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Abstract

Background: Recent technological advances have enabled high-throughput measurements of
protein-protein interactions in the cell, producing large protein interaction networks for various
species at an ever-growing pace. However, common technologies like yeast two-hybrid may
experience high rates of false positive detection. To combat false positive discoveries, a number of
different methods have been recently developed that associate confidence scores with protein
interactions. Here, we perform a rigorous comparative analysis and performance assessment
among these different methods.

Results: We measure the extent to which each set of confidence scores correlates with similarity
of the interacting proteins in terms of function, expression, pattern of sequence conservation, and
homology to interacting proteins in other species. We also employ a new metric, the Signal-to-
Noise Ratio of protein complexes embedded in each network, to assess the power of the different
methods. Seven confidence assignment schemes, including those of Bader et al., Deane et al., Deng
et al., Sharan et al., and Qi et al., are compared in this work.

Conclusion: Although the performance of each assignment scheme varies depending on the
particular metric used for assessment, we observe that Deng et al. yields the best performance
overall (in three out of four viable measures). Importantly, we also find that utilizing any of the
probability assignment schemes is always more beneficial than assuming all observed interactions
to be true or equally likely.

co-immunoprecipitation (co-IP) screens [2] has led to the

Background
elucidation of large-scale protein interaction networks in

Systematic elucidation of protein-protein interaction net-

works will be essential for understanding how different
behaviors and protein functions are integrated within the
cell. Recently, the advent of high-throughput experimen-
tal techniques like yeast two-hybrid (Y2H) assays [1] and

different species, including S. cerevisiae (yeast) [2-5], D.
melanogaster (fly) [6], C. elegans (worm) [7] and H. sapiens
(human) [8,9]. These networks, while incorporating
thousands or tens of thousands of measured interactions,

Page 1 of 10

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/7/360
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16872496
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:360

have so far only partially covered the complete repertoire
of protein interactions in an organism, and they have
been determined to contain a significant number of false-
positive interactions depending on the study [10]. How-
ever, recent years have also seen an increase in the accu-
mulation of other sources of biological data such as whole
genome sequence, mRNA expression, protein expression
and functional annotation. This is particularly advanta-
geous as some of these data sets can be utilized to rein-
force true (physical) protein interactions while
downgrading others. For instance, biologically relevant
protein interactions have been shown to have high mRNA
expression correlation for the proteins involved [11].

As a result, many integrative bioinformatic approaches
have been developed to unearth true protein-protein
interactions. These can be mainly divided into two catego-
ries: (1) methods that assign reliability measurements to
previously observed interactions; and (2) methods that
predict interactions ab initio. For category (1), Deane et al.
[12] and Deng et al. [13] introduced methods to tackle the
problem of assigning reliabilities to interactions using
similarity in mRNA expression profiles. Subsequently,
Bader et al. [14] used additional features of interacting
proteins, including functional similarity and high net-
work clustering [15], to assign confidence scores to pro-
tein interactions. For category (2), Marcotte et al. [16], von
Mering et al. [17], Myers et al. [18] and Jansen et al. [19]
were among the first to predict new protein interactions
by incorporating a combination of different features like
high mRNA expression correlation, functional similarity,
co-essentiality, and co-evolution. These schemes calculate
a log-likelihood score for each interaction. As yet another
approach in this category, Qi et al. [20] predicted new pro-
tein interactions using a method based on random forests.
Presumably, the relative performance of each of these
approaches versus the others involves a combination of
factors such as the types of evidence used as inputs, the
efficacy of each classification algorithms, and the sets of
true and false interactions used as gold standards during
training. Very recently, a second work by Qi et al. [21]
studied the effect of the underlying classification algo-
rithm by comparing the accuracies of different classifiers
such as naive Bayes, logistic regression, and decision trees.

Here, we perform a benchmarking analysis to evaluate the
published interaction confidence schemes versus one
another. Rather than isolate every factor that could influ-
ence a scheme's performance, we take a practical approach
and evaluate the overall accuracy of each set of confidence
scores as reported in the literature and available from the
authors' websites. We limit ourselves to works that have
assigned confidence scores to a common set of experi-
mentally-observed interactions in yeast; this includes all
of the category (1) schemes above, as well as the Qi. et al.
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scheme from category (2). The remaining ab initio
schemes are concerned with predicting new interactions
and do not assign confidences to those interactions that
have already been experimentally observed. We also
assess the performance of a "null hypothesis", a uniform
scheme that considers the same probability for all interac-
tions. To compare the quantitative accuracy of the meth-
ods, we examine the correlations between the confidence
estimates and different biological attributes such as func-
tion and expression. As a further comparison criterion, we
apply the signal processing concept of 'Signal-to-Noise
Ratio' (SNR) to evaluate the significance of protein com-
plexes identified in the network based on the different
schemes [22]. The discovery of these complexes depends
on the connectivity of the interaction network which, in
turn, is influenced by the underlying interaction probabil-
ities [22,23].

Results

Interaction confidence assignment schemes

Although large-scale protein interaction networks are
being generated for a number of species, S. cerevisiae is
perhaps the best studied among them and is associated
with the largest variety and quantity of protein interaction
data. Hence, most of the interaction probability schemes
have been developed using the yeast protein interaction
network as a guide. As the probability schemes were pre-
viously computed for different subsets of yeast protein-
protein interactions, we compiled a test set of 11,883
yeast interactions common to all schemes. These yeast
interactions were derived from both yeast two-hybrid
[4,5] and mass-spectrometry-based [2,3] screens.

In total, we considered seven interaction probability
assignment schemes, including Bader et al. [14] (2
schemes), Deane et al. [12], Deng et al. [13], Sharan et al.
[23], Qi et al. [20] and a default scheme, where all interac-
tions are assigned the same probability. Bader et al., Sha-
ran et al. and Qi et al. have assigned specific probabilities
to every yeast interaction, while Deane et al. and Deng et
al. have grouped yeast interactions into high/medium/
low confidence groups. All of the above schemes define
and use some set of gold standard positive and negative
interaction examples for the probability estimation.

Bader et al. (BADER_LOW/BADER_HIGH)

As a gold standard positive training data set, Bader et al.
[14] used interactions determined by co-IP, in which the
proteins were also one or two links apart in the Y2H net-
work. The negative training data set was selected from
interactions reported either by co-IP or Y2H, but whose
distance (after excluding the interaction) was larger than
the median distance in Y2H or co-IP respectively. Using
these training data, they constructed a logistic regression
model that computes the probability of each interaction
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based on explanatory variables including data source,
number of interacting partners, and other topological fea-
tures like network clustering. We refer to this scheme as
Bader et al. (low) or BADER_LOW in our analysis.

Initially, the authors used measures based on Gene Ontol-
ogy (GO) [24] annotations, co-expression, and presence
of genetic interactions as measures to validate their data.
However, they also combined these measurements into
the probability score to bolster their confidence of true
interactions. We consider these new confidence scores in
our analysis as Bader et al. (high) or BADER_HIGH.

Deane et al. (DEANE)

Deane et al. [12] estimated the reliability of protein-pro-
tein interactions using the expression profiles of the inter-
acting partners. Protein interactions observed in small-
scale experiments that were also curated in the Database
of Interacting Proteins (DIP) [25] were considered as the
gold standard positive interactions. As a gold standard
negative, they randomly picked protein pairs from the
yeast proteome that were not reported in DIP. The authors
used this information to compute the reliabilities of
groups of interactions (obtained from an experiment or a
database). Higher reliabilities were assigned to groups
whose combined expression profile was closer to the gold
standard positive than the gold standard negative interac-
tions. Specifically, reliabilities were assigned to the whole
DIP database, the set of all protein interactions generated
in any high-throughput genome screen, and protein inter-
actions generated by Ito et al. [4].

Deng et al. (DENG)

Deng et al. [13] estimated the reliabilities of different
interaction data sources in a manner similar to Deane et
al. [12]. They separately considered experiments that
report pair-wise interactions like Y2H and those that
report complex membership like mass spectrometry.
Curated pair-wise interactions from the literature and
membership in protein complexes from Munich Informa-
tion center for Protein Sequences (MIPS) [26] were used
as the gold standard positive set in each case. Randomly
chosen protein pairs formed the gold standard negative
data set. Reliabilities for each data source were computed
using a maximum likelihood scheme based on the expres-
sion profiles of each data set. The authors evaluated relia-
bilities for Y2H data sources like Uetz et al. [5] and Ito et
al. [4], and protein complex data sources like Tandem
Affinity Purification (TAP) [2] and High-throughput Mass
Spectrometric Protein Complex Identification (HMS-PCI)
[3]. In addition to assigning reliabilities to each dataset,
the authors also provided a conditional probability
scheme to compute probabilities for groups of interac-
tions observed in two or more data sources. This calcula-
tion results in assigning a high probability (0.99) to yeast
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interactions observed in more than 1 data source. We use
the probabilities generated by this method for our com-
parative analysis.

Sharan et al. (SHARAN)

Recently, Sharan et al. [23] also implemented an interac-
tion probability assignment scheme similar to the one
proposed by Bader et al. The scheme assigned probabili-
ties to interactions using a logistic regression model based
on mRNA expression, interaction clustering and number
of times an interaction was observed in independent
experiments. Here, we use a modification of this scheme,
assigning probabilities to interactions based only on
direct experimental evidence. Specifically, interactions
with at least two literature references or those that had a
distance < 2 in both the co-IP and Y2H networks were
defined as the gold standard positives. Conversely, pro-
teins at a distance > 4 in the entire network (after remov-
ing the interaction in question) were defined as the gold
standard negatives. Binary variables were used to denote
whether the interaction was reported in a co-IP data set,
Y2H data set, a small-scale experiment or a large-scale
experiment. Interaction probabilities were then estimated
using logistic regression on the predictor parameters sim-
ilarly to Bader et al. [14].

Qietal (Ql)

In this study, the authors used interactions that were
observed in small-scale experiments and reported by
either DIP or Bader et al. as their gold standard positive
training data [20]. Randomly picked protein pairs were
used as the gold standard negative training data. The
method incorporates direct evidence such as the type of
experiment used to generate the data and indirect evi-
dence like gene expression, existence of synthetic lethal
interactions, and domain-domain interactions to con-
struct a random forest (a collection of decision trees). The
resulting forest is then used to calculate the probability
that two proteins interact.

Equal probabilities (EQUAL)

Finally, we also considered the case in which all observed
interactions were considered to be equally true. We refer
to this case as EQUAL in the analysis.

A summary of all attributes used as inputs to the different
probability schemes is provided in Table 1. It should be
noted that even though the different probability schemes
utilize some of the same types of inputs (e.g., experiment
type, expression similarity), they may incorporate these
inputs in different ways. For instance, both SHARAN and
DENG use "experiment type" as input, but SHARAN
explicitly includes each type of experiment as a separate
indicator variable in its logistic regression function, while
DENG pools data from each experimental type and

Page 3 of 10

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:360

http://www.biomedcentral.com/1471-2105/7/360

Table I: Summary of input attributes for the different probability schemes.

Prob. Scheme Experiment Number of Protein- Gene/ Interaction SL* GO* DDI* Gene Fusion/Co-
Type Experimental DNA Protein Clustering occur/Nbrhd*
Observations binding Expression
BADER_LOW X X X
BADER_HIGH X X X X X X
DEANE X X
DENG X X X
SHARAN X X
Ql X X X X X X X X
EQUAL

*SL: Synthetic Lethal; GO: Gene Ontology; DDI: Domain-domain Interactions; Nbrhd: Neighborhood

assigns a single confidence level to the interactions in each
pool.

We also compared global statistics such as the average and
median probability assigned by each scheme (see Addi-
tional File 1). We found that most probability schemes
had an average probability in the range of [0.3-0.5]. In
contrast, Deane et al. (DEANE) had a very high average
and median probability: over half of the interactions in
the test set were assigned a probability of 1. We also com-
puted Spearman correlations among the different proba-
bility schemes to measure their levels of inter-dependency
(Table 2). The maximum correlation was seen between
BADER_LOW and BADER_HIGH, as might be expected
since both schemes were reported in the same study and
BADER_HIGH was derived from BADER_LOW. On the
other hand, Qi et al. (QI) had very low Spearman correla-
tion with any of the probability schemes. The low correla-
tion may reflect an inherent difference between schemes
that assign probabilities to experimentally observed inter-
actions and ones that predict protein interactions ab initio.
The probabilities assigned by the schemes can be obtained
from the Supplementary website [27].

Quality assessment

One of the most objective ways to assess the performance
of the different confidence assignment schemes would be
to compare their success at correctly classifying a gold
standard set of true protein interactions. However, all of
the schemes considered in this analysis had already used
the available gold standard sets of known yeast interac-

Table 2: Correlation of different probability schemes*.

tions in the training phase of their classifiers and, conse-
quently, assigned high confidence scores to them. As an
alternative approach, we employed five measures that had
been shown to associate with true protein interactions
[11,22,28,29] to gauge the performance of the schemes.
One caveat of this approach is that, in some cases, one of
the measures used to assess a scheme's performance had
already been used (in full or in part) as an input to assign-
ing its probabilities. To avoid circularity, this measure was
used only for gauging the performance of the remaining
schemes. For each of the five measures, two ways were
used to estimate the level of association: Spearman corre-
lation and weighted average (see Methods). Importantly,
by using the Spearman correlation coefficient, we are in
fact comparing how the schemes rank the interactions,
not the absolute scores that are assigned. Note that the
EQUAL probability scheme results in Spearman correla-
tion of 0, by definition.

Presence of conserved interactions in other species

Presence of conserved interactions across species is
believed to be associated with biologically meaningful
interactions [29]. As our benchmark, we used yeast pro-
tein interactions that were conserved with measured C.
elegans and D. melanogaster interactions obtained from the
Database of Interacting Proteins (DIP). An interaction was
considered conserved if homologs of the interacting yeast
proteins were also interacting in another species.
Homologs were based on amino-acid sequence similarity
computed using BLAST [30], thus allowing a protein to
possibly match with multiple proteins in the opposite

BADER_HIGH DEANE DENG SHARAN Ql
BADER_LOW 0.923 0.655 0.633 0.626 0.095
BADER_HIGH 0.672 0.644 0.665 0.151
DEANE 0.718 0.847 -0.090
DENG 0.680 0.185
SHARAN -0.013

*p-values of all correlation measurements were significant (p-value < 2 x 10-16),
Page 4 of 10

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:360

species (if interacting yeast proteins were homologous to
any pair of homologs with an observed interaction, the
yeast interaction was counted as conserved). In particular,
we allow interactions whose interacting proteins are
themselves homologs, but filter cases where both the
interacting proteins pointed to the same protein in the
other species. We evaluated the weighted average and
Spearman correlation between the probability assignment
for each yeast interaction and the number of conserved
interactions across worm and fly (0, 1, or 2). We used an
E-value cut-off of 1 x 1010 to make the homology assign-
ments (Table 3). We observed that SHARAN and
BADER_HIGH had the highest weighted average and
Spearman correlation. Not surprisingly, EQUAL had the
lowest weighted average. Note that the conserved interac-
tions test is a very strong filter for true interactions as it
heavily depends on the level of completeness of the inter-
action networks of other species being considered. How-
ever, as the underlying set of interactions is the same
across the different probability schemes, this filter affects
all schemes similarly.

Expression correlation

Yeast expression data for ~790 conditions were obtained
from the Stanford Microarray Database (SMD) [31]. For
every pair of interacting proteins, we computed the Pear-
son correlation coefficient of expression. We then calcu-
lated the Spearman correlation and weighted average
between the expression correlation coefficients of interact-
ing proteins and their corresponding probability assign-
ments in the different schemes (see Table 3 and
Additional File 2). We found significant association
between expression correlations and probabilities in the
case of BADER_HIGH, BADER_LOW, QI and DENG. This
result is expected as these schemes, with the exception of
BADER_LOW, utilize expression similarity for interaction
probability calculation. Surprisingly, DEANE probabili-
ties showed very little correlation with expression, even
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though mRNA expression profiles were used as input in
the prediction process reflecting the difference in the way
expression similarity is incorporated in this method. In
particular, DEANE is the only method where expression
similarity between two interacting proteins is taken into
account as the Euclidean distance between their expres-
sion profiles versus other methods which incorporated
the Pearson correlation coefficient of expression. On the
other hand, BADER_LOW had a higher Spearman correla-
tion than SHARAN, though both had very similar
weighted averages and did not utilize expression data in
the training phase.

Gene Ontology (GO) similarity

As a first measure, we adopted the common notion that
two interacting proteins are frequently involved in the
same process and hence should have similar GO assign-
ments [24]. The Gene Ontology terms are represented
using a directed acyclic graph data structure in which an
edge from term 'a' to term 'b' indicates that term 'b' is
either a more specific functional type than term 'a', or is a
part of term 'a'. As a result, terms that appear deeper in the
graph are more specific. Moreover, specific terms also
have fewer proteins assigned to them or their descendants.

Let "P;" and "P;" be two proteins that have been observed
to interact with each other. To measure their functional
similarity, we evaluated the size (number of proteins
assigned to the term), represented as "S;", of the deepest
common GO term assignment (deepest common ances-
tor in graph) shared between them. Thus, a smaller value
of S;; indicates a greater functional similarity between P;
and P;. In addition, we also found that known yeast inter-
actions generally have lower values for §;; than random
background (see Additional File 3). To ensure that higher
values of our GO measure correspond to higher perform-
ance (as is the case for other quality assessment metrics

Table 3: Correlation of interaction probabilities with the GO similarity measure, mRNA expression correlation and interaction

conservation.*

Prob. Scheme GO Annotation

Expression Correlation

Interaction Conservation

SC WA WA SC# WA#

BADER_LOW 0.424 -5.850 0.185 0.494 0.132 0.147
BADER_HIGH 0.501 -5.680 0.223 0.503 0.136 0.158
DEANE 0.385 -5.910 0.016 0.481 0.098 0.139
DENG 0.490 -5.620 0.185 0.511 0.102 0.147
SHARAN 0.471 -5.710 0.050 0.492 0.134 0.158
Ql 0.425 -6.040 0.269 0.495 0.080 0.125
EQUAL - -6.320 0.482 - 0.102

*Bold values indicate the scheme that performs the best. Italicized values indicate potential circularity, i.e., schemes that use GO annotations or
mRNA expression profiles for confidence scoring that are similar to those used here for comparative assessment. P-values for all the Spearman
correlation measurements are significant. SC: Spearman Correlation; WA: Weighted Average.

# All measurements were done at an E-value cut-off of | x [0-10,
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below), we use the negative of S;; (or -S;) to represent the
overall GO similarity.

Table 3 shows the relationship between GO similarity and
the interaction probabilities for each scheme. Of the
schemes that did not use functional annotations as
inputs, DENG and SHARAN both had a very high Spear-
man correlation with GO (with DENG slightly higher
than SHARAN). However, one potential concern was that
GO functional assignments could incorporate evidence of
co-expression which was used as an input by the DENG
scheme. This potential circularity can be addressed by use
of the partial correlation coefficient to factor out the
dependency of GO on co-expression (see Additional File
4). However, the partial correlation is almost certainly an
overcorrection since GO similarity and co-expression
(and in fact any two lines of evidence) are expected to
have some correlation if they are both predictive of true
interactions. Regardless, with or without the correction,
DENG and SHARAN scored within 2% of each other; thus
the two schemes are practically indistinguishable by the
GO metric.

Signal-to-noise ratio of protein complexes

Most cellular processes involve proteins that act together
by assembling into functional complexes. Several meth-
ods [23,32-35] have been developed to identify com-
plexes embedded within a protein interaction network, in
which a complex is typically modeled as a densely-con-
nected protein sub-network. Recently, we showed that the
quality of these identified protein complexes could be
estimated by computing their signal-to-noise ratio (SNR),
a standard measure used in information theory and signal
processing to assess data quality (see Methods) [22].
Essentially, SNR evaluates the density of complexes found
in the protein interaction network against a randomized
version of the same network.

As the SNR is independent of the number of complexes
reported, its value can be directly compared across the dif-
ferent probability schemes. For discovery of protein com-
plexes, we applied a previously-published algorithm [23]
which includes interaction probabilities in the complex
identification process. SNR was then computed on the set
of complexes identified by each probability scheme.
Results are shown in Table 4; out of all of the schemes,
DENG had the highest SNR of protein complex detection.

Conservation rate coherency

Interacting proteins have been shown to evolve at similar
rates, probably due to selection pressure to maintain the
interaction over time [28]. For every pair of interacting
proteins, P;and P;, let "r;" and "r;" be their respective rates
of evolution. We then computed a "conservation rate
coherency score" (CR;) as the negative absolute value of
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Table 4: Associations of conservation rate coherency scores and
SNR with interaction probabilities.

Prob. Scheme Conservation Coherency (SC¥) SNR
BADER_LOW 0.090 0.734
BADER_HIGH 0.104 0.735
DEANE 0.113 0.537
DENG 0.141 0.950
SHARAN 0.126 0.742
Ql 0.080 0.706
EQUAL -- 0.657

* SC: Spearman Correlation. Bold values indicate the scheme which
performs the best. Note that conservation scores based on weighted
averages were omitted as they were very similar across the different
confidence assignment schemes.

the difference between the evolutionary rates of the two
corresponding genes: CR;;= -| 1; - 1; |. The negative absolute
value was used to ensure that higher values represent
higher performance, consistent with other metrics.

Evolutionary rates were obtained from Fraser et al. [36]
and estimated using nucleotide substitution frequencies.
We calculated the Spearman correlation between the val-
ues of CR for the interacting proteins and their corre-
sponding probability assignments in the different
schemes (see Table 4). For all probability assignment
schemes we obtained a statistically significant correlation
(p-value < 0.05) between the conservation rate coherency
scores and the corresponding probabilities, indicating
that proteins with high probability interactions tend to
have similar conservation rates. The highest correlation
was obtained for DENG.

Discussion

A brief review of the performance results suggests that the
DENG method (Deng et al.) emerges as the clear winner,
with top scores in three out of four non-circular quality
metrics. Comprising a 'second tier' are BADER_HIGH,
BADER_LOW (the two Bader methods) and SHARAN,
which perform very similarly across most metrics with
some differences in conservation coherency or gene
expression (for which SHARAN performs better or worse,
respectively). BADER_LOW, which considers experiment
type and interaction clustering as inputs, has a higher
expression score than SHARAN, which considers experi-
ment type only, implying that interaction clustering helps
capture expression similarity. Interestingly,
BADER_HIGH, which incorporates more input attributes
than BADER_LOW or SHARAN, does not have substan-
tially higher rankings. Thus, in this case, adding more
inputs to a probability assignment scheme does not
appear to strongly enhance its quality.

As for the remaining schemes with lower overall perform-

ance (DEANE and Q]), it is interesting to note that these
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were arguably the least and most sophisticated schemes,
respectively. The DEANE method relied on only a single
evidence type for assigning confidences, that of gene
expression, whereas it appears that other factors may have
been more informative (Table 1). In contrast to DEANE,
QI had the largest number of inputs for assigning confi-
dences and, among these, included data on both co-
expression and experiment type. However, it is well
known that classifier accuracy can be degraded by includ-
ing many irrelevant input variables [37], and perhaps this
is the reason for QI's lower performance. As an alternative
explanation, in Qi et al's evaluation of classification
schemes, they concluded that their method was very suc-
cessful in predicting co-complex membership, but per-
formed poorly when considering physical interactions
[21]. In our analysis, all interactions (even co-complex
membership) were treated as pair-wise protein interac-
tions, and this assumption may have contributed to the
poor performance of Qi et al. Certainly, their classification
method was among the most sophisticated of the schemes
that we evaluated, and as such it is worthy of future explo-
ration (perhaps with different sources of input data)
regardless of its performance in the present study.

Finally, EQUAL almost always scored lowest, regardless of
quality metric. Thus, utilizing any probability scheme is
better than considering all observed interactions to be true
or equally probable.

Beyond these broad rankings, is it possible to synthesize
data from five largely independent metrics to arrive at an
overall quantitative index of performance? As one
approach, we normalized the scores for each metric as a
fraction of the best score achieved within that metric over
all confidence assignment schemes (i.e., for each metric,
the highest score was fixed to 1 and the scores of the
remaining schemes were converted to fractional values
between 0 and 1). Table 5 summarises the fractional
scores for the six probability schemes and five quality
assessment measures. Note that expressing scores as frac-
tional values is an intermediate normalization which pre-
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serves the score distribution but compresses its range;
although potentially more informative than the non-par-
ametric analysis above based only on ranks, it must also
be interpreted with more caution. However, in this case,
the fractional scores reinforce the findings reported above
based on rank.

Conclusion

We have compared and contrasted seven probability
assignment schemes for yeast protein interactions. Sur-
prisingly, Deng et al. performs significantly better than
others while being one of the least sophisticated. It assigns
discrete probability scores to large groups of interactions
rather than to individuals, and it inputs just two lines of
evidence, experiment type and expression similarity,
rather than many. Generalizing these observations, more
complex approaches are so far unable to outperform sim-
pler variants. Thus, we arrive at a somewhat unexpected
conclusion: At least in interaction confidence assignment,
sometimes less means more.

Methods

GO databases

The Gene Ontology annotations for yeast proteins were
obtained from the July 5th, 2005 download of the Saccha-
romyces Genome Database (SGD) [38]; the graph of rela-
tions between terms was obtained from the Gene

Ontology consortium http://www.geneontology.org/.

Weighted average

N
Db Em;

The weighted average is given by WA = —ile

pbi
i=1

, where

p; is the probability of a given interaction and m; is the
value of one of the five measures for the interaction.

Table 5: Fractional scores of the confidence assignment schemes in each of the five quality measures®.

Probability Scheme Gene Ontology Interaction Gene Expression SNR Conservation
(SC) Conservation (SC at (SC) Coherency (SC)
| x 10-10)
DENG: Deng et al. 1.00 0.76 - 1.00 1.00
BADER_HIGH: Bader et al. (high) - 1.00 - 0.77 0.74
BADER_LOW: Bader et al. (low) 0.86 0.98 1.00 0.77 0.64
SHARAN: Sharan et al. 0.96 1.00 0.27 0.78 0.89
DEANE: Deane et al. 0.78 0.73 - 0.57 0.80
Ql: Qietal. -- 0.58 -- 0.74 0.57

*Fractional scores are between [0,1] with | performing the best (indicated in bold for each measure). Cells with a dash (-) indicate circularity, i.e.,
the measures used as (full or partial) input to the corresponding probability schemes. SC: Spearman Correlation; SNR: Signal to Noise Ratio.
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Signal to noise ratio (SNR)

To compute SNR, a search for dense interaction com-
plexes is initiated from each node (protein) and the high-
est scoring complex from each is reported. This yields a
distribution of complex scores over all nodes in the net-
work. A score distribution is also generated for 100 rand-
omized networks, which have identical degree
distribution to the original network. SNR is computed
using these original and random score distributions (rep-
resenting signal and noise, respectively) according to the
standard formula [39] using the root-mean-square (rms):

¥,
where rms(x;---xy ) = Hle

i=1

rms(original complex scores)

SNR =log;q ,
rms(random complex scores)

where M denotes the total number of complexes (in this
case, equal to the number of nodes) and x; represents the
score of an individual complex.
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Additional material

Additional File 1

Global properties of the probability assignment schemes. Shows properties
like average and median probabilities.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-360-S1.doc]

Additional File 2

Correlation of interaction probabilities with mRNA expression correlation.
Ribosomal components are among the most co-expressed genes, and could
potentially lead to the observed relative importance of co-expression data.
To check for the effect of ribosomal proteins, we filtered the yeast interac-
tion set in our analysis to remove all ribosomal proteins and calculated the
correlation between co-expression and interaction probability. These
results are shown in Additional Table 2. The numbers in the brackets rep-
resent the values of Spearman correlation coefficient and weighted aver-
age after removing the ribosomal proteins from the interaction data. We
observe that removing the ribosomal proteins does not change the values
significantly.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-360-S2.doc]

http://www.biomedcentral.com/1471-2105/7/360

Additional File 3

Histograms of GO similarity scores. We evaluated the GO similarity
scores for known yeast interactions reported in the MIPS database [26)].
The histogram of the scores is shown in Additional Figure 1A. We also
generated a background distribution by computing the GO similarity
scores for 1,000 random interactions (Additional Figure 1B). These ran-
dom interactions were generated by picking pairs of proteins randomly
from the set of interacting proteins in yeast. It is evident from the two fig-
ures that true proteins interactions (i.e known yeast interactions reported
in MIPS) generally have lower GO similarity scores than the background.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-360-S3.doc]

Additional File 4

Spearman partial correlations for schemes using expression as input.
Spearman Partial Rank Correlation Coefficient. The Spearman partial
rank correlation coefficient between two random variables A and X, given
the fact that both A and X are correlated to random variable Y, denotes
the correlation between A and X, when Y is kept constant. It is calculated

TAX —TxyTay
2 2
\/(1 =1y )J(1=7Tay)

represent the Spearman correlation coefficients between A and X, X and
Y, and, A and Y respectively. The significance level is given by

as follows: Taoxy = Here, 1,5, Txyand 1,y

1+ TAX Y

Duxy =1/2J N —41In| ———— | D,x yhas a normal dis-

! 1- TAX,Y
tribution with zero mean and variance one. N represents the size of the
data set.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-360-S4.doc]
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