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Abstract—We study the parsimony approach to haplotype inference, which calls for finding a set of haplotypes of minimum cardinality

that explains an input set of genotypes. We prove that the problem is APX-hard even in very restricted cases. On the positive side, we

identify islands of tractability for the problem, by focusing on instances with specific structure of haplotype sharing among the input

genotypes. We exploit the structure of those instance to give polynomial and constant-approximation algorithms to the problem. We

also show that the general parsimony haplotyping problem is fixed parameter tractable.
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1 INTRODUCTION

SINGLE nucleotide polymorphisms (SNPs) are differences
in a single base, across the population, within an

otherwise conserved genomic sequence. SNPs are the most
common form of variation of DNA sequences among
individuals. Especially when occurring in coding or other-
wise functional regions, variations in SNP content are
linked to medical condition or may affect drug response.

A SNP commonly has two variants, or alleles, in the
population, corresponding to two of the four genomic letters
A, C, G, and T . The sequence of alleles in contiguous SNP
positions along a chromosomal region is called a haplotype.
For diploid organisms, the genotype specifies for every SNP
position the particular alleles that are present at this site in the
two chromosomes. Genotype data contains information only
on the combination of alleles at a given site, and does not
reveal the association of each allele with one of the two
chromosomes—its phase. Current technologies, suitable for
large-scale polymorphism screening only yield the genotype
information at each SNP site. The actual haplotypes in the
typed region can be obtained at a considerably higher cost
[23]. Due to the importance of haplotype information for
inferring population history and for disease association, it is
desirable to develop efficient methods for inferring haplo-
types from genotype information.

Numerous approaches have been suggested in the
literature to resolve haplotypes from genotype data. These
methods include the seminal approach of Clark [4] and
related parsimony approaches [9], [10], [12], maximum
likelihood methods [5], [6], [16], [21], Bayesian methods

such as PHASE [26], HAPLOTYPER [22] and HaploBlock
[8], and perfect-phylogeny-based approaches [11], [1], [14].
The reader is referred to [13] for a survey on different
formulations of the haplotyping problem.

Here, we focus on the parsimony haplotyping (PH) problem,
where the input is a set ofn genotypes and the goal is to find a
minimum set of haplotypes that explains them (a formal
definition of PH is deferred to Section 2). Parsimony is a
natural criterion for choosing a solution in many domains.
This is particularly true for haplotyping, since the number of
distinct haplotypes observed in a population is much smaller
than the number of possible haplotypes, due to population
bottleneck effects and genetic drift. For example, Patil et al.
report that within short genomic regions, typically, some
70-90 percent of the haplotypes belong to very few (2-5)
common haplotypes [23].

There has been extensive research on the parsimony
haplotyping problem. Hubbell has shown that the problem
is NP-complete [18]. Lin et al. have investigated a related
problem and showed that it is NP-complete as well [20]. A
practical integer programming approach for it was devised by
Gusfield [12]. Recently, Lancia et al. [19] have shown that the
problem is APX-hard and have given a 2k�1-approximation
algorithm for the problem, for data sets in which each
genotype has at most k ambiguous positions. Huang et al. [17]
have given an OðlognÞ-approximation algorithm for the
problem, for data sets in which there is a polynomial number
of haplotypes to be considered.

Inthispaper,westudythecomplexityandapproximability
of parsimony haplotyping and its restrictions. We character-
ize instances of the problem by the number of ambiguous sites
they contain and the structure of a Clark-consistency graph
whose vertices correspond to genotypes and whose edges
represent sharing of haplotypes. On the negative side, we
show that parsimony haplotyping is APX-hard even when the
input instances have small numbers of ambiguous sites per
genotype or SNP; when the corresponding Clark-consistency
graph is a clique; or when the Clark-consistency graph is
bipartite. On the positive side, we show that the problem is
fixed parameter tractable and give polynomial algorithms
and approximation algorithms for some of its restrictions.
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Specifically, we give a polynomial algorithm for PH on cliques

when each SNP has at most two genotypes in which it is

ambiguous.WealsogiveapolynomialalgorithmforPHwhen

the Clark-consistency graph has bounded treewidth. Finally,

we give a 1.5-approximation algorithm for PH when the input

instance induces a bipartite Clark-consistency graph.
The paper is organized as follows: Section 2 provides

background on the problem. The complexity of parsimony

haplotyping is analyzed in Section 3. Restrictions of the

problem are studied in Sections 4, 5, and 6.

2 PRELIMINARIES

A haplotype is a row vector with binary entries. Each

position in the vector indicates the state (0 or 1) of a certain

SNP in this haplotype. For a haplotype h, let h½i� denote the

ith position of h. A genotype is a row vector with entries in

f0; 1; 2g, each corresponding to a SNP site. A genotype matrix

is a matrix whose rows are genotypes. We denote the

number of genotypes by n. Two haplotypes h1 and h2

explain a genotype g, denoted by h1 � h2 ¼ g, if for each

position i the following holds: g½i� 2 f0; 1g implies h1½i� ¼
h2½i� ¼ g½i� and g½i� ¼ 2 implies h1½i� 6¼ h2½i�. If h½i� ¼ g½i�
whenever g½i� 2 f0; 1g, then h is said to be consistent with g.

A haplotype that is consistent with two genotypes is said

to be shared by them. Given a set of genotypes, the graph

containing the genotypes as nodes and an edge between

two genotypes if and only if they share a haplotype is called

the Clark-consistency graph. This definition is inspired by

Clark’s rule for haplotype inference [4] as is explained

below. A ðk; lÞ-bounded instance is an input genotype matrix

with at most k 2-entries per row and at most l 2-entries per

column, where an asterisk instead of k or l indicates no

constraint. An enumerable instance is an input genotype

matrix with a polynomial number of haplotypes that are

consistent with any of its genotypes or, equivalently, an

(OðlognÞ,*)-bounded instance.
The parsimony haplotyping problem is formally defined

as follows:

Problem 1: Parsimony Haplotyping (PH). Given a set of
genotypes, find a minimum set of haplotypes H such that each
genotype can be explained by two haplotypes from H.

A related problem concerns identifying haplotypes that

are consistent with the input set of genotypes:

Problem 2: Minimum Haplotype Consistency (MHC).

Given a set of genotypes, find a minimum set of haplotypes H
such that each genotype is consistent with some element of H.

Inference paths in the Clark-consistency graph are

defined as follows: For a haplotype h and a genotype g

that is consistent with it, an inference path is a path in the

Clark-consistency graph that starts at g and is created as

follows: 1) let g ¼ h� �h, 2) move to a genotype g0 that is

consistent with �h if such exists and was not visited already,

and 3) set g ¼ g0, h ¼ �h and go to Step 1). The path

terminates when it reaches a haplotype h whose comple-

ment is consistent with genotypes in the path only. Its length

is defined to be its number of edges.

3 COMPLEXITY OF PARSIMONY HAPLOTYPING

The general parsimony haplotyping problem is known to be
NP-complete [18] and APX-hard [19] and, hence, unlikely to
admit a polynomial time approximation scheme. In fact, the
construction in the hardness proof of Lancia et al. [19] shows
that the problem is APX-hard already for ð3; �Þ-bounded
instances. In the following, we strengthen their result and
prove that parsimony haplotyping is APX-hard even for
ð4; 3Þ-bounded instances.

Theorem 1. Parsimony haplotyping is NP-hard for ð4; 3Þ-
bounded instances.

Proof. We give a reduction from three-dimensional matching
with each element occurring in at most three triples
(3DM3) [7]: Given disjoint sets X;Y ; Z containing
� elements each and a set C ¼ fc0; . . . ; c��1g of � triples
in X � Y � Z such that each element occurs in at most
three triples ofC, find a maximum cardinality setC0 � C of
disjoint triples (a three-dimensional matching).

We build a genotype matrix with 3� þ 3� rows and
6� þ 4� columns. The first 3� rows are called element
genotypes and represent the elements of the 3DM3
instance. The other 3� rows are called matching genotypes
and represent the triples. The first 3� columns are used to
ensure that for each element genotype, at most one of its
haplotypes can be shared. The next 3� columns ensure
that element genotypes do not share haplotypes with
each other; they can only share haplotypes with
genotypes corresponding to triples they occur in. The
next 4� columns represent the triples and restrict the
sharing of haplotypes among the matching genotypes, as
described below.

The construction of the genotype matrix is based on
the gadget shown in Fig. 1. For each element xi 2 X,
yi 2 Y , or zi 2 Z, we construct one genotype. In the
following, we specify for each genotype its nonzero
entries only:

. xi½i� ¼ 2; xi½3� þ i� ¼ 1; xi½6� þ 4j� ¼ 2 for all j
such that xi 2 cj.

. yi½� þ i� ¼ 2; yi½4� þ i� ¼ 1; yi½6� þ 4j� ¼ 2 for all j
such that yi 2 cj.

. zi½2� þ i� ¼ 2; zi½5� þ i� ¼ 1; zi½6� þ 4j� ¼ 2 for all
j such that zi 2 cj.

304 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 3, JULY-SEPTEMBER 2006

Fig. 1. Gadget for the reduction in Theorem 1.



For each triple cj 2 C, we create three genotypes,
whose nonzero entries are:

. cxj ½3� þ i� ¼ 2 for i such that xi 2 cj; cxj ½6� þ 4j� ¼ 1;
cxj ½6� þ 4jþ 1� ¼ 2.

. cyj ½4� þ i� ¼ 2 for i such that yi 2 cj; cyj ½6� þ 4j� ¼ 1;

cyj ½6� þ 4jþ 2� ¼ 2.

. czj ½5� þ i� ¼ 2 for i such that zi 2 cj; czj ½6� þ 4j� ¼ 1;
czj ½6� þ 4jþ 3� ¼ 2.

The resulting genotype matrix A is ð4; 3Þ-bounded.
Indeed, each element genotype contains exactly one
2-entry in one of the first 3� columns and at most three
other 2-entries representing the triples in which the
element occurs. Each matching genotype has exactly two
2-entries. For the bound on the columns, observe that the
first 3� columns contain one 2-entry; the next 3� columns
have at most three 2-entries, since their corresponding
elements occur in at most three triples. The last 4�
columns contain at most three 2-entries each.

We now claim that A has a parsimony solution of
cardinality 6� þ 4�� ! if and only if C has a matching of
size !. First, observe that every set of three matching
genotypes can be phased using four haplotypes, none of
which can be shared with the element genotypes, or
using six haplotypes, three of which (left column) can be
shared with element genotypes, as depicted in Fig. 2.

For the “if” part, suppose that C has a matching of
size !. For each c 2 C, we phase the corresponding
matching genotypes using the template P6, as shown in
Fig. 2. Three of those six haplotypes can be used to phase
the corresponding element genotypes, where each ele-
ment genotype requires one additional haplotype to
complete its phasing. Overall, the phasing uses 9!
haplotypes for this set of genotypes. The remaining
element genotypes can be phased arbitrarily using two
haplotypes each. The remaining matching genotypes can
be phased using the P4 template by four haplotypes
each, as shown in Fig. 2. In total, the phasing includes
9!þ 2 � 3ð� � !Þ þ 4ð�� !Þ ¼ 6� þ 4�� ! haplotypes.

Conversely, given a phasing of A using 6� þ 4�� !
haplotypes, we can construct a matching of size !, by
letting our matching be those triples whose correspond-
ing matching genotypes share haplotypes with all three
of their element genotypes. By construction, element
genotypes cannot share haplotypes among themselves,
so their phasing requires 6� haplotypes. Consider any
triple t of matching genotypes. These genotypes can only
share haplotypes with each other or with the correspond-
ing element genotypes. Furthermore, t can share at most
three haplotypes with its element genotypes. If t shares
exactly three haplotypes with its element genotypes (in

the given phasing) then, by construction, it is phased
using six haplotypes in total. If t shares less than three
haplotypes with its element genotypes, it must be phased
using four additional haplotypes that are not shared with
the element genotypes. Hence, the resulting matching
has size at least !. tu

Corollary 1. Parsimony haplotyping is APX-hard for
ð4; 3Þ-bounded instances.

Proof. Petrank [24] has shown that it is NP-hard to
determine whether a maximum matching of a 3DM3
instance is perfect or misses a constant fraction � of the
elements. In the first case, our genotype instance admits
a solution of cardinality 5� þ 4�; in the second case, it
admits a solution of cardinality at most 5� þ 4�þ ��. The
claim follows. tu
We now show that the related problem of “covering” the

input genotypes is hard as well.

Theorem 2. MHC is NP-complete.

Proof. The problem is clearly in NP. We reduce from
CLIQUE COVER [7]. Given an instance of CLIQUE COVER,
consisting of a graph G ¼ ðf1; . . . ; ng; EÞ and an integer
k, we build an n� n genotype matrix as follows: For each
vertex i, we have a corresponding row ri. We set rii ¼ 1.
For all vertices j that are adjacent to i, we set rij ¼ 2. All
other entries of ri are set to 0. It is easy to see that a
haplotype is consistent with a set of genotypes (rows) if
and only if the corresponding vertices form a clique in G.
Hence, there is a 1-1 correspondence between solutions
to CLIQUE COVER and solutions to the MHC instance.tu
We note that a similar reduction from CLIQUE shows

that even the problem of identifying a haplotype that is
consistent with a maximum number of genotypes is NP-
hard. Moreover, these reductions also show that both
problems are NP-hard to approximate to within a factor
of n1��, unless NP = ZPP [15].

On the positive side, we now show that PH is fixed
parameter tractable with respect to the cardinality of the
solution set of haplotypes.

Theorem 3. Parsimony haplotyping is fixed parameter tractable
with respect to to the number of haplotypes in the solution set.

Proof. Fixing the number of allowed haplotypes to k implies
that the maximum number of distinct genotypes possible
is kðkþ1Þ

2 . Letm be the length of the input genotypes. Denote
the unknown haplotypes in an optimal solution by
h1; . . . ; hk. For each genotype, we can enumerate the pair
of indices of the solution haplotypes that explain it. The
problem is then reduced to solving m sets of linear
equations over GF(2). Each set of equations involves at
most two variables per equation and can be viewed as a
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Fig. 2. The three matching genotypes corresponding to a triple and alternative phasings of these genotypes. P4 show a minimal phasing with four

haplotypes, none of which can be shared with the element genotypes. P6 shows a phasing using six haplotypes, three of which can be shared with

the element genotypes.



2-SAT instance. Hence, resolving the haplotypes given

their assignment to genotypes can be done inOðmk2Þ time,

and the overall complexity of the algorithm isOðmkk2þkÞ.tu

The rest of the paper concerns identifying islands of

tractability for parsimony haplotyping. We show positive

results for instances in which the Clark-consistency graph is

a ð�; 2Þ-bounded clique or has bounded treewidth, as well as

approximation algorithms for several variants, including

instances for which the Clark-consistency graph is bipartite.

4 PARSIMONY ON CLIQUES

In this section, we study complete Clark-consistency graphs

(cliques), corresponding to instances in which every two

genotypes share a haplotype. We call such an instance a clique

instance. For a clique instance, every column in the genotype

matrix can contain at most two values (out of f0; 1; 2g), one of

which is 2. Without loss of generality, we shall consider

matrices with only 0-s and 2-s. In particular, the all-zero

haplotype is shared by all the genotypes and is called trivial.

When the input instance contains the all-0 genotype, any

solution to it must contain the trivial haplotype. For ease of

presentation, we assume in the following that the input

instance does not contain the all-0 genotype.

Theorem 4. Parsimony haplotyping is NP-hard on cliques.

Proof. We give a reduction from 3DM3, similar to that in the

proof of Theorem 1. The input to the 3DM3 instance

includes disjoint sets X;Y ; Z containing � elements each,

and a set C ¼ fc0; . . . ; c��1g of � triples in X � Y � Z. Let

�1; �2 denote the number of elements that only occur in 1 or

2 triples, respectively. We build a genotype matrix Awith

21� þ 6� rows and 6� þ 4�þ 8�1 þ 4�2 columns. The first

21� rows are called element genotypes and represent the

elements of the 3DM3 instance. The other 6� rows are

called matching genotypes and represent the triples.
To ensure that every element occurs in exactly three

sets, we start by constructing 2�1 þ �2 singleton sets.
Each element that occurs in two triples is assigned to one
singleton set, and each element that occurs in one triple

is assigned to two singleton sets. We label the singleton
sets c�þ1 through c�þ2�1þ�2

.

For the ith element � 2 X [ Y [ Z, occurring in sets
(triples or singleton sets) cj1 ; cj2 and cj3 , we construct
seven element genotypes �1; . . . ; �7 (see Fig. 3). Let l� ¼ 1
if � 2 X, l� ¼ 2 if � 2 Y , and l� ¼ 3 if � 2 Z. The 2-entries
of �k, 1 	 k 	 7, are as follows:

. �k½2i� ¼ 2 if k 	 3; �k½2iþ 1� ¼ 2.

. �k½6�þ4j1�¼�k½6�þ 4j1þl�� ¼ 2 if k2f2; 3; 5; 6; 7g.

. �k½6�þ4j2�¼�k½6�þ4j2þl��¼2 if k 2 f1; 3; 4; 6; 7g.

. �k½6�þ4j3� ¼ �k½6�þ4j3þl��¼2 if k 2 f1; 2; 4; 5; 7g.
For each triple cj 2 C, we create six matching

genotypes c1
j ; . . . ; c6

j , whose 2-entries are:

. ckj ½6� þ 4j� ¼ 2 if k 	 3.

. ckj ½6� þ 4jþ rþ 1� ¼ 2, where r ¼ k� 13.

Note that the construction of the matching genotypes
implies that the trivial haplotype and each of the
haplotypes that have a single 1-entry in one of the
columns 6� þ 4jþ r; r 2 f1; 2; 3g; j 2 f0; ; �� 1g will ne-
cessarily be included in any solution to the PH instance.

The construction ensures that, if genotypes of different
elements share a nontrivial haplotype, then the elements
are members of the same triple cj and the haplotype has a
single 1-entry at column 6� þ 4j. Also, only the trivial
haplotype can be shared between matching genotypes that
are not part of the same triple, or between a matching
genotype and an element genotype that is not a member of
the corresponding triple. Finally, the set of nontrivial
haplotypes that can be shared by a set of genotypes for a
single element � and the matching genotypes of a triple cj,
where � 2 cj includes: 1) the haplotypes having a single
1-entry at either column 6� þ 4j or 6� þ 4jþ l� and 2) the
haplotype that has two 1-entries at columns 6� þ 4j and
6� þ 4jþ l� .

We now claim that A admits a phasing of size 15� þ
4��!þ1 if and only ifC has a matching of size!. Suppose
thatC has a matching of size !. We phase the genotypes of
each triple in the matching using the P6 template shown
in Fig. 4. We phase the genotypes of elements in each
such triple using four additional haplotypes using the
P5 template shown in Fig. 5. The remaining sets of
matching genotypes can be phased using four haplotypes
each, according to the P4 template shown in Fig. 4. The
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Fig. 3. Gadget for the construction of element genotypes in the proof of

Theorem 4.

Fig. 4. Templates for phasing the set of genotypes corresponding to a

triple in the proof of Theorem 4. P4 shows a minimal phasing with four

nontrivial haplotypes. P6 shows a phasing with six nontrivial haplotypes,

three of which can be used can be shared with element genotypes.



remaining sets of element genotypes can be phased using
five haplotypes each, according to the P5 template shown
in Fig. 5. Overall, the phasing includes 18!þ 5 � 3ð� � !Þ þ
4ð�� !Þ þ 1 ¼ 15� þ 4�� !þ 1 haplotypes.

Conversely, suppose that A admits a phasing of
cardinality 15� þ 4�� !þ 1. We let the matching include
those triples that share haplotypes with all their elements
in this phasing. We first show that any phasing of the set
of genotypes of an element, �, must contain at least five
nontrivial haplotypes, four of which cannot be shared
with any other genotype. Furthermore, if the fifth
haplotype can be shared, then it must contain at least
two 1-entries at positions 6� þ 4j and 6� þ 4jþ l� , for
� 2 cj, implying the only genotypes it can be shared with
are the genotypes of the triple cj, where � 2 cj. We
distinguish between three cases:

. If only one haplotype has a 1-entry at position 2i,
then the first three genotypes imply three other
haplotypes that must occur in the phasing. All
four haplotypes cannot be shared with element
genotypes of other elements. A fifth haplotype,
satisfying the constraints above, is required to
phase the seventh genotype.

. If a single haplotype has a 1-entry at position 2iþ 1
and a 0-entry at position 2i, then genotypes four
through seven imply four additional haplotypes
that must occur in the phasing, none of which can
be shared with element genotypes.

. If none of the above holds, then there are at least
two haplotypes that have a 1-entry at position 2i
and two haplotypes that have a 0-entry at
position 2i and a 1-entry at position 2iþ 1. All
four haplotypes cannot be shared with element
genotypes. A fifth haplotype, satisfying the
constraints above, is necessary for phasing geno-
types four through seven.

We observe that the set of genotypes of a triple can share

at most three haplotypes with the genotype sets of its

elements; if less than three haplotypes are shared, then

four additional haplotypes are needed for the phasing of

this set of genotypes. We conclude that the constructed

matching must be of cardinality at least !, as the trivial

haplotype will be included in the optimal solution, five

nontrivial haplotypes are required for each set of element

genotypes, four additional nontrivial haplotypes are
required for each set not sharing three haplotypes with
its elements, and three additional nontrivial haplotypes
are required for each triple assigned to the matching. tu
Since the PH problem is NP-hard with respect to clique

instances, our main focus in this section is on identifying
clique subinstances for which PH is tractable. We start with
several observations on the constraints imposed by a clique
instance on the sharing among its genotypes.

Lemma 5. In a ð�; kÞ-bounded clique instance every nontrivial
haplotype is shared by at most k genotypes.

Proof. Consider a nontrivial haplotype. By definition, such
a haplotype must have a 1-entry in some position, and
that is consistent with at most k genotypes. tu
Given a clique instance withngenotypes, any solution to it

must have at least L 

ffiffiffiffiffiffiffiffi
8nþ9
p

�3
2 �

ffiffiffiffiffiffi
2n
p

nontrivial haplotypes.
To see this, consider a solution with l nontrivial haplotypes.
Since the l haplotypes, together with the trivial haplotype,
can form at most lþ l

2

� �
distinct genotypes, we must have

l � L. We now show a lower bound on solutions to
ð�; kÞ-bounded clique instances, for k 	 L.

Lemma 6. For k 	 L, any solution to a ð�; kÞ-bounded clique
instance has cardinality at least 2n

kþ1þ 1.

Proof. Consider a solution with l nontrivial haplotypes.
Since all n genotypes in the input instance are distinct,
the trivial haplotype participates in the phasing of at
most l of them in this solution. By Lemma 5, the solution
explains at most lþ lðk� 1Þ=2 genotypes, implying that
l � 2n

kþ1 . The claim follows. tu
Corollary 2. For ð�; kÞ-bounded clique instances, the trivial

solution yields an approximation ratio of kþ1
2 .

We now present a polynomial algorithm for ð�; 2Þ-bounded
clique instances. Clearly, an upper bound of nþ 1 is easy to
achieve. By Lemma 6, 2n

3 þ 1 is a lower bound on the
cardinality of any solution. We shall use the following
auxiliary lemma.

Lemma 7. LetG be a ð�; 2Þ-bounded clique instance and let g; g0; g00

be three genotypes of G such that g and g0 share h and g and g00

share �h, where g ¼ h� �h. Then, h has 1 in every position in
which both g and g0 have 2.

Proof. Suppose to the contrary that h has 0 in some position
in which both g and g0 have 2. Hence, �h has 1 in that
position and, thus, cannot be consistent with g00, since
this would imply that the instance is not ð�; 2Þ-bounded,
a contradiction. tu
Note that, for a ð�; 2Þ-bounded clique instance, an

inference path that starts from a given genotype and a
given haplotype is uniquely defined if we terminate its
construction upon encountering the trivial haplotype. An
inference path that is constructed in this manner is said to
avoid the trivial haplotype. Now, for a ð�; 2Þ-bounded clique
instance and a haplotype h, we define a clique inference path
as follows. If h is consistent with a single genotype g, then
its clique inference path is the inference path that starts at g
and avoids the trivial haplotype. If h is consistent with two
genotypes g1 and g2, its clique inference path is created by:
1) computing an inference path with respect to each of the
two genotypes that avoids the trivial haplotype, 2) merging
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Fig. 5. A template for phasing the set of genotypes of an element in the

proof of Theorem 4 using five nontrivial haplotypes.



these paths by adding an edge between g1 and g2, and
3) adding an edge between the two other ends of the paths
if both paths were terminated at the trivial haplotype. Note
that the resulting clique inference path may form a cycle.
This happens if both paths identify, or both terminate at the
trivial haplotype.

Lemma 8. In a ð�; 2Þ-bounded clique instance, any nontrivial
genotype belongs to at most one clique inference cycle.

Proof. By definition, a clique inference cycle contains at
least three genotypes. Let g be a nontrivial genotype and
suppose to the contrary that g occurs in two distinct
cycles. Let ga; gb and gc; gd be its neighbors on each of the
cycles, respectively. Then, there are four haplotypes
ha; hb; hc; hd such that g ¼ ha � hb ¼ hc � hd, ga ¼ ha � �ha,
gb ¼ hb � �hb, gc ¼ hc � �hc, and gd ¼ hd � �hd.

Let s be a nonzero position in g. Then, without loss of
generality, we can assume that ha½s� 6¼ 0 and hc½s� 6¼ 0,
implying that ga and gc are nonzero at position s. Since
the instance is ð�; 2Þ-bounded, and since by construction
g 6¼ ga and g 6¼ gc, we must have ga ¼ gc. We further
claim that ha ¼ hc. Suppose to the contrary that ha 6¼ hc.
Let i be some position at which the two haplotypes differ
and without loss of generality ha½i� ¼ 1. Then, hd½i� ¼ 1,
implying that g; ga, and gd have a 2-entry at position i.
However, ga 6¼ gd since ga ¼ gc, a contradiction. We
conclude that both cycles correspond to the clique
inference path of ha, proving the claim. tu

Lemma 9. The most parsimonious solution for a ð�; 2Þ-bounded
clique instance that contains no clique inference cycles is of
cardinality nþ 1.

Proof. The existence of such a solution is immediate.
Suppose to the contrary that there exists a solution of
smaller cardinality. Construct a graph G on the input
genotypes with edges connecting genotypes that share a
haplotype in that solution. If the trivial haplotype is not
used, then every vertex in the graph has degree 2, so G
must contain a clique inference cycle, a contradiction. If
the trivial haplotype is used, there must be a connected
component of G in which the number of genotypes
exceeds the number of nontrivial haplotypes that are
used to phase them. Hence, this connected component
contains a clique inference cycle, a contradiction. tu

Theorem 10. Parsimony can be solved in polynomial time on a
ð�; 2Þ-bounded clique instance.

Proof. First, observe that in a ð�; 2Þ-bounded clique instance,
the genotypes comprising a clique inference cycle of
length k can be optimally phased using k haplotypes.
The algorithm finds all clique inference cycles in the
Clark-consistency graph; phases them optimally; and
then phases the remaining genotypes using the trivial
haplotype and one additional haplotype for each
remaining genotype. The correctness of the algorithm
follows from Lemmas 8 and 9.

The identification of clique inference cycles relies on
Lemma 7 and is done by iterating the following steps
until all genotype pairs that share some haplotype have
been processed:

1. Choose two genotypes g1; g2 that share some
haplotype.

2. Let h be the haplotype with 1 in position i if and
only if g1½i� ¼ g2½i� ¼ 2.

3. Construct the clique inference path of h.
4. If this is a cycle, add the haplotypes found to the

optimal solution and remove the genotypes found
from consideration. tu

5 BOUNDED TREEWIDTH GRAPHS

A graph G is said to have treewidth k (cf. [2]) if G admits a
cover fXigi2I of its vertices such that: 1) jXij 	 kþ 1 for all
i, 2) for every edge ðg; g0Þ of G, some Xi contains both g and
g0, and 3) the sets Xi can be assigned to nodes i of a rooted
binary tree T ¼ ðI; F Þ such that if j is on a path between i

and k in T , then Xi \Xk � Xj.
In this section, we consider the case when the input

instance gives rise to a Clark-consistency graph with
bounded treewidth. We shall present a polynomial dy-
namic-programming algorithm for such graphs on enumer-
able input instances. We assume that the Clark-consistency
graph is connected, as otherwise we can operate on each
connected component independently.

Theorem 11. There is a polynomial algorithm for PH on
enumerable instances when the Clark-consistency graph has

bounded treewidth.

Proof. Since the input instance is enumerable, there are
OðncÞ haplotypes that are consistent with any genotype
in the input instance (for some constant c). Let G be a
Clark-consistency graph of bounded treewidth for the
input instance. Thus, G admits a cover fXigi2I of its
vertices such that a tree T on the sets Xi has the
properties described above. We give a dynamic pro-
gramming algorithm for PH on G. Let r be the root of T .
For a node v, let v1 and v2 be its two children, and let Xv

denote the set of genotypes assigned to this node. We say
that a multiset of haplotypes H resolves a node v if H ¼
fh1; . . . ; hjXvjg and genotype i in Xv is consistent with hi.

Denote the optimum solution for the subinstance
induced by the genotypes in the subtree rooted at v by
DðvÞ. Denote by Dðv;HÞ the optimum solution to this
subinstance for a multiset H that resolves v.

Clearly, DðrÞ ¼ minH Dðr;HÞ, where H ranges over all
Oðncðkþ1ÞÞ multisets of haplotypes of cardinality jXrj that
resolve r. The following recursive formula can be used to
compute Dðr;HÞ:

Dðr;HÞ ¼ min
H1;H2

fDðr1; H1Þ þDðr2; H2Þ

þ�ðr; r1; r2; H;H1; H2Þg;

where Hi; i ¼ 1; 2 resolves ri and agrees with H on the
haplotypes explaining each genotype in Xr \Xri .
�ðr; r1; r2; H;H1; H2Þ is a correction factor: let x be the
number of haplotypes that are used in phasing Xr1

\Xr2

according to H1 (or H2). Let y be the number of
haplotypes that are used to phase Xr n ðXr1

[Xr2
Þ

according to H. Then, �ðr; r1; r2; H;H1; H2Þ ¼ y� x.
For a leaf v at the base of the recursion, Dðv;HÞ is

defined as the number of distinct haplotypes in the set
composed of the haplotypes in H and their mates (with
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respect to Xv). Thus, DðrÞ can be computed using a
bottom-up traversal of the tree T in polynomial time. tu

Lemma 12. Let G be the Clark-consistency graph of an
enumerable input instance. Any k edges whose removal makes
G of bounded treewidth can be used to approximate parsimony
to within an additive term of k.

Proof. Suppose we are given a set of k edges, whose

removal makes G of bounded treewidth. By removing

those edges we can apply the above dynamic program-

ming algorithm to the resulting graph. Since each

additional pair of genotypes that share a haplotype can

reduce the number of required haplotypes by at most 1,

we obtain a solution with at most optþ k haplotypes,

where opt is the size of an optimum solution. tu

6 BIPARTITE GRAPHS

In this section, we study the parsimony problem when the

Clark-consistency graph is bipartite. We note that this

implies that each haplotype can be shared by at most two

genotypes. Hence, the lower bound on the cardinality of

any solution is the number of genotypes n. We prove that

parsimony haplotyping on bipartite graphs is hard to

approximate even in the case that the longest inference

path is of length 2. We complement this result by giving a

polynomial algorithm for the case that the longest inference

path is of length 1 and an approximation algorithm for

paths of length greater than 1.

Theorem 13. Parsimony haplotyping is NP-hard when the
Clark-consistency graph is bipartite and the longest inference
path is of length 2.

Proof. We reduce from 3DM3. Consider a 3DM3 instance

with disjoint sets X;Y ; Z containing � elements each and

a set C ¼ fc0; . . . ; c��1g of � triples in X � Y � Z. We

construct a PH instance with 3� þ 3� genotypes and 6� þ
5� SNPs.

For each element xi 2 X, yi 2 Y , or zi 2 Z, we
construct one genotype, whose nonzero entries are (see
Fig. 6):

. xi½i� ¼ 2; xi½3� þ i� ¼ 1; xi½6� þ 5j� ¼ 2 for every j
such that xi 2 cj.

. yi½� þ i� ¼ 2; yi½4� þ i� ¼ 1; yi½6� þ 5jþ 1� ¼ 2 for
every j such that yi 2 cj.

. zi½2� þ i� ¼ 2; zi½5� þ i� ¼ 1; zi½6� þ 5jþ 2� ¼ 2 for
every j such that zi 2 cj.

For each triple cj 2 C, we create three genotypes,
whose nonzero entries are:

. cxj ½3� þ i� ¼ 2 for every i such that xi 2 cj;
cxj ½6�þ5j� ¼ 1; cxj ½6�þ5jþ 2� ¼ cxj ½6� þ 5jþ 3� ¼ 2.

. cyj ½4�þi� ¼ 2 for every i such that yi 2 cj; cyj ½5� þ i�
¼ 2 for every i such that zi 2 cj; cyj ½6�þ5jþ 1� ¼ 1;

cyj ½6� þ 5jþ 2� ¼ cyj ½6� þ 5jþ 4� ¼ 2.

. czj ½5� þ i� ¼ 2 for every i such that zi 2 cj¼ 1;

czj ½6� þ 5j� ¼ czj ½6� þ 5jþ 1� ¼ 2.

The graph is bipartite as the genotypes czj , xi, yi can
be assigned to one side of the bipartition, and the
genotypes zi; c

x
j ; c

y
j can be assigned to the other side.

The only possibilities for haplotype sharing between
genotypes are: 1) � with c� for � 2 fx; y; zg and 2) cx or
cy with cz. By construction of columns 6� þ 5j and
6� þ 5jþ 1, if czj shares a haplotype with some zi, it
cannot share its complement with cxj or cyj . Thus, the
longest haplotype inference path has length 2.

Let A be the resulting genotype matrix. We claim that
A admits a phasing of size 6� þ 4�� ! if and only if C
has a matching of size !. The proof is similar to that in
Theorem 1 using the phasing templates given in Fig. 7.tu

Corollary 3. Parsimony haplotyping is APX-hard when the
Clark-consistency graph is bipartite and the longest inference
path is of length 2.

We note that since a haplotype can be shared by at most
two genotypes, any phasing will give a 2-approximation to
PH. The following two lemmas improve on this trivial ratio.

When the longest inference path is of length 1, one can
reduce PH to a maximum matching problem, giving rise to
the following result:

Observation 1. If the length of the longest inference path is 1,
then parsimony haplotyping can be optimally solved in
polynomial time.

For general bipartite graphs, we can use this fact to
devise a 1.5-approximation algorithm: 1) Find a maximum
matching in the Clark-consistency graph, 2) phase each
genotype pair in the matching using a shared haplotype,
and 3) arbitrarily phase the remaining genotypes.

Lemma 14. The above algorithm gives a 1.5-approximation for PH
on instances that induce a bipartite Clark-consistency graph.

Proof. Consider an instance of PH with a bipartite Clark-
consistency graph G. Let m be the size of a maximum
matching in G and let n be the number of genotypes. By
definition, the solution returned by the approximation
algorithm will have size 2n�m. Let T be an optimum
solution to the PH instance and let H be the subgraph of
G which contains an edge between two genotypes if and
only if they share a haplotype in the solution. Denote by
e the number of edges in H, i.e., e is the number of
genotype pairs that share a haplotype in this solution.
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Fig. 6. Gadget for the reduction in the proof of Theorem 13.



Then, jT j ¼ 2n� e, and the approximation guarantee is
2n�m
2n�e 	 2n�m

2n�2m 	 3
2 . The first inequality follows from the

fact that each vertex has degree at most 2 in H, and the
second inequality follows from the fact that 2m 	 n, and
that the worst bound is obtained for n ¼ m=2. tu

7 CONCLUSIONS

In this paper, we have studied the complexity and

approximability of parsimony haplotyping. We have shown

that the problem is APX-hard even in very restricted cases.

On the positive side, we have introduced a characterization

of input instances by the Clark-consistency graphs they

induce, and identified classes of these graphs with specific

structure of haplotype sharing, which admit polynomial or

constant-approximation algorithms.

Common methods for solving parsimony haplotyping

include integer programming [12], [3], which is often solved

using a branch-and-bound approach, and direct branch-

and-bound methods [27]. Our results may be of use when

incorporated within these branch-and-bound procedures,

by terminating when the examined subinstance has the

characteristics of one of the problems studied here. The

subinstance can then be efficiently solved using the

algorithms we have described.
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Fig. 7. The three matching genotypes corresponding to a triple in the proof of Theorem 13 and alternative phasings of these genotypes. P4 show a

minimal phasing with four haplotypes, none of which can be shared with the element genotypes. P6 shows a phasing using six haplotypes, three of

which can be shared with the element genotypes.
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