
INCOMPLETE DIRECTED PERFECT PHYLOGENY∗

ITSIK PE’ER† , TAL PUPKO‡ , RON SHAMIR§ , AND RODED SHARAN¶

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 3, pp. 590–607

Abstract. Perfect phylogeny is one of the fundamental models for studying evolution. We
investigate the following variant of the model: The input is a species-characters matrix. The char-
acters are binary and directed; i.e., a species can only gain characters. The difference from standard
perfect phylogeny is that for some species the states of some characters are unknown. The question
is whether one can complete the missing states in a way that admits a perfect phylogeny. The prob-
lem arises in classical phylogenetic studies, when some states are missing or undetermined. Quite
recently, studies that infer phylogenies using inserted repeat elements in DNA gave rise to the same
problem. Extant solutions for it take time O(n2m) for n species and m characters. We provide
a graph theoretic formulation of the problem as a graph sandwich problem, and give near-optimal
Õ(nm)-time algorithms for the problem. We also study the problem of finding a single, general solu-
tion tree, from which any other solution can be obtained by node splitting. We provide an algorithm
to construct such a tree, or determine that none exists.

Key words. perfect phylogeny, incomplete data, graph sandwich, evolution

AMS subject classifications. 05C85, 05C50, 92D15

DOI. 10.1137/S0097539702406510

1. Introduction. When studying evolution, the divergence patterns leading
from a single ancestor species to its contemporary descendants are usually modeled by
a tree structure, called phylogenetic tree, or phylogeny. Extant species correspond to
the tree leaves, while their common progenitor corresponds to the root. Internal nodes
correspond to hypothetical ancestral species, which putatively split up and evolved
into distinct species. Tree branches model changes through time of the hypothetical
ancestor species. The common case is that one has information regarding the leaves,
from which the phylogenetic tree is to be inferred. This task, called phylogenetic re-
construction (cf. [8]), was one of the first algorithmic challenges posed by biology, and
the computational community has been dealing with problems of this flavor for over
three decades (see, e.g., [13]).

The character-based approach to tree reconstruction describes extant species by
their attributes or characters. Each character takes on one of several possible states.
The input is represented by a matrix A, where aij is the state of character j in

∗Received by the editors April 29, 2002; accepted for publication (in revised form) December
19, 2003; published electronically March 23, 2004. Portions of this paper appeared as Incomplete
directed perfect phylogeny, in Proceedings of the Eleventh Annual Symposium on Combinatorial
Pattern Matching, Lecture Notes in Comput. Sci. 1848, Springer-Verlag, Berlin, 2000, pp. 143–153.
Other parts appeared as On the generality of phylogenies from incomplete directed characters, in
Proceedings of the Eighth Scandinavian Workshop on Algorithm Theory, Lecture Notes in Com-
put. Sci. 2368, Springer-Verlag, New York, 2002, pp. 358–367.

http://www.siam.org/journals/sicomp/33-3/40651.html
†Medical and Population Genetics Group, Broad Institute, 9 Cambridge Center, Cambridge, MA

02142 (peer@broad.mit.edu). This author’s research was supported by a Clore foundation scholar-
ship.

‡Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv
University, Tel Aviv 69978, Israel (talp@post.tau.ac.il).

§School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel (rshamir@tau.ac.il).
This author’s research was supported in part by a grant from the Israel Science Foundation (grant
309/02).

¶Corresponding author. International Computer Science Institute, 1947 Center St., Berkeley, CA
94704 (roded@icsi.berkeley.edu). This author’s research was supported by a Fulbright grant and by
an Eshkol fellowship from the Ministry of Science, Israel.

590

INCOMPLETE DIRECTED PERFECT PHYLOGENY 591

species i, and the ith row is the character vector of species i. The output sought is
a hypothesis regarding evolution, i.e., a phylogenetic tree along with the suggested
character vectors of the internal nodes. This output must satisfy properties specified
by the problem variant.

One important class of phylogenetic reconstruction problems concerns finding a
perfect phylogeny. The property required from such a phylogeny is that for each
possible character state, the set of all nodes that have that state induces a connected
subtree. The general perfect phylogeny problem is NP-hard [5, 21]. When considering
the number of possible states per character as a parameter, the problem is fixed
parameter tractable [2, 16]. For binary characters, having only two possible states,
perfect phylogeny is linear-time solvable [12].

When no perfect phylogeny is possible, one option is to seek a largest subset of
characters which admits a perfect phylogeny. Characters in such a subset are said to
be compatible. Compatibility problems have been studied extensively (see, e.g., [18]).

Another common optimization approach to phylogenetic reconstruction is the
parsimony criterion. It calls for a solution with the fewest state changes altogether,
counting a change whenever the state of a character changes between a species and
its ancestor species. This problem is known to be NP-hard [9]. A variant introduced
by Camin and Sokal [6] assumes that characters are binary and directed, namely, only
0 → 1 changes may occur on any path from the root to a leaf. Denoting by 1 and 0
the presence and absence, respectively, of the character, this means that characters
can only be gained throughout evolution. Another related binary variant is Dollo
parsimony [7, 20], which assumes that a 0 → 1 change may happen only once; i.e., a
character can be gained once, but it can be lost several times. Both of these variants
are polynomially solvable (cf. [8]).

In this paper, we discuss a variant of binary perfect phylogeny which combines
assumptions of both Camin–Sokal parsimony and Dollo parsimony. The setup is
as follows: The characters are binary, directed, and can be gained only once. As
in perfect phylogeny, the input is a matrix of character vectors, with the difference
that some character states are missing. The question is whether one can complete
the missing states in a way admitting a perfect phylogeny. We call this problem
Incomplete Directed Perfect phylogeny (IDP).

The problem of handling incomplete phylogenetic data arises whenever some of
the data are missing. It is also encountered in the context of morphological characters,
where for some species it may be impossible to reliably assign a state to a character.
The problem of determining whether a set of incomplete undirected characters is
compatible was shown to be NP-complete, even in the case of binary characters [21].
Indeed, the popular PAUP software package [22] provides an exponential solution to
the problem by exhaustively searching the space of missing states.

Quite recently, a novel kind of genomic data has given rise to the same problem:
Nikaido, Rooney, and Okado [19] use inserted repetitive genomic elements, particularly
Short Interspersed Nuclear Elements (SINEs), as a source of evolutionary information.
SINEs are short DNA sequences that were copied and randomly reinserted into various
genomic loci during evolution. The distinct insertion loci are identifiable by the
flanking sequences on both sides of the insertion site (see Figure 1). These insertions
are assumed to be unique events in evolution, because the odds of having separate
insertion events at the very same locus are negligible. Furthermore, a SINE insertion
is assumed to be irreversible; i.e., once a SINE sequence has been inserted somewhere
along the genome, it is practically impossible for the exact, complete SINE to leave

592 I. PE’ER, T. PUPKO, R. SHAMIR, AND R. SHARAN

Genome 1

Genome 2

Genome 3

SINE

Legend:

Locus C

Locus B

Locus A

Fig. 1. SINEs (black boxes) repeat in different loci (different shades of grey) across distinct
genomes. A SINE insertion transformed Genome 1 into Genome 2. A deletion of a locus trans-
formed Genome 2 into Genome 3. Given Genomes 1 and 3, we can identify that the SINE on locus C
is not present in Genome 1, by its flanking sequence. However, locus B is missing in Genome 3.

that specific locus. However, the inserted segment along with its flanking sequences
may be lost when a large genomic region, which includes them, is deleted. In that
case we do not know whether a SINE insertion had occurred in the missing site prior
to its deletion. One can model such data by assigning to each locus a character, whose
state is “1” if the SINE occurred in that locus, “0” if the locus is present but does
not contain the SINE, and “?” if the locus is missing. The resulting reconstruction
problem is precisely IDP.

The IDP problem becomes polynomial when the characters are directed: Benham
et al. [4] studied the compatibility problem on generalized characters. Their work im-
plies an O(n2m)-time algorithm for IDP, where n and m denote the number of species
and characters, respectively. Another problem related to IDP is the consensus tree
problem [3, 14]. This problem calls for constructing a consensus tree from binary sub-
trees, and is solvable in polynomial time. One can reduce IDP to the latter problem,
but the reduction itself takes Ω(n2m) time.

Our approach to the IDP problem is graph theoretic. We first provide several
graph and matrix characterizations for solvable instances of binary directed perfect
phylogeny. We then reformulate IDP as a graph sandwich problem: The input data
is recast as two nested graphs, and solving IDP is shown to be equivalent to finding
a graph of a particular type “sandwiched” between them. This formulation allows us
to devise efficient algorithms for IDP.

We provide two algorithms for IDP, which we call Algorithms A and B. Algo-
rithm A has two possible implementations: deterministic and randomized. Its de-
terministic complexity is O(nm + k log2(n + m)), for an instance with k 1-entries
in the species-characters matrix. The randomized version of Algorithm A takes
O(nm+ k log(l2/k) + l(log l)3 log log l) expected time, where l = n+m. Algorithm B
is deterministic and takes O(l2 log l) time. For both algorithms, the improved com-
plexity is obtained by using dynamic data structures for maintaining the connected
components of a graph [23, 14, 15]. Since an Ω(nm) lower bound was shown by Gus-
field for directed binary perfect phylogeny [12], our algorithms have near-optimal time
complexity.

We also study the issue of multiple solutions for IDP. Often there is more than one
phylogeny that is consistent with the data. When the input matrix is complete and
has a solution, there is always a tree T ∗ that is general; i.e., it is a solution, and every
other tree consistent with the data can be obtained from T ∗ by node splitting. In other
words, T ∗ describes all the definite information in the data, and ambiguities (nodes

INCOMPLETE DIRECTED PERFECT PHYLOGENY 593

with three or more children) can be resolved by additional information. This is not
always the case if the data matrix is incomplete: There may or may not be a general
solution tree. In that case, using a particular solution and additional information, one
can conclude that the data is inconsistent, even though the additional information may
be consistent with another solution. It is thus desirable to know if a general solution
exists and to generate such a solution if the answer is positive.

We provide answers to both questions. We prove that Algorithm A provides the
general solution of a problem instance, if such exists. We also give an algorithm
which determines if the solution T produced by Algorithm A is indeed general. The
complexity of the latter algorithm is O(nm + kd), where d denotes the maximum
out-degree of T .

The paper is organized as follows. In section 2 we provide some preliminaries, and
formalize the IDP problem. In section 3 we characterize binary matrices admitting a
directed perfect phylogeny, and provide the graph sandwich formulation for IDP. In
section 4 we present algorithms for IDP. Finally in section 5 we analyze the generality
of the solution produced by Algorithm A.

2. Preliminaries. We first specify some terminology and notation. We reserve
the terms nodes and branches for trees, and use the terms vertices and edges for other
graphs. Matrices are denoted by an upper-case letter, while their elements are denoted
by the corresponding lower-case letter.

Let G = (V,E) be a graph. We denote its set of vertices also by V (G), and its
set of edges also by E(G). Let ∅ �= V ′ ⊆ V be a subset of the vertices. The subgraph
induced by V ′ is the graph (V ′, E ∩ (V ′ × V ′)). We say that V ′ is connected in G, if
V ′ is contained in some connected component of G. The length of a path in G is the
number of edges along it.

Let T be a rooted tree with leaf set S, where branches are directed from the root
towards the leaves. The out-degree of a node x in T is its number of children, and is
denoted by d(x). For a node x in T we denote the leaf set of the subtree rooted at
x by L(x). L(x) is called a clade of T . For consistency, we consider ∅ to be a clade
of T as well, and call it the empty clade. S, ∅, and all singletons are called trivial
clades. We denote by triv(S) the collection of all trivial clades. Two sets are said to
be compatible if they are either disjoint, or one of them contains the other.

Observation 1 (cf. [18]). A collection S of subsets of a set S is the set of clades
of some tree over S if and only if S contains triv(S) and its subsets are pairwise
compatible.

A tree T is uniquely characterized by its set of clades. The transformation between
a branch-node representation of a tree and a list of its clades is straightforward. Thus,
we hereafter identify a tree with the set of its clades, and use the notation S ∈ T to
indicate that S is a clade of T . If Ŝ is a subset of the leaves of T , then the subtree of
T induced on Ŝ is the collection {Ŝ ∩ S′ : S′ ∈ T } (which defines a tree).

Throughout the paper we denote by S = {s1, . . . , sn} the set of all species and
by C = {c1, . . . , cm} the set of all (binary) characters. For a graph K, we define
C(K) ≡ C ∩ V (K) and S(K) ≡ S ∩ V (K). Let Bn×m be a binary matrix whose rows
correspond to species, each row being the character vector of its corresponding species.
That is, bij = 1 if and only if the species si has the character cj . A phylogenetic tree
for B is a rooted tree T with n leaves corresponding to the n species of S, such that
each character is associated with a clade S′ of T , and the following properties are
satisfied:

(1) If cj is associated with S′, then si ∈ S′ if and only if bij = 1.

594 I. PE’ER, T. PUPKO, R. SHAMIR, AND R. SHARAN

1 1

??

? ? ?

?

0

0

0

1

0

1 0

Characters

Species

1 1

0

0

0

1

0

1 01

1

1

0

0 1

s2

c1 c2 c3 c4 c5
c1

c3

c5

c2, c4

s2

s1 s3

s3

s1

Fig. 2. Left to right: An incomplete matrix A, a completion B of A, and a phylogenetic tree
that explains A via B. Each character is written to the right of its origin node.

Characters
1 0 0
1 1 0

Species ? 1 1
0 ? 1

Fig. 3. An incomplete matrix which has no phylogenetic tree although every pair of its columns
has one.

(2) Every nontrivial clade of T is associated with at least one character.

For a character c, the node x of T whose clade L(x) is associated with c is called the
origin of c with respect to T . Characters associated with ∅ have no origin.

A {0, 1, ?} matrix is called incomplete. For convenience, we consider binary ma-
trices as incomplete. Let An×m be a {0, 1, ?} matrix in which aij = 1 if si has cj ,
aij = 0 if si lacks cj , and aij =? if it is not known whether si has cj . For a character
cj and a state x ∈ {0, 1, ?}, the x-set of cj in A is the set of species {si ∈ S : aij = x}.
cj is called a null character if its 1-set is empty. For subsets Ŝ ⊆ S and Ĉ ⊆ C, define

A|Ŝ,Ĉ to be the submatrix of A induced on Ŝ ∪ Ĉ.

A binary matrix B is called a completion of A if aij ∈ {bij , ?} for all i, j. Thus, a
completion replaces all the ?’s in A by zeroes and ones. If B has a phylogenetic tree
T , we say that T is a phylogenetic tree for A as well. We also say that T explains A
via B, and that A is explainable. An example of these definitions is given in Figure 2.

The following lemma, closely related to Observation 1, has been proved indepen-
dently by several authors.

Lemma 2 (cf. [18]). A binary matrix B has a phylogenetic tree if and only if the
1-sets of every two characters are compatible.

An analogous lemma holds for undirected characters (cf. [12]). In contrast, for
incomplete matrices, even if every pair of columns has a phylogenetic tree, the full
matrix might not have one. An example of such a matrix was provided in [8] for
incomplete undirected characters. We provide a simpler example for incomplete di-
rected characters in Figure 3. Indeed, if we consider columns 1 and 2 in the example,
then the missing entry on column 1 should be completed to 1 and the one on column
2 should be completed to 0. However, in such a completion the characters on columns
2 and 3 are not compatible.

INCOMPLETE DIRECTED PERFECT PHYLOGENY 595

c

c’

s

s’

s”

Characters Species

Fig. 4. The Σ subgraph.

We are now ready to state the IDP problem as follows:
Incomplete Directed Perfect Phylogeny (IDP):
Instance: An incomplete matrix A.
Goal: Find a phylogenetic tree for A, or determine that no such tree exists.
In section 3 we characterize complete binary matrices that admit a perfect phy-

logeny. In section 4 we present our algorithmic approaches for IDP.

3. Characterizations of explainable binary matrices.

3.1. Forbidden subgraph characterization. Let B be a species-characters
binary matrix of order n ×m. Construct the bipartite graph G(B) = (S,C,E) with
E = {(si, cj) : bij = 1}. A Σ subgraph is an induced subgraph of G(B) that includes
three vertices from S, two vertices from C, and exactly four edges, forming a path of
length 4 in G(B) (see Figure 4). A bipartite graph with no induced Σ subgraph is
called Σ-free.

The following theorem restates Lemma 2 in terms of graph theory.
Theorem 3. B has a phylogenetic tree if and only if G(B) is Σ-free.
Corollary 4. Let Ŝ ⊆ S and Ĉ ⊆ C be subsets of the species and characters,

respectively. If A is explainable, then so is A|Ŝ,Ĉ .

Observation 5. Let A be a matrix explained by a tree T and Let Ŝ = L(x) be
a clade in T , where x is a node of T . Then the submatrix A|Ŝ,C is explained by the
subtree of T rooted at x.

For a subset S′ ⊆ S of species, we say that a character c is S′-universal in B, if
its 1-set (in B) contains S′.

Proposition 6. If G(B) is connected and Σ-free, then there exists a character
which is S-universal in B.

Proof. Suppose to the contrary that B has no S-universal character. Consider the
collection of all 1-sets of characters in B. Let c be a character whose 1-set is maximal
with respect to inclusion in this collection. Let s′′ be a species which lacks c. Since
G(B) is connected, there exists a path from s′′ to c in G(B). Consider a shortest such
path P . Since G(B) is bipartite, the length of P is odd. However, P cannot be of
length 1, by the choice of s′′. Furthermore, if P is of length greater than 3, then its
first five vertices induce a Σ subgraph, a contradiction. Thus P = (s′′, c′, s′, c) must
be of length 3. By maximality of the 1-set of c, it is not contained in the 1-set of c′.
Hence, there exists a species s which has the character c but lacks c′. Together with s,
the vertices of P induce a Σ subgraph, as depicted in Figure 4, a contradiction.

Let Ψ be a graph property. In the Ψ sandwich problem one is given a vertex set
V and a partition of V × V into three disjoint subsets: E0—forbidden edges, E1—
mandatory edges, and E?—optional edges. The objective is to find a supergraph of
(V,E1) which satisfies Ψ and contains no forbidden edges. Hence, the required graph
(V, F) must be “sandwiched” between (V,E1) and (V,E1∪E?). The reader is referred
to articles [10, 11] for a discussion of various sandwich problems.

596 I. PE’ER, T. PUPKO, R. SHAMIR, AND R. SHARAN

For the property “containing no induced Σ subgraph” (a property of bipartite
graphs) the sandwich problem is defined as follows:

Σ-free Sandwich:
Instance: A vertex set V = S ∪ C with S ∩ C = ∅, and a partition E0 ∪ E? ∪ E1

of S × C.
Goal: Find a set of edges F such that F ⊇ E1, F ∩E0 = ∅, and the graph (V, F)

is Σ-free, or determine that no such set exists.
Theorem 3 motivates looking at the IDP problem with input A as an instance

((S,C), EA
0 , EA

? , EA
1) of the Σ-free sandwich problem. Here, EA

x = {(si, cj) : aij = x}
for x = 0, ?, 1. In what follows, we omit the superscript A when it is clear from the
context.

Proposition 7. The Σ-free sandwich problem is equivalent to IDP.
Note that there is an obvious 1-1 correspondence between completions of A and

possible solutions of the corresponding sandwich instance ((S,C), E0, E?, E1). Hence,
in what follows we refer to matrices and their corresponding sandwich instances in-
terchangeably.

3.2. Forbidden submatrix characterizations. A binary matrix B is called
good if it can be decomposed as follows:

(1) Its left k1 ≥ 0 columns are all ones.
(2) There exist good matrices B1, . . . ,Bl, such that the rest (0 or more) of the

columns of B form the block-structure illustrated in Figure 5.
A matrix A is canonical if A = [B, C], where B is a zero submatrix and C is good.

We say that a matrix B avoids a matrix X , if no submatrix of B is identical to X .
Theorem 8. Let B be a binary matrix. The following are equivalent:

1. B has a phylogenetic tree.
2. G(B) is Σ-free.
3. Every matrix obtained by permuting the rows and columns of B avoids the

following matrix:

Z =

⎡
⎣ 1 1

1 0
0 1

⎤
⎦ .

4. There exists an ordering of the rows and columns of B which yields a canon-
ical matrix.

5. There exists an ordering of the rows and columns of B so that the resulting
matrix avoids the following matrices:

X1 =

[
0 1
1 0

]
, X2 =

[
0 1
1 1

]
, X3 =

[
1 1
0 1

]
, X4 =

⎡
⎣ 1

0
1

⎤
⎦ .

The reader is referred to article [17] for other problems of permuting matrices to
avoid forbidden submatrices.

Proof.
1⇔2 Theorem 3.
2⇔3 Trivial.
1⇒4 Suppose T is a tree that explains B. Assign to each node of T an index which

equals its position in a preorder visit of T . Sort the characters according
to the indices of their origin nodes, letting null characters come first. Sort

INCOMPLETE DIRECTED PERFECT PHYLOGENY 597

...0

0B2

Bl

B1

B31

Fig. 5. Construction of a good matrix. Each Bi is a good matrix. A canonical matrix is formed
from it by appending columns of zeroes on the left.

the species according to the indices of their corresponding leaves in T . The
result is a canonical matrix.

4⇒5 It is easy to verify that canonical matrices avoid X1, . . . ,X4.
5⇒3 Suppose to the contrary that B has an ordering of its rows and columns, so

that rows i1, i2, i3 and columns j1, j2 of the resulting matrix form the subma-
trix Z. Consider the permutations θrow, θcol of the rows and columns of B,
respectively, which yield a matrix avoiding X1, . . . ,X4. In this ordering, row
θrow(i1) necessarily lies between rows θrow(i2) and θrow(i3) or, else, the sub-
matrix X4 occurs. Suppose that θrow(i2) < θrow(i3) and θcol(j1) < θcol(j2);
then X3 occurs, a contradiction. The remaining cases are similar.

Note that a matrix which avoids X4 has the consecutive ones property in columns.
Gusfield [12, Theorem 3] has proven that a matrix which has an undirected perfect
phylogeny can be reordered so as to satisfy this property. In fact, for explainable bi-
nary matrices, the reordering used by Gusfield’s proof essentially generates a canonical
matrix. Note also that Σ-free graphs are bipartite convex as they avoid X1, X2, and
X3 (see, e.g., [1]).

4. Algorithms for solving IDP. We now return to the problem of complet-
ing an incomplete binary matrix. Let A be the input matrix, and define G(A) =
(S,C,EA

1). For a nonempty subset S′ ⊆ S, we say that a character is S′-semiuniversal
in A if its 0-set does not intersect S′. The following lemmas motivate a divide and
conquer approach to IDP, which is the basis of our algorithms for solving it.

Lemma 9. Let A be an incomplete matrix with a Σ-free completion B. Let c be
S-semiuniversal in A. Let B′ be the matrix obtained from B by setting all entries in
the column of c to 1. Then B′ is also a Σ-free completion of A.

Proof. Suppose to the contrary that {s1, c1, s2, c2, s3} induce a Σ subgraph in
G(B′). Since G(B) is Σ-free, if follows that at least one of the Σ edges was added to
B′. But then one of c1 and c2 is c, a contradiction.

Lemma 10. Let A be an incomplete matrix with a Σ-free completion B. Let
(K1, . . . ,Kr) be a partition of S ∪ C such that each Ki is a union of one or more
connected components of G(A). Let B′ be the matrix obtained from B by setting all
entries between vertices of Ki and Kj to 0, for all i �= j. Then B′ is also a Σ-free
completion of A.

Proof. Suppose to the contrary that {s1, c1, s2, c2, s3} induce a Σ subgraph in
G(B′). Then one of the nonedges (s1, c2) or (c1, s3) contains one vertex from Ki and
the other from Kj , for i �= j. It follows that there is a path in G(B′) between a vertex
of Ki and a vertex of Kj , a contradiction.

598 I. PE’ER, T. PUPKO, R. SHAMIR, AND R. SHARAN

Alg A(A = ((S,C), E0, E?, E1)):
1. If |S| > 1 then do:

(a) Remove all S-semiuniversal characters and all null characters from
G(A).

(b) If the resulting graph G′ is connected, then output False and halt.
(c) Otherwise, let K1, . . . ,Kr be the connected components of G′, and

let A1, . . . ,Ar be the corresponding submatrices of A.
(d) For i = 1, . . . , r do: Alg A(Ai).

2. Output S.

Fig. 6. Algorithm A for solving IDP.

We now describe two efficient Õ(nm)-time algorithms for solving IDP.

4.1. Algorithm A. Algorithm A is described in Figure 6. The algorithm out-
puts the set of nonempty clades of a tree explaining A, or outputs False if no such
tree exists. The algorithm is recursive and is initially called with Alg A(A).

Theorem 11. Algorithm A correctly solves IDP.

Proof. Suppose that the algorithm outputs False. Then there exists a recursive
call Alg A(A′) in which the graph G′ = (S′, C ′, E′), obtained in Step 1b (see Figure
6), was found to be connected. Suppose to the contrary that A has a phylogenetic
tree. Then by Corollary 4, there exists some edge set F ∗, which solves A′. The graph
G∗ = (S′, C ′, F ∗) is connected and by Theorem 3, it is also Σ-free. Therefore, by
Proposition 6 there exists an S′-universal character in G∗. That character must be
S′-semiuniversal in A′. By Algorithm A this vertex should have been removed at
Step 1a, a contradiction.

To prove the other direction, we will show that if the algorithm outputs a collec-
tion T ′ = {S1, . . . , Sl} of sets, then T = T ′ ∪ {∅} is a tree which explains A. We first
prove that the collection T of sets is pairwise compatible, implying by Observation 1
that T is a tree. Associate with each Si the recursive call Alg A(Ai) at which it was
output. Observe that each such call makes recursive calls associated with disjoint
subsets of Si. By induction, it follows that Si ⊆ Sj if and only if the recursive call
associated with Si is nested within the one associated with Sj . Otherwise, Si∩Sj = ∅.
Hence, S1, . . . , Sl are pairwise compatible and, thus, T is a tree.

It remains to show that T is a phylogenetic tree for A. Associate each null
character with the empty clade. Each other character ĉ is removed at Step 1a only
once in the course of the algorithm, during some recursive call Alg A(Â). Associate ĉ
with the clade Ŝ which was output at that recursive call. Observe that each nontrivial
clade Ŝ ∈ T is associated with at least one character. Finally, define a binary matrix
Bn×m with bsc = 1 if and only if s belongs to the clade Sc associated with c. Since
asc �= 1 for all s �∈ Sc and asc �= 0 for all s ∈ Sc, B is a completion of A. The claim
follows.

Let h ≤ min{m,n} be the height of the reconstructed tree. Each recursive call
increases the height of the output tree by at most one. The work at each level of the
tree requires (1) Finding semiuniversal vertices and (2) finding connected components
in disjoint graphs whose total number of edges is at most mn. Hence, the total work
is O(mn) per level, and a naive implementation requires O(hmn) time. We give a
faster implementation below.

INCOMPLETE DIRECTED PERFECT PHYLOGENY 599

Theorem 12. Algorithm A has a deterministic implementation which takes
O(nm+|E1| log2(n+m)) time, and a randomized implementation which takes O(nm+
|E1| log(l2/|E1|) + l(log l)3 log log l) expected time, where l = n + m.

Proof. For the complexity proof we give an alternative, nonrecursive implemen-
tation of Algorithm A, shown in Figure 7. This iterative version mimics the recursive
one, but traverses the tree of recursive calls in a breadth first manner, rather than
a depth first manner. Consequently, the implementation deals with a single graph,
rather than a different graph per each recursive call. The reduction in complexity is
primarily due to the use of an efficient dynamic data structure for graph connectiv-
ity. The data structure maintains the connected components of the graph while edge
deletions occur.

We now analyze the running time of this implementation. Step 1 takes O(nm)
time. Each iteration of the “while” loop (Step 2) splits the (potential) clades added
in the previous one. Thus, Algorithm A performs one iteration of this type per each
level of the tree returned, and at most h iterations.

Step 2b requires explicitly computing the connected components of G. Both
data structures that we use for storing the connected components of G (see below)
maintain a spanning tree for each connected component of G, and allow computing
the connected components in O(n+m) time per iteration, or O(h(m+ n)) = O(nm)
time in total.

The loop of Step 2c is performed at most min{2n− 1,m} times altogether, as in
each (successful) iteration at least one character is removed from G (Step 2cvii), and
at least one clade is added to T . Thus, Step 2ci takes O(min{n,m}) time altogether,
and Step 2cii takes O(nm) time in total. Step 2ciii takes O(nm) time in total, as
it considers each species-character pair only once throughout the execution of the
algorithm.

In order to analyze the complexity of Step 2civ, observe that the following invari-
ants hold in this step for each character c ∈ C(Ki):

• d?
c = |{(s, c) ∈ E?|s ∈ S(Ki)}|, as guaranteed by Step 2ciii.

• d1
c = |{(s, c) ∈ E1|s ∈ S(Ki)}| = |{(s, c) ∈ E1|s ∈ S}|, as initialized in

Step 1b, since species are never removed, and each species adjacent to c must
be in its connected component until c is removed.

Given d1
c , d

?
c and |S(Ki)|, one can check in O(1) time whether c is S(Ki)-semiuniversal,

and thus Step 2civ takes O(|C(Ki)|) time, or O(hm) time in total.
Since each set added to T in Step 2cvi corresponds to at least one character, and

each character is associated with exactly one such set, updating T requires O(nm)
time in total. This also implies an O(nm) bound on the size of the output produced
in Step 3.

It remains to discuss the cost of the dynamic data structure, which is charged for
Step 2cvii. Using the dynamic algorithm of [15], the connected components of G can
be maintained during |E1| edge deletions at a total cost of O(|E1| log2(n + m)) time
spent in Step 2cvii. Alternatively, using the Las Vegas type randomized algorithm
of [23] for decremental dynamic connectivity, the edge deletions can be supported in
O(|E1| log(l2/|E1|) + l(log l)3 log log l) expected time. The complexity follows.

4.2. Algorithm B. We now describe another deterministic algorithm for IDP,
which is faster than Algorithm A whenever |E1| = ω((n + m)2/ log(n + m)). Algo-
rithm B uses the dynamic-connectivity data structure of [14], which supports deletion
of batches of edges from a graph, while detecting after each batch one of the new
connected components in the resulting graph (if new components were formed).

600 I. PE’ER, T. PUPKO, R. SHAMIR, AND R. SHARAN

Alg A fast(A = ((S,C), E0, E?, E1)):
1. Initialize:

(a) Set t ← 0, K0 ← {S ∪ C}, G ← G(A), T ← triv(S).
(b) For each character c, and i ∈ {1, ?} do:

Set dic ← |{s ∈ S|(s, c) ∈ Ei}|.
(c) Remove all S-semiuniversal and all null characters from G.
(d) Initialize a data structure for maintaining the connected components

of G.
2. While E(G) �= ∅ do:

(a) Increment t.
(b) Explicitly compute the set Kt of connected components K1, . . . ,Kr

of G.
(c) For each connected component Ki ∈ Kt such that |E(Ki)| ≥ 1 do:

i. Pick any character c′ ∈ C(Ki).
ii. Compute S′ = S(K ′) \ S(Ki), where K ′ is the component in

Kt−1 which contains c′.
iii. For each species-character pair (s, c) ∈ S′ × C(Ki) do:

If (s, c) ∈ E? then decrement d?
c.

iv. Compute the set U of all characters in Ki which are S(Ki)-
semiuniversal in A.

v. If U = ∅, then output False and halt.
vi. Set T ← T ∪ {S(Ki)}.
vii. Remove U from G and update the data structure of connected

components accordingly.
3. Output T .

Fig. 7. An iterative presentation of Algorithm A.

Algorithm B is described in Figure 8. For an instance A it outputs the nonempty
clades of a tree explaining A (except possibly the root clade, if it has no matching
character), or False if no such tree exists. It is initially called with Alg B(A).

Theorem 13. Algorithm B correctly solves IDP in O((n + m)2 log(n + m))
deterministic time.

Proof. Correctness. We prove correctness by induction on the problem size. If
G′ is connected (at Step 2c), then by Proposition 6 A has no phylogenetic tree, and
indeed the algorithm outputs False. Otherwise, let A1 and A2 be the subinstances
induced on K and K ′ = V (G′) \ K, respectively, as detected in Step 2b. If A has
a phylogenetic tree, then by Corollary 4 so do A1 and A2. On the other hand, let
T1, T2 be phylogenetic trees for A1,A2, respectively. Note that by definition, T2 must
contain the trivial clade S(K ′), which is not necessarily a clade in a phylogenetic tree
for A (if K ′ has no semiuniversal character). To remedy that, define T ′

2 = T2 if the
algorithm outputs S(K ′), and T ′

2 = T2 \ {S(K ′)} otherwise. Then T1 ∪ T ′
2 ∪ {S} is a

phylogenetic tree for A.

Complexity. The data structure of [14] dynamically maintains a graph H = (V,E)
through batches of edge deletions, with each batch followed by a query for a newly
created connected component in the resulting graph. If we denote by b0 the number of
batches which do not result in a new component, then as shown in [14], the total cost
of answering the queries and performing the batch deletions, if eventually all edges
are deleted, is O(|V |2 log |V | + b0 min{|V |2, |E| log |V |}).

INCOMPLETE DIRECTED PERFECT PHYLOGENY 601

Alg B(A = ((S,C), E0, E?, E1)):
1. If |S| = 1 or G(A) has an S-semiuniversal vertex, then output S.
2. If |S| > 1, then do:

(a) Remove all S-semiuniversal characters and all null characters from
G(A).

(b) If the resulting graph G′ contains a new connected component K,
then do:

i. Let A1,A2 be the submatrices of A induced on V (K) and V (G′)\
V (K), respectively.

ii. For i = 1, 2 do: Alg B(Ai).
(c) Else output False and halt.

Fig. 8. Algorithm B for solving IDP.

Characters
1 ? 0 0
1 1 ? ?

Species ? 1 1 ?
? ? 1 1
? 0 ? 1

Characters
1 0 0 0
1 1 1 1

Species 1 1 1 1
1 1 1 1
1 0 1 1

A B

Fig. 9. A counterexample to the greedy approach. A: The input matrix. B: A solution.

We use this data structure to maintain G(A) during all the recursive calls. As
b0 = 1 (since in case no new component is formed the algorithm outputs False and
halts) and |V | = n+m, the total cost is O((m+n)2 log(n+m)) time. This expression
dominates the complexity, as finding the semiuniversal vertices at each recursive call
costs in total only O(nm) time (see proof of Theorem 12).

We remark that an Ω(nm)-time lower bound for (undirected) binary perfect phy-
logeny was proved by Gusfield [12]. A closer look at Gusfield’s proof reveals that it
applies, as is, also to the directed case. As IDP generalizes directed binary perfect
phylogeny, any algorithm for this problem would require Ω(nm) time.

4.3. Greedy approach fails. We end the section by showing that a simple
greedy approach to IDP fails. Let A be an incomplete matrix. We say that asc =? is
forced if there exists an assignment x ∈ {0, 1} such that completing asc to x results in
an induced Σ in the graph (S,C,EA′

1 ∪ EA′

?) corresponding to the completed matrix
A′. A is called forced if it has some forced ?-entry.

A naive greedy algorithm for IDP is as follows: At each step complete one ?-
entry in the matrix. If there are no forced entries, choose any ?-entry and complete
it arbitrarily. Otherwise, try to complete a forced entry. If such completion is not
possible (an induced Σ is formed), report False.

Figure 9(A) shows an explainable instance with no forced entries. Setting the
bottom-left ?-entry to 0 results in an instance which cannot be explained. A solution
matrix is shown in Figure 9(B).

5. Determining the generality of the solution. A “yes” instance of IDP
may have several distinct phylogenetic trees as solutions. These trees may be related
in the following way: We say that a tree T generalizes a tree T ′, and write T ⊆ T ′,

602 I. PE’ER, T. PUPKO, R. SHAMIR, AND R. SHARAN

c1

c2

c1

c2

s2

s3

s1

s4

s5

T T1 T2

s1 s2 s3 s4 s5s1 s2 s3 s4 s5

c2c1c1 c2

SpeciesCharacters
s1

s2

s3 s2 s3

c2

s1 s2 s3s1 s2 s3 s1

c1

c1 c2

c1

c2

Fig. 10. Top left: An IDP instance which has a general solution. Dashed lines denote E?-edges,
while solid lines denote E1-edges. Top-right: T , T1, and T2 are the possible solutions. T generalizes
T1 and T2 (which are obtained by splitting the root node of T), and is the general solution. Bottom
left: An IDP instance which has no general solution. Bottom middle and bottom right: Two possible
solutions. The only tree which generalizes both solutions is the tree composed of the trivial clades
only, which is not a solution.

if every clade of T is a clade of T ′; i.e., the evolutionary scenario expressed by T ′

includes all the details of the scenario expressed by T , and possibly more. Therefore,
T ′ represents a more specific scenario, and T represents a more general one. We say
that a tree T is the general solution of an instance A, if T explains A and generalizes
every other tree which explains A. Figure 10 demonstrates the definitions and also
gives an example of an instance that has no general solution.

We give in this section a characterization of IDP instances that admit a general
solution. We prove that whenever a general solution exists, Algorithm A finds it.
We also provide an algorithm to determine whether the solution tree T returned
by Algorithm A is general. The complexity of the latter algorithm is shown to be
O(mn + |E1|d), where d is the maximum out-degree in T .

This notation is used in what follows. Let A be an incomplete matrix and let
Ŝ ⊆ S. We denote by WA(Ŝ) the set of Ŝ-semiuniversal characters in A. Note that
if A is binary, then WA(Ŝ) is its set of Ŝ-universal characters. We now define the

operator ˜ on incomplete matrices: We denote by Ã the submatrix A|S,C\WA(S) of

A. In particular, G(Ã) is the graph produced from G(A) by removing its set of S-
semiuniversal characters. A species set ∅ �= S′ ⊆ S is said to be connected in a graph
G, if S′ is contained in some connected component of G.

Lemma 14. Let T be the general solution for an instance A of IDP. Let S′ = L(x)
be a clade of T , corresponding to some node x. Let T ′ be the subtree of T rooted at
x, and let A′ be the instance induced on S′ ∪ C. Then T ′ is the general solution for
A′.

Proof. By Observation 5, T ′ explains A′. Suppose that T ′′ also explains A′ and
T ′ �⊆ T ′′. Then T̂ = (T \ T ′) ∪ T ′′ explains A, and T �⊆ T̂ , a contradiction.

A nonempty clade of a tree is called maximal if the only clade that properly
contains it is S.

Lemma 15. Let T be a phylogenetic tree for a binary matrix B. A nonempty clade
S′ of T is maximal if and only if S′ is the species set of some connected component
of G(B̃).

Proof. Suppose that S′ is a maximal clade of T . We first claim that S′ is contained
in some connected component K of G(B̃). If |S′| = 1 this trivially holds. If |S′| > 1,

INCOMPLETE DIRECTED PERFECT PHYLOGENY 603

let c be a character associated with S′. c is adjacent to all vertices in S′ and to no
other vertex. Hence, c is not S-universal, implying that all the edges {(c, s) : s ∈ S′}
are present in G(B̃). This proves the claim. It remains to show that S(K) = S′.
Suppose S(K) ⊃ S′. In particular, |S(K)| > 1. By Proposition 6, there exists a

character c′ in G(B̃) whose 1-set is S(K). Hence, S(K) must be a clade of T which
is associated with c′, contradicting the maximality of S′.

To prove the converse, let S′ be the species set of some connected component K of
G(B̃). We first claim that S′ is a clade. If |S′| = 1, S′ is a trivial clade. Otherwise, by

Proposition 6 there exists an S′-universal character c′ in G(B̃). Since K is a connected
component, c′ has no neighbors in S \S′. Hence, S′ must be a clade in T . Suppose to
the contrary that S′ is not maximal; then it is properly contained in a maximal clade
S′′, which by the previous direction is the species set of K, a contradiction.

Theorem 16. Algorithm A produces the general solution for every IDP instance
that has one.

Proof. Let A be an instance of IDP for which there exists a general solution
T ∗. Let Talg be the solution tree produced by Algorithm A. By definition T ∗ ⊆ Talg.
Suppose to the contrary that T ∗ �= Talg. Let S′ be the largest clade reported by
Algorithm A, which is not a clade of T ∗ (S′ must be nontrivial), and let S′′ be the
smallest clade in Talg which properly contains S′. Let A′ be the instance induced on
S′′ ∪C. By Observation 5, A′ is explained by the corresponding subtrees T ′

alg of Talg
and T ′∗ of T ∗. By Lemma 14, T ′∗ is the general solution of A′. Due to the recursive
nature of Algorithm A, it produces T ′

alg when invoked with input A′. Thus, without
loss of generality, one can assume that S′′ = S and S′ is a maximal clade of Talg.

Suppose that T ∗ explains A via a completion B∗, and let G∗ = G(B∗). Since
S′ is a maximal clade, it is reported during a second level call of Alg A(·) (the call
at the first level reports the trivial clade S). Hence, it must be the species set of

some connected component K in G(Ã). Since every S-universal character in G∗ is

S-semiuniversal in A, S′ is contained in some connected component K∗ of G(B̃∗).
Denote S∗ ≡ S(K∗). By Lemma 15, S∗ is a maximal clade of T ∗. Since S′ �∈ T ∗,
we have S′ �= S∗, and therefore, S∗ ⊃ S′. But T ∗ ⊆ Talg, implying that S∗ is also a
nontrivial clade of Talg, in contradiction to the maximality of S′.

We now characterize IDP instances for which a general solution exists. Let A be
a “yes” instance of IDP. Consider a recursive call Alg A(A′) nested within Alg A(A),

where A′ = A|C′,S′ . Let K1, . . . ,Kr be the connected components of G(Ã′), computed
in Step 1c. Observe that S(K1), . . . , S(Kr) are clades to be reported by recursive calls
launched during Alg A(A′). A set U of characters is said to be (Ki,Kj)-critical if char-
acters in U are both S(Ki)-semiuniversal and S(Kj)-semiuniversal in A′, and remov-

ing U from G(Ã′) disconnects S(Ki). Note that by definition of U , U ⊆ WA′(S(Ki)),
and a′sc =? for all c ∈ U, s ∈ S(Kj). A clade S(Ki) is called optional (with respect
to A′) if r ≥ 3 and there exists a (Ki,Kj)-critical set for some index j �= i. If S(Ki)
is not optional we say it is mandatory. In the example of Figure 10 (bottom), let
K1 = {s1, s2, c1}, K2 = {s3}, and K3 = {s4, s5, c2}. The set U = {c1} is (K1,K2)-
critical, so S(K1) = {s1, s2} is optional. In contrast, in Figure 10 (top) no clade is
optional.

Theorem 17. The tree produced by Algorithm A is the general solution if and
only if all its clades are mandatory.

Proof. ⇒ Suppose that Talg is the general solution of an instance A. Suppose to
the contrary that it contains an optional clade. Without loss of generality, assume it
is maximal; i.e., during the recursive call Alg A(A), G′ = G(Ã) has r ≥ 3 connected

604 I. PE’ER, T. PUPKO, R. SHAMIR, AND R. SHARAN

components, K1, . . . ,Kr, and there exists a (Ki,Kj)-critical set U (for some 1 ≤ i �=
j ≤ r). Let Ai,Aj and Aij be the subinstances induced on Ki,Kj and Ki ∪ Kj ,
respectively. Consider the tree T ′ which is produced by a small modification to the
execution of Alg A(A): Instead of recursively invoking Alg A(Ai) and Alg A(Aj),
call Alg A(Aij). Then T ′ is a phylogenetic tree which explains A and includes the

clade S(Ki ∪ Kj). Since removing U from G(Ã) disconnects S(Ki), |S(Ki)| ≥ 2 so
S(Ki) is nontrivial. Moreover, S(Ki) is not a clade of T ′ for the same reason. Hence,
T ′ does not contain all clades of Talg, in contradiction to the generality of Talg.

⇐ Suppose that Talg is not the general solution of an instance A; i.e., there exists
a solution T ∗ of A such that Talg �⊆ T ∗. We shall prove the existence of an optional
clade in Talg. (The reader is referred to the example in Figure 13 for notation and
intuition. The example follows the steps of the proof, leading to the identification
of an optional clade.) Let B∗ be a completion of A which is explained by T ∗, and
denote G∗ = G(B∗). Let S′ ∈ Talg \ T ∗ be the largest clade reported by Algorithm A
which is not a clade of T ∗. Without loss of generality (as argued in the proof of
Theorem 16), S′ is a maximal clade of Talg, and we let S′ = S(K1), where K1, . . . ,Kr

are the connected components of G(Ã).

Observe that a binary matrix has at most one phylogenetic tree. Thus, an ap-
plication of Algorithm A to B∗ necessarily outputs T ∗. Consider such an applica-
tion, and let {S∗

i }ti=1 be the nested set of reported clades in T ∗ which contain S′:
S = S∗

1 ⊃ · · · ⊃ S∗
t ⊃ S′ (see Figure 11). For each i = 1, . . . , t, let B∗

i be the in-

stance invoked in the recursive call which reports S∗
i , and let H∗

i be the graph G(B̃∗
i),

computed in Step 1a of that recursive call. Let C∗
i be the set of characters in H∗

i .
Equivalently, C∗

i is the set of characters in B∗
i whose 1-set is nonempty and is prop-

erly contained in S∗
i . Furthermore, define Hi to be the subgraph of G(A) induced

on S∗
i ∪ C∗

i . Observe that H∗
i is the subgraph of G∗ induced on the same vertex set.

Since G∗ is a supergraph of G(A), each H∗
i is a supergraph of Hi.

Claim 18. S′ is disconnected in H∗
t , and therefore also in Ht.

Proof. Suppose to the contrary that S′ is contained in some connected component
K∗ of H∗

t . K∗ is thus computed during the tth recursive call (with argument B∗
t), and

S(K∗) is reported as a clade in T ∗ by a nested recursive call. Therefore, S∗
t ⊃ S(K∗) ⊃

S′, where the first proper containment follows from the fact that H∗
t is disconnected,

and the second from the assumption that S′ is not a clade of T ∗. Hence, we arrive at
a contradiction to the minimality of S∗

t .

We now return to the proof of Theorem 17. Recall that S′ is connected in H1 =
G(Ã). Thus, the previous claim implies that t > 1. Let Kp be a connected component

of G(Ã) such that S(Kp) ⊆ S\S∗
2 (see Figure 11). Let l be the minimal index such that

there exists some connected component Ki of G(Ã) for which S(Ki) is disconnected
in Hl. l is properly defined as S(K1) = S′ is disconnected in Ht. l > 1, since

otherwise some Ki is disconnected in H1 and, therefore, also in its subgraph G(Ã),
in contradiction to the definition of K1, . . . ,Kr.

By minimality of l, S∗
l ⊇ S(Ki). Also, S∗

l ⊇ S∗
t ⊃ S′ = S(K1), so S∗

l �= S(Ki).

We now claim that there exists some connected component Kj of G(Ã), j �= i, such
that S(Kj) ⊆ S∗

l . Indeed, if i �= 1, then j = 1. If i = 1, then l = t (by an argument
similar to that in the proof of Claim 18), and since S∗

l \ S′ is nonempty, it intersects
S(Kj) for some j �= i. By minimality of l, S(Kj) is properly contained in S∗

l \ S′.

Define U ≡ WG∗(S∗
l). We now prove that U is a (Ki,Kj)-critical set. By defini-

tion all characters in U are S∗
l -universal in G∗, and are thus both Ki-semiuniversal

INCOMPLETE DIRECTED PERFECT PHYLOGENY 605

S∗
l

S(Kp)S ′ S∗
t

S∗
2 S = S∗

1

Fig. 11. The clades S = S∗
1 ⊃ S∗

2 ⊃ · · · ⊃ S∗
t ⊃ S′.

S(Kp)S(Ki) S(Kj)
S∗
l

S

U

Fig. 12. S(Ki), S(Kj), and S(Kp). Note that removing U disconnects S(Ki).

and Kj-semiuniversal in A. S(Ki) is disconnected in Hl = G(A|C∗
l
,S∗

l
). Since Ki is a

connected component of G(Ã), S(Ki) is disconnected in G(A|C∗
l
,S), implying that U

is a (Ki,Kj)-critical set. Also, Ki,Kj , and Kp are distinct, implying that r ≥ 3 (see
Figure 12). In conclusion, U demonstrates that S(Ki) is optional.

The characterization of Theorem 17 leads to an efficient algorithm for determining
whether a solution Talg produced by Algorithm A is general.

Theorem 19. There is an O(nm+ |E1|d)-time algorithm to determine if a given
solution Talg is general, where d is the maximum out-degree in Talg.

Proof. The algorithm simply traverses Talg bottom-up, searching for optional
clades. For each internal node x visited, whose children are y1, . . . , yd(x), the algorithm
checks whether any of the clades L(y1), . . . , L(yd(x)) is optional. If an optional clade
is found the algorithm outputs False. Correctness follows from Theorem 17.

We show how to efficiently check whether a clade L(yi) is optional. If d(x) = 2,
or yi is a leaf, then certainly L(yi) is mandatory. Otherwise, let Ui be the set of
characters whose origin (in Talg) is yi. Let U i

j denote the set of characters in Ui which

are L(yj)-semiuniversal, for j �= i. The computation of U i
j for all i and j takes O(nm)

time in total, since for each character c and species s we check at most once whether
(s, c) ∈ EA

? , for an input instance A.
It remains to show how to efficiently check whether for some j, U i

j disconnects
L(yi) in the appropriate subgraph encountered during the execution of Algorithm A.
To this end, we define an auxiliary bipartite graph Hi whose set of vertices is Wi∪Ui,

606 I. PE’ER, T. PUPKO, R. SHAMIR, AND R. SHARAN

Species
s1

s2

s3

s4

s5

s6

s7

s8

Characters

c4

c1

c3

c2

U

c4c1 c2 c3

Kp Kj Ki

S ′
s4 s5 s6 s7 s8s1 s2 s3

Talg

SpeciesCharacters

s3

s4

s5

s6

s7

s8

c3

c2

S = S∗
1 S∗

2 S∗
3

s4 s5 s6 s7s1 s3

c3

c4

s8s2

c1

c2

T ∗

Fig. 13. An example demonstrating the proof of the “if” part of Theorem 17, using the notation
in the proof. Left: A graphical representation of an input instance A. Dashed lines denote E?-edges,
while solid lines denote E1-edges. Top right: The tree Talg produced by Algorithm A. Bottom middle:
A tree T ∗ corresponding to a completion B∗ that uses all the edges in E?. Bottom right: The graphs
H2 (solid edges) and H∗

2 (solid and dashed edges). Talg �⊆ T ∗, and S′ = {s5, s6}. There are t = 3
clades of T ∗ which contain S′: S∗

1 = {s1, . . . , s8}, S∗
2 = {s3, . . . , s8}, and S∗

3 = {s5, s6, s7}. The
component Kp = {c1, s1, s2} has its species in S \ S∗

2 . Since WA(S) = WB∗ (S) = ∅, H1 = G(A).
Since WB∗ (S∗

2) = {c4}, the species set of the connected component Ki = {s7, s8, c4} is disconnected
in H2, implying that l = 2. For a choice of Kj = {s3, s4, c2}, the set U = {c4} is (Ki,Kj)-critical,
demonstrating that S′ is optional.

where Wi = {w1, . . . , wd(yi)} is the set of children of yi in Talg. We include the edge
(wr, cp) in Hi, for wr ∈ Wi, cp ∈ Ui, if (cp, s) ∈ EA

1 for some species s ∈ L(wr). We
construct for each j �= i a subgraph Hi

j of Hi induced on Wi ∪ (Ui \U i
j). All we need

to report is whether Hi
j is connected.

For each i we construct Hi by considering all EA
1 edges connecting characters in

Ui to species in L(yi). This takes O(|EA
1 |) time in total. There are d(yi) subgraphs

Hi
j for every yi. Hence, computing Hi

j for all j and determining whether each Hi
j

is connected take O
(
|E(Hi)|d(yi)

)
time. Since

∑
i |E(Hi)| ≤ |EA

1 |, the total time
complexity is O(mn +

∑
i |E(Hi)|d(yi)) = O(mn + |EA

1 | · maxv∈Talg
d(v)).

Acknowledgments. We thank Dan Graur for drawing our attention to this
phylogenetic problem, and for helpful discussions. We thank Nati Linial for insightful
comments. We thank Joe Felsenstein, Dan Gusfield, Haim Kaplan, Mike Steel, and
an anonymous CPM ’00 referee for referring us to helpful literature.

INCOMPLETE DIRECTED PERFECT PHYLOGENY 607

REFERENCES

[1] N. Abbas and L. Stewart, Biconvex graphs: Ordering and algorithms, Discrete Appl. Math.,
103 (2000), pp. 1–19.

[2] R. Agarwala and D. Fernández-Baca, A polynomial-time algorithm for the perfect phy-
logeny problem when the number of character states is fixed, SIAM J. Comput., 23 (1994),
pp. 1216–1224.

[3] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman, Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions, SIAM
J. Comput., 10 (1981), pp. 405–421.

[4] C. Benham, S. Kannan, M. Paterson, and T. Warnow, Hen’s teeth and whale’s feet: Gen-
eralized characters and their compatibility, J. Comput. Biology, 2 (1995), pp. 515–525.

[5] H. L. Bodlaender, M. R. Fellows, M. T. Hallett, T. Wareham, and T. Warnow, The
hardness of perfect phylogeny, feasible register assignment and other problems on thin
colored graphs, Theoret. Comput. Sci., 244 (2000), pp. 167–188.

[6] J. H. Camin and R. R. Sokal, A method for deducing branching sequences in phylogeny,
Evolution, 19 (1965), pp. 409–414.

[7] L. Dollo, Le lois de l’évolution, Bulletin de la Societé Belge de Géologie de Paléontologie et
d’Hydrologie, 7 (1893), pp. 164–167.

[8] J. Felsenstein, Inferring Phylogenies, Sinauer Associates, Sunderland, MA, 2003.
[9] L. R. Foulds and R. L. Graham, The Steiner problem in phylogeny is NP-complete, Adv. in

Appl. Math., 3 (1982), pp. 43–49.
[10] M. C. Golumbic, Matrix sandwich problems, Linear Algebra Appl., 277 (1998), pp. 239–251.
[11] M. C. Golumbic, H. Kaplan, and R. Shamir, Graph sandwich problems, J. Algorithms, 19

(1995), pp. 449–473.
[12] D. Gusfield, Efficient algorithms for inferring evolutionary trees, Networks, 21 (1991), pp. 19–

28.
[13] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, Cam-

bridge, UK, 1997.
[14] M. Henzinger, V. King, and T. Warnow, Constructing a tree from homeomorphic subtrees,

with applications to computational evolutionary biology, Algorithmica, 24 (1999), pp. 1–13.
[15] J. Holm, K. de Lichtenberg, and M. Thorup, Poly-logarithmic deterministic fully-dynamic

algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, J. ACM,
48 (2001), pp. 723–760.

[16] S. Kannan and T. Warnow, A fast algorithm for the computation and enumeration of perfect
phylogenies, SIAM J. Comput., 26 (1997), pp. 1749–1763.

[17] B. Klinz, R. Rudolf, and G. J. Woeginger, Permuting matrices to avoid forbidden subma-
trices, Discrete Appl. Math., 60 (1995), pp. 223–248.

[18] C. A. Meecham and G. F. Estabrook, Compatibility methods in systematics, Ann. Rev. Ecol.
and Syst., 16 (1985), pp. 431–446.

[19] M. Nikaido, A. P. Rooney, and N. Okada, Phylogenetic relationships among cetartiodactyls
based on insertions of short and long interspersed elements: Hippopotamuses are the clos-
est extant relatives of whales, Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 10261–10266.

[20] W. J. Le Quesne, The uniquely evolved character concept and its cladistic application, Sys-
tematic Zoology, 23 (1974), pp. 513–517.

[21] M. A. Steel, The complexity of reconstructing trees from qualitative characters and subtrees,
J. Classification, 9 (1992), pp. 91–116.

[22] D. L. Swofford, PAUP, Phylogenetic Analysis Using Parsimony (and Other Methods), Ver-
sion 4, Sinauer Associates, Sunderland, MA, 1998; also available online from http://paup.
csit.fsu.edu/.

[23] M. Thorup, Decremental dynamic connectivity, J. Algorithms, 33 (1999), pp. 229–243.

