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The common approaches for haplotype inference from genotype data are targeted toward
phasing short genomic regions. Longer regions are often tackled in a heuristic manner,
due to the high computational cost. Here, we describe a novel approach for phasing geno-
types over long regions, which is based on combining information from local predictions
on short, overlapping regions. The phasing is done in a way, which maximizes a natural
maximum likelihood criterion. Among other things, this criterion takes into account the
physical length between neighboring single nucleotide polymorphisms. The approach is
very efficient and is applied to several large scale datasets and is shown to be successful in
two recent benchmarking studies (Zaitlen et al., in press; Marchini et al., in preparation).
Our method is publicly available via a webserver at http://research.calit2.net/hap/.
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1. Introduction

Single nucleotide polymorphisms (SNPs) are differences, across the population, in
a single base, within an otherwise conserved genomic sequence. Approximately,
10 million common SNPs,3,4 each with a frequency of 10–50%, account for the
majority of the variation between DNA sequences of different people.5 The variation
in the allelic content of SNPs may be associated with medical conditions. Thus,
efficient and accurate methods for obtaining SNP information are of great clinical,
scientific, and commercial value.
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The sequence of alleles in contiguous SNP positions along a chromosomal region
is called a haplotype. For diploid organisms, two haplotypes make up a genotype,
which is the list of allele-pairs along the chromosomal segment. The genotype con-
tains information solely on the combination of alleles in a given site and not on the
association of each allele with one of the two chromosomes, also called its phase.
The current technology, suitable for large-scale polymorphism screening, obtains
the genotype information at each SNP, but not its phase. The latter information
can be obtained at a considerably higher cost.5 It is, therefore, desirable to develop
efficient methods for inferring haplotypes from genotype information.

Numerous approaches have been suggested in the literature to resolve haplotypes
from genotype data. These methods include the seminal approach of Clark,6 parsi-
mony approaches,7–9 maximum likelihood methods,10–13 statistical methods such
as PHASE14 and HAPLOTYPER,15 and perfect phylogeny-based approaches.16,17

All these methods perform very well across short genomic regions with limited
diversity (see Fig. 1), but a few extend to large regions with high diversity. Con-
sider, for example, the entire 103 SNPs in the 616 kB region examined in Ref. 18.
Out of the 258 haplotypes in the population, the most common haplotype only
occurs in 45 individuals and 169 haplotypes occur only in one individual. As an
effort to characterize human variation will be a tremendous undertaking,3 meth-
ods for haplotyping long genomic regions will be essential for analyzing data from
large-scale genotype studies, including data generated for whole genome association
studies.19,20

In this paper, we describe a novel method, HAP-TILE, for combining local
phasing predictions for phasing long genomic regions. Our method is based on using
accurate phase predictions over short overlapping regions, obtained by any extant
method, to recover haplotypes over long regions. We present an efficient dynamic
programming algorithm for optimally combining the overlapping local predictions
with respect to a natural maximum likelihood criterion. The maximum likelihood
criterion takes into account an estimate of the accuracy of the prediction based
on the physical length of the region and the entropy of the distribution of the
haplotypes therein.

Our method follows similar intuitions to the partition-ligation (PL) method,
which was used in HAPLOTYPER15 and subsequently in PL-EM.21 In PL method,
a long region is partitioned into a set of short regions’ each of the regions is phased,
and neighboring regions are then phased together recursively until a complete hap-
lotype is reconstructed. One deficiency with the PL method is that the short regions
are chosen arbitrarily, and due to the nature of the ligation step, the method is not
guaranteed to produce a global optimum. In contrast, our method considers pre-
dictions over all possible short region segments, and uses a tiling technique which
is guaranteed to find a solution with maximum likelihood. The latest version of
PHASE22 uses a different model for combining local predictions into a longer hap-
lotype prediction.
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The main advantage of HAP-TILE is the efficiency of the algorithm for com-
bining local predictions into longer regions. When coupled with the HAP algorithm
for making local predictions,23 the approach is a factor of a 1000 times faster than
PHASE as verified in two recent benchmarking studies.1,2 The speed of the algo-
rithm is both due to the speed of HAP and the efficiency of the dynamic pro-
gramming algorithm. The speed of the algorithm allowed it to be applied to whole
genome datasets such as the Perlegen data set which contains over 1.5 million SNPs
in 71 individuals for a total of over 100 million genotypes19 as well as the entire
contents of the genotype portion of the NCBI dbSNP database, which contains
over 286 million genotypes.1 The benchmarking studies have shown that HAP-
TILE using HAP for local predictions has comparable accuracy to other state of
the art methods.1,2 HAP-TILE, using HAP for making local predictions, is publicly
available via a webserver at http://research.calit2.net/hap/.

The rest of the paper is organized as follows: Section 2 presents our probabilistic
model for local haplotype predictions over a given region, and the computational
problem of computing a maximum likelihood solution to the haplotyping problem
under this model. Section 3 studies the complexity of the latter problem and gives
a dynamic programming solution for it. Finally, Section 4 details the steps of our
practical haplotyping algorithm.

2. The Generative Probabilistic Model

In this section, we define a probabilistic model for the generation of local predictions
of phasing algorithms given a set of genotypes over some genomic region. We focus
on binary SNPs (having only two alleles). We use the following notation: a haplotype
H is a binary string. A genotype G is a string over the alphabet {0, 1, 2}. We say
that a genotype G ∈ {0, 1, 2}n is compatible with the haplotypes H1, H2 ∈ {0, 1}n,
if for every i the following two conditions hold: (1) if G(i) = 1 or G(i) = 0, i.e.
i is a homozygous position, then H1(i) = H2(i) = G(i); and (2) if G(i) = 2, i.e. i is
an heterozygous position, then H1(i) �= H2(i). If H1, H2 are compatible with G, we
say that (H1, H2) is a phase of G.

Let G1, . . . , Gt be the input genotypes, where the (true) phase of Gi is (F ∗
i , M∗

i ).
We consider (n−k+1) windows, W0, W1, . . . , Wn−k, each of length k, where window
Wl contains positions l+1, . . . , l+k. For every genotype Gi, and every window Wl,
the model generates two haplotypes Hi

0l, H
i
1l ∈ {0, 1}k consistent with Gi in window

Wl, which we call the local predictions of window Wl. At first, Hi
0l(j) = M∗

i (l+j) and
Hi

1l(j) = F ∗
i (l+ j), that is, Hi

0l and Hi
1l are simply the copies of the two haplotypes

in those positions. We then swap the values of Hi
0l and Hi

1l with probability 1
2 .

Therefore, the resulting haplotypes satisfy that with probability 1
2 , Hi

0l is a copy of
F ∗

i (in the corresponding positions) and Hi
1l is a copy of M∗

i , and with probability
1
2 it is the other way around. Finally, we independently swap the values of Hi

0l(j)
and Hi

1l(j) with probability p < 1
2 for every position 1 ≤ j ≤ k.
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Suppose now that Hi
0l, H

i
1l are local predictions for the genotypes, generated as

described above, where i = 1, . . . , t and l = 0, . . . , n− k. Let (F1, M1), . . . , (Ft, Mt)
be a suggested phasing of the genotypes. Then, the log likelihood of this solution
according to our model is:

L =
t∑

i=1

n−k∑
l=0

[
min{hi

0l, h
i
1l} log

p

1 − p
+ k log(1 − p)

]
,

where hi
bl, for b = 0, 1, is the total number of disagreements between Hi

bl and F i

and between Hi
(1−b)l and M i, at positions l + 1, . . . , l + k.

Our goal is to find a solution with maximum likelihood. Since the likelihood
function decomposes over the individuals, we can maximize it separately for each
individual. For the ith individual, this amounts to finding a pair of haplotypes
(F i, M i), for which

∑n−k
l=0 min{hi

0l, h
i
1l} is minimized. This gives rise to the following

problem:

Problem 1 (Minimum Conflict Phasing (MCP)). Given an unphased genotype G

and a set of local prediction for it, each of which is compatible with G, find two
haplotypes that are compatible with G and minimize the number of disagreements
with the local predictions.

3. The Minimum Conflict Phasing Problem

In this section, we study the Minimum Conflict Phasing problem. First, we prove
that the problem is NP-hard. We then provide a linear time algorithm for it, when
the length of a local prediction is fixed.

Theorem 1. Minimum Conflict Phasing is NP-hard.

Proof. We give a reduction from MAX-CUT. Let 〈K = (V, E), r〉 be an instance
of MAX-CUT. Define an instance of MCP as follows: we set the window length k

to |V | + 2|E|, and the length of the genotype n to |V | + 4|E| − 1. Thus, the total
number of windows is n − k + 1 = 2|E|. We let P = {2|E| + 1, . . . , 2|E| + |V |}
be the set of positions shared by all windows, which we call vertex positions. For
convenience, we refer to position 2|E|+ i, corresponding to vertex i ∈ V , as vi. We
define the genotype G as having missing entries over all vertex positions, and being
homozygous with a value of 1 elsewhere. With every edge e ∈ E, we associate two
arbitrary windows We, W

′
e. If e = (i, j), the local predictions for the two windows

We, W
′
e are set in the following way: let H1, H2 and H ′

1, H
′
2 be the two pairs of

haplotypes corresponding to the two windows. For positions vi, vj we set H ′
1(vi) =

H1(vi) = 0, H1(vj) = H ′
1(vj) = 1, H ′

2(vi) = H2(vi) = 1 and H2(vj) = H ′
2(vj) = 0.

For every other vertex position l, we set H1(l) = H2(l) = 0 and H ′
1(l) = H ′

2(l) = 1.
In every nonvertex position, all windows are homozygous with value 1. It should
be noted that the resulting local predictions are consistent with the genotype G,
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since every vertex position is missing in G, and every other position is homozygous
1 both in G and in the local predictions.

We now claim that K has a maximum cut with size at least r, if and only if the
MCP instance has a solution with at most 2(|E||V | − 2r) disagreements. Suppose
there is a phase of G with at most 2(|E||V | − 2r) disagreements. In particular,
consider a phase (F, M) that induces a minimum number of disagreements. We first
claim that without loss of generality, for every vertex position vi we have F (vi) �=
M(vi). Consider the optimal solution with the minimum number of homozygous
positions (that is, positions where F (vi) = M(vi)). We will show that this solution
actually has no homozygous vertices. Otherwise, there is a homozygous vertex vi

such that F (vi) = M(vi). Consider the following two alternative solutions (F1, M1)
and (F2, M2). These solutions are identical to (F, M) on every position, except i.
In position i, F1(vi) = M2(vi) = 1 and M1(vi) = F2(vi) = 0. For every edge
(i, j), the number of conflicts of (F, M) at position i is exactly two (i.e. out of
H1, H2, H

′
1, H

′
2 exactly two have the value F (vi) at position i. On the other hand,

the average number of conflicts of (F1, M1) and (F2, M2) is also two. Thus, summing
over all edges (i, j), the average number of conflicts of (F1, M1) and (F2, M2) is
the same as the number of conflicts of (F, M). Therefore, one of the alternative
solutions is optimal, since the number of conflicts for that solution is at most the
number of conflicts of (F, M). At the same time, the alternative solution has one less
homozygous vertex, contradicting the definition of (F, M) as an optimal solution
with a minimal number of homozygous positions.

Consider the cut induced by the set S = {i ∈ V | F (vi) = 1} of vertices,
whose corresponding positions were assigned 1 in F . Let s denote the number of
edges crossing the cut. For every edge (l1, l2) ∈ E, if F (vl1) �= F (vl2) then the
number of conflicts with the windows We, W

′
e in positions vl1 and vl2 is zero. If

F (vl1) = F (vl2), then the number of disagreements is four. For every other vertex
position, the number of conflicts with We, W

′
e is exactly two, and for every nonvertex

position, the number of conflicts with We, W
′
e is zero. Therefore, the total number

of conflicts is

4|{(l1, l2) ∈ E|F (vl1) = F (vl2)}| + 2(|V | − 2)|E| = 2|E||V | − 4s ≤ 2|E||V | − 4r.

Conversely, given a cut (S, S̄) of size at least r, we define F to have value 1 in
nonvertex positions. For a vertex position vi we define F (vi) = 1, if and only if
i ∈ S, and M(vi) = 1, if and only if i �∈ S. It is easy to verify that the number of
disagreements induced by this solution is at most 2|E||V | − 4r.

3.1. A dynamic programming solution

We now provide a linear time dynamic programming solution to MCP, when the
size of the window k is fixed. We assume that we are given a genotype G of length
n, and local predictions H0l, H1l for 0 ≤ l ≤ n− k. In what follows, we describe the
construction of one of the haplotypes F . The other haplotype M can be derived
from F and G in a straightforward manner.
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Denote by S(j, r) the best haplotype assignment for the first j + k positions in
F , where the last k bits are r = r1, . . . , rk. For every assignment r = r1, . . . , rk to F

at positions j + 1, . . . , j + k, denote by hb(j, r), the total number of disagreements
between Hbj and r and between H(1−b)j and r̄, where r̄ is the implied assignment
to M at these positions. Let h(j, r) = min{h0(j, r), h1(j, r)}. Then, the following
recurrence formula gives S(j + 1, r):

S(j + 1, (r1, . . . , rk)) = min
b=0,1

{S(j, (b, r1, . . . , rk−1)) + h(j + 1, (r1 . . . rk))} ,

where S(0, r) = h(0, r) for all r. It is easy to compute h(j, (r1 . . . rk)) for every
possible j and r in time O(2kn). Using the recurrence formula, we can find S(n−k, r)
for all r. By tracing the solution which leads to a minimal value of S(n − k, r)
(over all values of r), we can reconstruct the haplotypes that attain the maximum
likelihood.

4. The Practical Algorithm

We devised a three-step method, called HAP-TILE, for phasing genotype data,
which is based on the dynamic programming algorithm presented in Sec. 3.1. HAP-
TILE starts by computing local predictions for all possible short segments of the
genotyped region (up to length 12). Then, confidence scores are assigned to each
local prediction. Finally, the dynamic programming algorithm is used to tile the
local predictions into complete haplotype predictions.

We scan the genotypes with a sliding window and compute the local predictions
in each window. In practice, we do not use a fixed-size window, but rather use all
possible window sizes from 2 to L (where L = 12). This is needed, since the density
of heterozygous SNPs may vary considerably along the typed region. Hence, at
every SNP j, we have L − 1 local predictions starting at this SNP.

To make the local predictions, we apply the HAP algorithm to each local
region.23 The HAP algorithm builds on perfect phylogeny principles, and assumes
that the set of haplotypes satisfies the four gamete test, that is, at most three allele
combinations are observed for any pair of marker positions.16

With each local prediction, we associate a confidence level p(j, k), which reflects
the probability that a local prediction of length k that starts at SNP j is correct. The
estimation of these confidence levels assumes that the less diverse the haplotypes
in a region are, the more accurate their prediction will be (see Fig. 1). We compute
a confidence level as the product of two figures. The first is an a priori estimate of
the probability of having strong correlation in a certain region based on its physical
length. Let l(j, k) be the distance between SNPs j and j+k. The prior is based on the
length of the region pl(j, k) = exp

(− l(j, k)
R

)
, where R is a parameter which controls

the decay of the confidence in the prediction with length. We use an exponential
distribution for this estimate, as commonly used for modeling the occurrence of
recombinations. This allows us to take into account the distance between SNPs
in our predictions. The second figure pe(j, k) is an estimate of the probability of
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Fig. 1. Haplotype diversity as a function of region length for the data of Daly et al.18 Each point
corresponds to a region. The x-axis shows the length of the region in kilobases and the y-axis shows
the entropy of the haplotype distribution. For shorter regions, the entropy of the distribution is
smaller, and the haplotypes are less diverse demonstrating that shorter haplotype blocks are likely
to be more accurate.

having such a phase prediction given that the data is generated by random mating
of individuals from the population, whose sample is observed by u0. This estimate is
computed as in Ref. 17. This in turn, can be shown to be equivalent to the entropy
of the haplotype distribution.

In order to combine the estimated confidence levels into the dynamic program-
ming algorithm, we redefine h(j, r) as follows: using the notation of Sec. 3.1, let
hi

b(j, r) be the total number of disagreements for a prediction of length i. We
define:

h(j, r) ≡
L∑

i=2

p(j, i)min{hi
0(j, r), h

i
1(j, r)},

where p(j, k) = pl(j, k)pe(j, k).

5. Conclusions

Recent studies on haplotype structure have shown that haplotypes have limited
diversity in local regions. In these regions, many methods can resolve the haplotypes
from genotype data collected for a population. We have presented HAP-TILE, a
method for combining local haplotype predictions into longer haplotypes. HAP-
TILE coupled with local haplotype prediction algorithm HAP has been applied to
the Perlegen whole genome variation dataset19 and the entire genotype portion of
the NCBI database.1 The efficiency of the approach made possible the inference of
haplotypes in these large datasets. Two recent benchmarking studies have shown
that HAP-TILE using HAP for local predictions has comparable accuracy to other
state of the art methods.1,2
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