a subset of allele-
pairs A′, denote by N(A′) the features that are covered by the alleles in SA′ . The potential functions are (σ1),
the number of features of q that are not covered by the allele-pairs in A′, i.e., σ1(A

′, q) = |N({q})\N(A′)|;
(σ2), the number of allele-pairs q ′ that were not assigned yet and have features that are not covered by A′
but are covered by q, i.e., N({q ′}) ∩ (N({q}) \ N(A′)) �= ∅; and (σ3), the number of allele-pairs q ′ that
were not assigned yet and for which A′ ∪ {q ′} is assignable, but A′ ∪ {q, q ′} is not. We obtained similar
results using the three functions; in the following, we present only results that were obtained using σ1,
whose computation is the most efficient (by a factor of n).

7. EXPERIMENTAL RESULTS

We implemented the algorithmic approaches for MAPC and MAC presented in the previous sections,
including the approximation algorithm for MAPC (Apx) and the heuristic schemes (MP and MS). The
approximation algorithm was slightly modified compared to Theorem 8 and Corollary 1: After having
computed a network flow in its first phase, we “improve” the chosen synchronized triples without altering
the total flow in the network. The improvement aims at minimizing the sum over all features included
in the synchronized triples defined by the flow of the number of allele-pairs that have that feature. The
minimization is done in a greedy way: For a feature u, let N(u) denote the set of allele-pairs containing u.
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We determine the allele v for which its currently assigned feature u can be replaced by a new feature u′
such that |N(u′) \ N(u)| is maximum. We successively do these replacements until no improvement is
possible. Notably, this step does not affect the approximation guarantee of the algorithm but compensates
for the fact that the first phase ignores the noninformative edges of the allele-pair graph and, therefore,
often yields unfavorable assignments in this respect. Intuitively, this improvement decreases the number of
edges of the conflict graph which is colored in the second phase of the approximation algorithm.

We applied the approaches to synthetic SNP data and to data that was simulated based on real SNP
sequences. We evaluated the quality of the solutions obtained by computing a lower bound on the size of
an optimum solution. The lower bound, denoted LB, is based on the size s of a maximal clique in a conflict
graph whose vertices are allele-pairs and whose edges connect two allele-pairs that cannot be assigned to
the same assay. Maximal cliques in this graph are computed using a greedy search. If s > 1, then LB is
set to s. Otherwise, we check (in polynomial time) whether the entire set of alleles is assignable. If the
answer is positive, then LB is set to 1 and is tight. If the answer is negative, then we set LB to 2.

We also evaluated an alternative lower bound arising from the theoretical analysis of SMC: It is the
minimum capacity copt that is computed by the network flow algorithm of Theorem 8. In the experiments,
however, this bound performed worse than LB and, consequently, we do not report results on this.

The results that we present here cover both generic technologies that were introduced in Section 2,
namely, all-k-mer arrays and mass-spectrometry assays. For each target sequence, we include features
from both the target and its Watson–Crick complement. When using real sequence data, we omit close
SNPs if one lies in the flanking sequence of the other. We also omit SNPs for which one allele does not
have an informative feature. We report on results for both perfect and noisy models of hybridization.

7.1. Synthetic data

Our first goal was to evaluate the performance of the three algorithmic approaches on synthetic data.
We generated at random 41-long sequences for varying number of SNPs. For each sequence, we chose
at random two distinct nucleotides, representing two alleles, to occupy the 21st base of the sequence. We
simulated experiments with an all-k-mer array, where k ranged from 6 to 8.

To model noise in the hybridizations, we prepared two versions of each dataset. In the first version, a
k-mer was considered a feature of a sequence if it occurred in it. In the second version, we used a simple
noise model based on the fact that an enzymatic reaction (such as extension) on a k-mer will not occur
when there is no stable binding close to the reactive (3′, in case of polymerase extension) end of the primer
(Jeff Sampson, unpublished data). Thus, in our model, a k-mer was considered a feature of a sequence
if the k-mer appeared in the sequence with up to one mismatch, where the mismatch was constrained to
occur in one of the nucleotides that are located at least 6 bp from the extension end of the primer. The
results, averaged over 10 runs, are presented in Table 1 and are depicted in Fig. 5. We also simulated
datasets in which the features of each sequence were taken to be the molecular weights of its constituent
k-mers. These results, which measure the performance of the mass-spectrometry genotyping technique, are
given in Table 2. In both sets of results, the heuristic approaches outperform the approximation algorithm.

Next, we applied the MS and MP heuristics to the perfect hybridization data in their single-allele version,
allowing alleles from the same allele-pair to be assigned to different sets. This experiment shows what we
gain or lose by coupling the alleles of each SNP together. The results are summarized in Table 3. Since
the single-allele version is less constrained, we have expected that the solutions will contain fewer arrays.
In practice, it turned out that the heuristics do not exploit well the added freedom in the single-allele
version, and the solution sizes were often slightly higher than in the allele-pair case. Moreover, in terms of
amplification reactions, we see a significant difference between the two versions. In the single-allele case,
a considerable fraction of the allele-pairs are split between the assays, implying a significant increase in
the number of amplification reactions that are required for the genotyping process.

7.2. Simulations using real sequence data

In order to generate data that is representative of real genotyping experiments, we used real SNP sequence
data from various sources. First, we extracted from the public SNP database (Sherry et al., 2001) 41 bp-
long sequences flanking the first 1,000 reference SNPs of each chromosome, omitting those SNPs not
showing a sufficiently long flanking sequence, or not having a unique informative feature for each allele
in the pair.
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Table 1. Performance on Synthetic Data for All k-mer Arraysa

6-mers 7-mers 8-mers

# SNPs MP MS Apx LB MP MS Apx LB MP MS Apx LB

200 4.1 4.4 5.2 1.9 2.0 2.0 2.0 1.0 1.1 1.1 1.1 1.0
200∗ — — — — 4.0 4.0 4.9 1.5 2.0 2.2 2.1 1.0
400 6.8 6.9 9.8 2.0 3.0 3.0 3.0 1.6 2.0 2.0 2.0 1.0
400∗ — — — — 6.0 6.0 9.0 2.0 3.0 3.3 4.0 1.1
600 9.0 9.0 14.1 2.1 3.6 3.9 4.0 1.8 2.0 2.0 2.0 1.2
600∗ — — — — 8.0 8.1 12.3 2.0 4.0 4.0 6.0 1.2
800 11.1 11.1 17.9 2.1 4.1 4.1 5.0 1.9 2.0 2.0 2.0 1.3
800∗ — — — — 10.0 10.0 16.1 2.1 5.0 5.0 7.9 1.7

1000 13.2 13.1 21.7 2.3 5.0 5.0 6.7 2.0 2.1 2.2 2.1 1.1
1000∗ — — — — 12.0 12.0 19.7 2.0 5.8 6.0 9.0 2.0

aDatasets that were produced using the noisy model of hybridization are denoted by an asterisk. Note that for 6-mers the perfect
and noisy model are identical.

FIG. 5. Performance on synthetic data in terms of the number of required arrays, k = 7. (A) Perfect hybridization
data. (B) Data produced using the one-mismatch noise model of hybridization.

Table 2. Performance on Synthetic Data for Mass-Spectrometry Assaysa

6-mers 7-mers 8-mers

# SNPs MP MS Apx LB MP MS Apx LB MP MS Apx LB

200 38.4 36.1 51.5 9.2 29.6 27.2 36.2 5.7 22.8 21.3 26.8 4.0
200∗ — — — — 83.7 80.9 88.3 48.9 89.6 83.9 92.3 58.3
400 70.1 66.5 91.7 12.0 52.2 48.6 67.1 8.2 40.6 37.7 48.5 5.3
400∗ — — — — 153.1 145.2 173 79.1 162.8 152.9 164.8 93.8
600 99.7 93.2 125.3 16.0 73.0 68.8 85.6 10.1 56.9 52.8 66.7 6.1
600∗ — — — — 217.3 206.7 230.7 102.5 230.7 219.4 236.4 128.6
800 128.7 119.6 159.6 17.2 94.1 87.7 113.3 11.8 72.4 67.5 85.3 6.8
800∗ — — — — 284.8 270.4 309.7 134.5 301.6 284.8 304.3 163.7

1000 157.6 146.8 192.7 20.8 114.6 106.2 144.3 12.7 87.6 81.8 104.7 7.5
1000∗ — — — — 349.6 330.3 391.7 154.3 365.1 342.6 374.8 189.7

aDatasets that were produced using the molecular weight of its constituent k-mers as features, the datasets under the noise model
of hybridization are denoted by an asterisk.
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FIG. 6. Percentage of coverage for data simulated using known SNPs from human chromosomes. For percentages
p ranging from 50% to 100%, depicted are the number of sets required to cover at least p percents of the allele-pairs
in the data. (A) Performance on chromosome 1. (B) Performance on chromosome 16.

The results of applying our algorithms to this data, assuming experiments with an all-8-mer array, are
summarized in Table 4. It can be seen that the approximation algorithm gives in practice an approximation
ratio of 2.6 on average (with respect to LB), which is much better than its performance guarantee. However,
both heuristics outperform the approximation, with the MS heuristic yielding better results in most cases.
As can be observed, the results on real sequence data are slightly worse than their random data counterparts
(i.e., higher-cardinality solutions are obtained for the same number of SNPs).

Studying the distribution of the sizes of the assignable sets, we discovered that, typically, about half the
sets in a solution cover over 75% of the allele-pairs. The remaining sets are small and contain few SNPs
each. Figure 6 depicts the number of sets in the solutions of chromosomes 1 and 16 as a function of the
required coverage percentage.

Second, we compiled several datasets spanning the SNPs in the regions of specific disease-related genes,
using data available from the NIEHS Environmental Genome Project (www.egp.gs.washington.edu/data/).
For each dataset we used 41-long SNP sequences. The results using all k-mer arrays are summarized in
Table 5. In many of the shown cases, one of the algorithms finds an optimal solution. Note that, in Table 5,
LB also incorporates checking whether one array is sufficient, which can be done in polynomial time.
In all these experiments, the MS algorithm outperformed the approximation algorithm and produced on
average covers within a factor of 1.4 of the lower bound, when considering 8-mers.

8. CONCLUSION

In this paper, we have studied the problem of designing genotyping experiments so as to maximize the
multiplexing rate of several generic SNP genotyping schemes. We devised approximation algorithms and
practical heuristics for the multiplexing problems. We tested our approaches on an extensive collection of
synthetic and simulated datasets and showed that a heuristic that is based on a set-cover approach achieves
optimal or near-optimal designs in many cases. On realistic examples that involve SNPs in the regions
of disease-related genes, our designs could be applied with as few as four arrays. This demonstrates the
applicability of the approach in enabling flexible, region-specific SNP genotyping.

From the computational point of view, we note two interesting observations derived from analyzing our
experimental results. First, the approximation ratio achieved by our approximation algorithm is, in practice,
significantly better than its guaranteed ratio. Second, as often happens with other NP-complete problems,
a practical heuristic with no approximation guarantee out-performs a theoretically proven approximation
algorithm. An open problem is to determine the complexity of Maximum Synchronized Matching.
Also, exact algorithms for MAPC are of interest.

While our work has given initial promising results, several extensions and refinements to our method
can be explored. For example, tighter lower bounds for the multiplexing problem are of interest, as are
extensions of the algorithms to handle SNPs with more than two alleles.
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