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ABSTRACT

In the network querying problem, one is given a protein complex or pathway of species A and
a protein–protein interaction network of species B; the goal is to identify subnetworks of
B that are similar to the query in terms of sequence, topology, or both. Existing approaches
mostly depend on knowledge of the interaction topology of the query in the network of species
A; however, in practice, this topology is often not known. To address this problem, we develop
a topology-free querying algorithm, which we call Torque. Given a query, represented as a
set of proteins, Torque seeks a matching set of proteins that are sequence-similar to the query
proteins and span a connected region of the network, while allowing both insertions and
deletions. The algorithm uses alternatively dynamic programming and integer linear pro-
gramming for the search task. We test Torque with queries from yeast, fly, and human,
where we compare it to the QNet topology-based approach, and with queries from less studied
species, where only topology-free algorithms apply. Torque detects many more matches than
QNet, while giving results that are highly functionally coherent.
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1. INTRODUCTION

Sequence-based searches have revolutionized modern biology, serving to infer gene function, ho-

mology relations, protein structure, and more. In the last few years, there has been an effort to generalize

these techniques to the network level. In a network querying problem, one is given a small subnetwork,

corresponding to a pathway or a complex of interest. The goal is to identify similar instances in a large

network, where similarity is measured in terms of sequence or interaction patterns.

In its simplest form, when ignoring sequence similarity, and requiring exact match of edges in the query

and target subnetworks, this problem corresponds to the NP-hard Subgraph Isomorphism problem. Ty-

pically, further restrictions are imposed on target nodes a query node can map to, for example, based on

sequence similarity of the corresponding proteins in a protein–protein interaction (PPI) network.

The largest body of previous work on network querying concerns querying subnetworks across species.

Kelley et al. (2004) and later Shlomi et al. (2006) devised fixed-parameter algorithms for querying linear

paths within a PPI network. These algorithms were subsequently extended in the QNet software to allow
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searching for trees and bounded treewidth graphs (Sharan et al., 2008). A related work by Pinter et al.

(2005) presented a polynomial algorithm for detecting homeomorphic subtrees within a tree (representing

a collection of metabolic pathways). Another polynomial approach that relaxes the homomorphism but

requires target and query nodes to agree in their neighborhoods was given by Narayanan and Karp (2007).

Sohler and Zimmer (2005) developed a general framework for subnetwork querying, which is based on

translating the problem to that of finding a clique in an appropriately defined graph. Due to its complexity,

their method is applicable only to very small queries. Yang and Sze (2007) examined both path queries and

general ones, but since their method is based on exhaustive enumeration, it can handle small queries only.

A different approach to network querying is to apply network alignment (Kelley et al., 2003) algorithms.

Network alignment was introduced by Ogata et al. (2000) with the aim of detecting functionally related

enzyme clusters (FRECs) by aligning metabolic networks. Another work by Tohsato et al. (2000) is

concerned with the comparative analysis of metabolic pathways and allows querying linear paths. In

general, network alignment algorithms can be adapted to the network querying problem by aligning a query

and a network instead of two networks. See e.g. Kelley et al. (2003) for more information.

Another line of work on network querying, and one that is similar to our own, has been the search for

small motifs defined in terms of the functional attributes of their member proteins, and—in some cases—

the interactions among them. Lacroix et al. (2006) suggested a branch-and-bound approach for finding

connected subgraphs whose vertex set matches a query, which they applied to small queries (of size 2–4)

only. The method was implemented in a program called MOTUS (Lacroix, 2009). NetGrep (Banks et al.,

2008) is a web-tool for identifying subgraphs of interest where the algorithm is based on heuristic pruning

of the possible solution space. A major advantage of this method is its running time, which is fast due to the

emphasis on implementation and the highly specialized nature of their small queries. Betzler et al. (2008)

gave a fixed-parameter algorithm for the latter problem and some extensions of it. An additional heuristic

solution was offered by Zheng et al. (2002) to a similar problem, in the context of querying metabolic

networks. Finally, Ferro et al. (2008) presented the GraphFind algorithm, which utilizes fast heuristics for

subgraph isomorphism to identify approximate matches of queries within a collection of networks. The

Cytoscape (Shannon et al., 2003) plugin NetMatch (Ferro et al., 2007) implements the ideas of GraphFind.

A limitation of the approaches above—except for Betzler et al. (2008) and Lacroix et al. (2006)—is that

they rely on precise information on the interaction pattern of the query pathway. However, this information

is often missing. For example, hundreds of protein complexes have been reported in the literature for yeast

(SGD Project, 2008), human (Ruepp et al., 2008), and other species, but for most of these complexes no

information exists on their interaction patterns (Yu et al., 2008), motivating a topology-free approach for

the querying problem.

Here we devise Torque (TOpology-free netwoRk QUErying), a novel approach for network querying

that does not rely on knowledge of the query topology. The input to our method is a set of proteins,

representing a complex or pathway of interest and a network in which the search is to be conducted. The

goal is to find matching sets of proteins that span connected regions in the network. The corresponding

theoretical problem that we study is searching a colored graph for connected subgraphs whose vertices have

distinct given colors. We provide fixed-parameter dynamic programming (DP) algorithms that utilize the

color-coding paradigm (Alon et al., 1995) for several variants of this problem. In addition, we provide an

integer linear programming (ILP) formulation of it. This formulation includes a novel way to describe

subgraph connectivity constraints, which can be useful in other problems as well. The methods can handle

edge weights, insertions of network vertices (that do not match any query protein), and deletions of query

nodes. We also develop a fast heuristic approach to the problem. By using a combination of the three

approaches, we can query complexes of all sizes within current networks in reasonable time.

We applied Torque to query about 600 known complexes of size 4–25 from a variety of species in the

PPI networks of yeast, fly and human. We tested our algorithm both on queries from species for which a

PPI network is available, where we compared it to the QNet (Sharan et al., 2008) topology-based approach,

and on queries from less studied species, where only topology-free algorithms apply, where we also com-

pared to the methods of Lacroix et al. (2006) implemented in the MOTUS software. Torque detected many

more matches than QNet and MOTUS, while in both cases giving results that are highly functionally

coherent.

A preliminary version of this study appeared in the proceedings of the 13th RECOMB conference

(Bruckner et al., 2009a). A paper describing the Torque web-server implementing these algorithms

appeared in Bruckner et al. (2009b).
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2. PRELIMINARIES

Let G¼ (V,E) be a PPI network where vertices represent proteins and edges correspond to PPIs. Denote

jVj ¼ n and jEj ¼m. For a vertex v, let N(v) denote the set of its neighbors, i.e., N(v)¼fu : (u, v) 2 Eg. For

two disjoint sets S1 and S2, we write S1] S2 for their union S1[ S2. We denote by G[K] the subgraph of G

induced by the vertex set K.

Given a set of colors C¼f1, 2, . . . , kg, a coloring constraint function G : V ? 2C associates with each

v 2 V a subset of colors G (v) � C. For S � C, we define a subset H � V as S-colorful if jHj ¼ jSj and there

is a function c that assigns each v 2 H a color from G(v), such that there is exactly one vertex in H of each

color in S. The basic problem that we study is the following:

Problem 1 (C-colorful Connected Subgraph). Given a graph G¼ (V,E), a color set C, and a

coloring constraint function G : V ? 2C, is there a connected subgraph of G that is C-colorful?

This problem was shown to be NP-complete by Fellows et al. (2007), even for the case of trees of

maximum degree 3. Here we provide fixed-parameter algorithms for several variants of this problem, where

the parameter is the size of the query complex. A problem is fixed-parameter tractable with respect to a

parameter k if an instance of size n can be solved in f (k) � nO(1) time, where f is an arbitrary function. Thus,

fixed-parameter algorithms allow solving relatively large instances of NP-hard problems exactly (Nie-

dermeier, 2006), as long as the parameter value is modest.

We present three different approaches to Problem 1: A dynamic programming-based randomized

algorithm is presented in Section 3, an integer linear programming formulation is described in Section 4,

and in Section 5 we present a fast heuristic approach. Later sections describe implementation, experimental

results, and conclusions.

3. DYNAMIC PROGRAMMING

In this section, we show how to solve Problem 1 using a randomized dynamic programming approach.

We first consider only coloring constraint functions that associate each v 2 V with a single color. In this

case, the input is a graph where each vertex is assigned a color from C, and we aim to find a connected

subgraph having exactly one vertex of each color. In Section 3.3, we give a reduction from the general case

to the single color case.

Since every connected subgraph has a spanning tree, it suffices to look for colorful trees. This problem

has been studied by Scott et al. (2006) in another context, as well as by Kalaev et al. (2008) and Betzler et

al. (2008). For completeness, we provide a dynamic programming (DP) algorithm, which is the unweighted

version of the algorithm given by Scott et al. (2006). We construct a table B with rows corresponding to

vertices and columns corresponding to subsets C0 � C. We define B(v,S)¼ True if there exists in G a

subtree rooted at v that is S-colorful, and False otherwise. For S¼ {g} and v 2 V we initialize B(v,g)¼ True

iff G (v)¼ {g}. Other entries of B can be computed using the following recurrence:

B(v, S)¼
_

u2N(v)

S1]S2¼ S

C(v)2S1, C(u)2S2

B(v, S1) ^ B(u, S2): (1)

The algorithm runs in O(3km) time.1 One can easily generalize (1) to the weighted case, where each edge

is assigned a weight, and the heaviest tree is sought. In this case, the algorithm finds, for each vertex, the

heaviest (maximum total edge weight) colorful subtree rooted at it. We note that this does not guarantee

finding the heaviest subgraph containing a given vertex. The latter variant seems not to be amenable to this

approach, unless some structure is assumed on the heaviest subgraph (such as being of bounded treewidth).

Initialization: For S¼ {g} define B(v,g)¼ 0 iff G (v)¼ g, B (v, g)¼�? otherwise.

1It can be further reduced to O(2km) using the techniques of Björklund et al. (2007); however, this version cannot be
generalized to the weighted case, so we do not use it.
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Recursion:

B(v, S)¼ max
u2N(v)

S1]S2¼ S

C(v)2S1, C(u)2S2

B(v, S1)þB(u, S2)þw(u, v), (2)

where B(v,S) is now a real number instead of a Boolean value. The weight of an optimum match is given by

maxv B(v,C).

3.1. Insertions and deletions

Exact matches are often impossible due to evolutionary variation and noise in the data. Hence, we would

like to allow deletions of query proteins that cannot be matched and insertions of network proteins that

assist in connecting matched vertices. Deletions can be directly handled by the DP algorithm: If no

C-colorful solution was found, then B(v,C)¼False for all v. Allowing up to Ndel deletions can be done

by scanning the entries of B. If there exists ĈC � C such that jĈCj�jCj �Ndel and B(v, ĈC)¼ True, then a valid

solution exists.

When allowing insertions, there are several problem variants to consider (Fig. 1). In the first variant,

some network vertices are not assigned a color, and only non-colored vertices can be inserted. For con-

venience, assign non-colored vertices the color 0. Let us call such insertions special.

Definition 1. An S-colorful solution allowing j special insertions is a connected subgraph H � G,

where AH0 � H such that V (H0) is S-colorful and all other vertices of H are non-colored.

An obvious extension of the DP algorithm to handle up to Nins special insertions is based on the color-

coding paradigm of Alon et al. (1995): Randomly color the non-colored vertices with Nins new colors and

use DP to look for colorful trees. This procedure is repeated a sufficient number of times to ensure that

every tree is colorful with high probability. However, the running time increases by a factor of (3e)Nins . We

provide a more efficient solution below.

Theorem 1. Finding a C-colorful connected subgraph with up to Nins special insertions can be

solved in O(3kmNins) time.

Proof. We extend the DP table to represent also the number of special insertions used in an inter-

mediate solution. Formally, B(v,S,j) iff there is an S-colorful subtree rooted at v that allows j special

insertions, and j is the minimal number of insertions possible. Here j ranges between 0 and Nins. We

FIG. 1. Network query problems. (Left) The network, where vertex j is non-colored. (Right) Queries. For the basic

problem disallowing indels, Q1 is solved by {c,b,i}, while Q2 and Q4 have no solution. When allowing a single

arbitrary insertion, Q2 has solution {a,d,h,i} and Q4 has the solution {a,b,c,d,i}. When allowing a single special

insertion, Q3 has the solution {a,b,g,j}. When allowing one deletion, Q2 has the solutions {a,d}, {i,f}. When allowing

repeated nodes and no indels, Q5 has the solution {b,c,i,f,g}.
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initialize the table by setting all entries to False, except: (i) For g = 0, B(v, {g}, 0) iff G (v)¼ g; and (ii)

if G (v)¼ 0, B (v, ;, 1). Entries for which jSj � 1 and j > 0 are then computed using the following

recurrence:

B(v, S, j)¼
h _

u2N(v)

S1]S2¼ S

j1þ j2¼ j

B(v, S1, j1) ^ B(u, S2, j2)
i
^ 8j05 j : :B(v, S, j0): (3)

We prove correctness by induction on jSj and j. The cases j¼ 0 and S¼; are immediate. Therefore,

consider j > 0 and as the first case S¼ {g} (i.e., jSj ¼ 1). By definition:

B(v, fcg, j)() 9u 2 N(v), S1, S2, j1, j2 :

B(v, S1, j1), B(u, S2, j2), S1 ] S2¼fcg, j1þ j2¼ j, 8j05 j : :B(v, fcg, j0):
(4)

We prove the case jSj ¼ 1, j4 0 by induction over j. Assuming there are u, S1, S2, j1, j2 as above, then S1

cannot be {g} since 8j05 j : :B(v, fcg, j0). It follows that S1¼; and S2¼ {g}, implying that C(v)¼ 0,

j1¼ 1, and j2¼ j� 1 (see initialization of B). By the induction hypothesis on j, B(u, fcg, j� 1) implies that

there exists a tree T rooted at u having one vertex colored g and a minimal number of j � 1 non-colored

vertices. Clearly, v =2 T. Otherwise, there will be a tree T 0 rooted in v having one vertex colored g and j0 < j

special vertices, in contradiction to the minimality of j. Since u [ N(v), then T ] {v} is a tree having one

vertex colored g and j non-colored vertices, as desired.

It remains to handle the case where jSj > 1 by induction over jSj and j. By definition:

B(v, S, j)() 9u 2 N(v), S1, S2, j1, j2 :

B(v, S1, j1), B(u, S2, j2), S1 ] S2¼ S, j1þ j2¼ j, 8j05 j : :B(v, S, j0):
(5)

Suppose such u, S1, S2, j1, j2 exist. Then by the induction hypothesis, there is a tree Tv rooted at v that is

S1-colorful and contains a minimal number j1 of special vertices. Similarly, there is a tree Tu rooted at u that

is S2-colorful and contains a minimal number j2 of special vertices. Tu and Tv are clearly disjoint:

Otherwise, there would be another tree T 0 rooted at v which is S-colorful and contains j0 < j1 þ j2 special

vertices, in contradiction to :B(v, S, j0) Since u [ N(v), the union of these trees is (S1 ] S2)-colorful and has

j1 þ j2 special vertices, as desired.

To achieve the stated running time, we maintain an auxiliary function t(v, S) which is evaluated to j when

for the first time B(v, S, j) is true for some j. In the recursion (3), we replace the condition j1 þ j2¼ j by t(v,

S1) þ t(u, S2)¼ j. Since the table is (Nins þ 1) times the size of the table in the basic case, the running time

increases by a factor of Nins compared to the basic case. &

3.2. Arbitrary insertions

In a second variant of insertion handling, any vertex can be inserted (rather than only non-colored ones).

We solve this variant by using the algorithm for the problem with special insertions as a black box. Instead

of running the algorithm on the input graph G, we run it on an auxiliary graph G0 ¼ (V0,E0), which is

constructed as follows: Add a non-colored copy v0 for each v [ V, and set E0 ¼E [ f(v0, u) j
(v, u) 2 Eg [ f(v0, u0) j (v, u) 2 Eg. Asymptotically, this does not change the running time.

Theorem 2. The above algorithm solves the arbitrary insertions variant in time O(Nins3
km).

Proof. A match in G can be translated to a match in G0 by replacing vertices of repeating colors with

their copies. Conversely, let ~TT � G0 be a subgraph satisfying the coloring constraints, having j special

insertions. Let U¼ ~TT \ V and U0 ¼ ~TTnU. The crucial observation is that ~TT does not contain a pair {v, v0},

as otherwise we obtain a contradiction to the minimality of j (we can replace each edge (u, v0) with an

edge (u, v) and obtain a solution having j � 1 insertions). It follows that U [ fv j v0 2 U0g is a valid

match in G.

The bound on the running time follows from the observation that the size of G0 is linear in the size of G. &
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3.3. Multiple color constraints

We now turn to the more general case, where a color constraint function can associate each vertex with a

set of colors and not just a single color. This problem arises when a network vertex protein is homologous

to several query proteins. Betzler et al. (2008) gave a fixed-parameter algorithm for the problem, where the

running time is increased by a factor of (2e)k compared to the case of single color constraints. Here we give

an alternative fixed-parameter algorithm (coupled with some speedup heuristics). The basic idea is to

reduce the problem to the single color case by randomly choosing a single valid color for every vertex. Our

main effort is in computing an upper bound on the number of coloring iterations needed.

Define a color graph to be a bipartite graph B¼ (V, C, E) where V is the set of network vertices, C is the

set of colors and (v, c) 2 E() c 2 C(v). Consider a possible match to the query; for clarity, we assume

that this match does not contain insertions or deletions. Then we can prove the following bound:

Theorem 3. The probability Pc for a subset of vertices of size k to become colorful in a random

coloring is at least 1
k!.

Proof. Take a solution set S¼fv1, . . . , vkg and the color subgraph B0 induced by S [ C. Let di

denote the degree of vi in B0. Suppose, w.l.o.g., that d1 � . . . � dk. Finally, denote by Perm(B0) the number

of perfect matchings in B0. Note that there is a 1-1 mapping between colorful colorings of S in G and perfect

matchings in B0.
The probability in question is equal to the ratio of number of perfect matchings to the number of ways to

color the vertices of the solution, i. e., Pc¼ Perm(B0)Qk

i¼ 1
di

. We claim that if Perm > 0 then Pc � 1
k!. Indeed, under

the conditions set above, Ostrand (1970) proved the following bound:

Perm(B0) �
Yk

i¼ 1

maxf1, di� iþ 1g (6)

Let D1¼fdi j di � ig and D2¼fdi j di 5 ig. Observe that if di [ D1, then di � iþ 1
di
� 1

i
. Otherwise, di < i

and 1
di
4 1

i
. Thus,

Pc �
Qk

i¼ 1 maxf1, di� iþ 1gQk
i¼ 1 di

¼
Y
i2D1

di� iþ 1

di

Y
i2D2

1

di

�
Y
i2D1

1

i

Y
i2D2

1

i
¼
Yk

i¼ 1

1

i
¼ 1

k!
: (7)

&

Theorem 3 implies an overall running time of O(k!3kmN2
ins) in the case of multiple color constraints. However,

this bound is excessive in many instances, for the following reason. Let V0 be a set of colored vertices. Following

Sharan et al. (2008), define the constraint graph G(V0) as follows: the vertices are the colors, and an edge exists

between two colors g1, g2 if there is a vertex v in V0 such that c1, c2 2 C(v). The resulting graph is then

partitioned into connected components P1, P2, . . . , Ps. This partition induces a partition of the colored

network vertices into sets Q1, Q2, . . . , Qs, where all the vertices of Qi can be colored only by colors from Pi.

The expected number of iterations required for a Pi-sized subset of Qi to become colorful is bounded by

jPij!, and thus the number of iterations required for a solution of size k to become colorful is bounded byQs
i¼ 1 jPij!. Therefore, the expected number of iterations of the algorithm is also bounded by

Qs
i¼ 1 jPij!.

We can reduce this upper bound using the following two rules: (i) If for some i, the product of all color

degrees in Qi is smaller than jPij!, then it is beneficial to exhaustively enumerate all possible colorings of

Qi. (ii) By Hall’s Theorem (Lovász and Plummer, 1986), if a graph has a perfect matching and its minimum

degree is d, then it has at least d! perfect matchings. Therefore, if the minimal color degree in Qi is d,
jPij!
d!

random iterations suffice.

In practice, we find that the above reductions bring the number of required iterations to under 100 in the

majority of cases. This is considerably less than the theoretical bound proposed by Betzler et al. (2008). For

example, when querying for human complexes in yeast, we obtain an improvement of at least 50% in the

number of iterations in 45% of the complexes.

We apply a preprocessing step in each iteration of the DP algorithm to reduce the graph size. Each such

iteration assigns each vertex a single color from its set of allowed colors. We then look at the subgraph H

induced by the set of vertices that are assigned a private color, i.e., a color that was not assigned to any
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other vertex. We split H into its connected components, and merge the vertices of each connected com-

ponent to a new vertex. Each new vertex is assigned a new color, and this reduced set of new colors

replaces the private colors. The DP algorithm then receives as input a reduced graph and set of colors,

resulting in a faster running time and no effect on the quality of the results.

4. INTEGER PROGRAMMING FORMULATION

In this section, we provide an ILP formulation of the network querying problem, allowing us to employ

ILP solvers that on certain instances are faster than DP. Formally, the problem that we aim to solve using

the ILP is Problem 1 (C-colorful Connected Subgraph) with exactly Nins arbitrary insertions and

exactly Ndel arbitrary deletions. Further, we are given edge weights x : E ! Q and wish to find a vertex

subset K � V of size t :¼ kþNins�Ndel that maximizes the total edge weight
P

(v, w)2E, v, w2K xvw.

We declare binary variables fcv : v 2 Vg that express whether a vertex v is selected into the complex K.

It is easy to give constraints that ensure correct coloring; the difficulty is in expressing the connectivity.

The idea is to find a flow2 with t � 1 selected vertices as sources of flow 1, and a selected sink r that drains

a flow of t � 1, while disallowing flow between non-selected vertices. We use the following variables:

fcv : v 2 Vg, cv 2 f0, 1g vertex v is selected (v 2 K) (8)

fevw : (v, w) 2 E, v5wg, evw 2 f0, 1g edge (v, w) is in G[K] (9)

frv : v 2 Vg, rv 2 f0, 1g vertex v is the sink (10)

ffvw, fwv : (v, w) 2 Eg, fvw, fwv 2 Q flow from v to w=w to v (11)

fgvc : v 2 V , c 2 C(v)g, gvc 2 f0, 1g vertex v has color c (12)

and the following constraints

X
v2V

cv¼ t (13)

X
v2V

rv¼ 1 (14)

evw � cv ^ evw � cw 8(v, w) 2 E (15)

2evw � cvþ cw� 1 8(v, w) 2 E (16)

fvw¼ � fwv 8(v, w) 2 E (17)X
w2N(v)

fvw¼ cv� trv 8v 2 V (18)

fvw, fwv � (t� 1)evw 8(v, w) 2 E (19)X
c2C(v)

gvc � 1 8v 2 V (20)

X
v2V

gvc � 1 8c 2 C (21)

X
v2V

X
c2C(v)

gvc¼ t�Nins (22)

gvc � cv 8v 2 V , c 2 C(v) (23)

2That is, a function f : V · V ! Q that satisfies skew symmetry (8v, w 2 V : f (v, w)¼ � f (w, v)) and flow conser-
vation (

P
w2V f (v, w)¼ 0) for all vertices v except sources and sinks; for an introduction on flows, see Cormen et al.

(2001).
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with the objective

maximize
X

(v, w)2E

xvwevw: (24)

We now turn to proving the correctness of the formulation above.

Theorem 4. The ILP defined by (8)–(24) correctly solves Problem 1.

Proof. The integrality constraints (8) and (9) and the inequalities (15) and (16) ensure that evw¼ 1 if

and only if cv¼ 1 ^ cw¼ 1. Therefore, the two objectives match. It remains to show that the constraints of

Problem 1 are met if and only if the constraints (13)–(23) are met.

‘‘)’’: Given a solution of Problem 1, set cv, evw, and gvg as described in (8), (9), and (12), respectively.

Select an arbitrary r [ K and set rr¼ 1 and rv¼ 0 for each v [ V,v = r. Let T be a spanning tree of G[K]

(which exists because G[K] is connected) with edges directed towards r. Set fvw for (v,w) [ E(T) to the

number of vertices in the subtree of T rooted in v, and set fwv¼� fvw and fvw¼ 0 for v =2 K or w =2 K. It is

then easy to verify that (13)–(23) hold.

‘‘(’’: Given a solution of the ILP, let K, r, and c be defined by (8), (10), and (12), respectively. Because

of (13), we have |K|¼ t, and because of (14), r is well-defined. Constraints (20) make g be well-defined, and

(21) make sure it is colorful. Because of (22), there are exactly t � Nins colored vertices, and with (23) they

must all be in K, implying that there are exactly Nins uncolored vertices in K.

It remains to show that G[K] is connected. For this, we show that every v= r [ K has a path to r

consisting only of vertices from K. Constraint (17) ensures flow skew symmetry. Constraint (18) ensures

that the outgoing flow
P

w2N(v) fvw is 1 for v [ K, v = r and 0 for v =2 K. For the root r, we always have

cr¼ 1, since (17) and (18) requires at least one edge with positive flow incident on r, and so (19) and (15)

force cr¼ 1. Thus, for the root r, the outgoing flow is �(t � 1), and f forms a valid flow with (t � 1) sources

K n frg and one sink r.

Consider now v= r [ K. Because of (18), v has at least one neighbor w with fvw � 1. Because of (19), we

have w [ K. We continue this way until reaching r or reaching a vertex w0 for the second time. If we

reached w0 again, we can decrease the flow on all edges traversed after w0 by 1, yielding another valid flow

without violating any of (17), (18), and (19). This will eventually provide a path to r.

5. SHORTEST-PATH BASED HEURISTIC

The similarity measure we employ between complex and network proteins is homology-based. We often

observed that the majority of network proteins were not sufficiently similar to any complex protein, and can

be used only as ‘‘special’’ insertion vertices. Therefore, in practice, only a small fraction of the network

proteins was assigned any color. We thus developed a fast heuristic that solves problem 1 when the number

of colored vertices is small, without allowing indels. We then use this method as a preliminary step,

accepting the solutions it returns and running the DP or ILP algorithm in the cases where the heuristic

returns no solution (either because it failed to find one, or because indels are required).

Our heuristic is based on a shortest-path algorithm to obtain a fast solution. Several fast iterations are

run. During each iteration, one new vertex is added to the solution while a set of vertices is removed from

the network, making the problem smaller. The model includes weighted edges and supports multiple colors

per vertex. A ‘‘vertex of color c’’ in this context is a vertex that has c in its coloring constraints.

The algorithm maintains a partition of V into three sets, Vin, Vout, and Vopen Starting with Vopen¼V,

vertices are greedily moved from Vopen either to Vin, meaning that they are to be part of the solution set H,

or to Vout, meaning that they are not to be part of H.

We define several dynamically changing variables, functions and properties determined by the partition

(Vin, Vout, Vopen).

� A vertex in Vopen is unique if there is no other vertex of the same color in Vopen.
� For v in Vopen, let d(v) denote the number of edges in a shortest path in G[Vin [ Vopen] from v to the

closest vertex of Vin (or ? if no such path exists.)
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� For any color c such that Vopen contains at least one vertex of color c, let dist(c)¼ minvjc2C(v) d(v).

Let c*¼ argmaxc dist(c). Let v* be a vertex with color c* and d(v*)¼ dist(c*). If there are several

options for v*, break ties according to the sum of the edge weights along the path from the candidate to

Vin.

The following actions occur automatically at any point in the algorithm and take priority over the other

steps of the algorithm.

� If a vertex becomes unique it is moved from Vopen to Vin;
� If a vertex is placed in Vin, all other vertices of the same color are placed in Vout, if they cannot be

assigned any other colors that are not already represented in Vin.
� If v [ Vopen and d(v)¼? then v is placed in Vout.

We assume that there is at least one unique vertex at the beginning of the algorithm. If there are no

unique vertices, we choose the least frequent color and run the heuristic several times, keeping only a single

vertex of this color and removing the rest each time. A connected component of G[Vin [ Vopen] is called

essential if there is some color c such that the component contains a vertex of color c, and no other

component contains a vertex of color c. The partition (Vin, Vout, Vopen) is called bad if G[Vin [ Vopen]

contains two or more essential components. The algorithm tries to keep adding vertices to Vin without

creating a bad partition. A path in G is called feasible if it can be colored in such a way that every vertex on

it has a different color.

Now we are ready to describe a general step of the algorithm, in which Vin, Vout, and Vopen are given. We

may assume that there are no unique vertices in Vopen, since they would have been automatically added to Vin.

General step: Execute the first case for which the precondition holds.

Case 1. G[Vin] is connected and V open is empty: Return SUCCESS

Case 2. G[Vin] is connected or the degree d(v*) in the graph induced by Vin [ Vopen is � 3:

Vin  Vin [ fv�g.
Case 3. There is no feasible path joining two connected components of G[Vin]: Return FAILURE

Choose a shortest feasible path joining two connected components of G[Vin]. This path can be found, for

example, by a simple depth search first (DFS) procedure, where we also keep a list of all possible color

combinations that are feasible along the path. When a path is extended and it has several options of colors,

combinations repeating a color are eliminated. If there are several options for this path, break ties according

to the sum of the edge weights along it. Let the first vertex of Vopen in that path be v.

Case 4. Adding v to Vin and the other vertices of the same color as v to Vout does not create a bad

partition: Vin  Vin [ fvg
Case 5. There is a vertex w of the same color as v such that adding w to Vin does not create a bad

partition: Vin  Vin [ fwg
Case 6. Return FAILURE

6. IMPLEMENTATION

We implemented a pipeline called Torque for querying a complex given as a set of proteins from a source

species in the PPI network of a target species. Torque runs with increasing number of allowed indels until a

match is found or a pre-specified bound on the number of indels is reached. Matches are assigned a score

based on edge weights, and the highest scoring match is finally output. The problem version addressed is the

multiple colors per vertex model with arbitrary insertions. Before applying the computationally intensive DP

or ILP methods, we try the fast heuristic based on shortest paths that does not allow indels but works well in

practice on small instances (our tests show it returns a good match about 60% of the time). We now describe

the stages of the algorithm, the scoring scheme, and the parameters we used for our testing.

Preprocessing. A protein complex is specified as a set of proteins. We associate a distinct color with

each query protein and define a corresponding coloring constraint function. Each vertex in the target

network is associated with a subset of colors corresponding to the query proteins it is sequence-similar to.
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In practice, only 5% of the vertices on average are associated with one or more colors. The rest are treated

as non-colored.

While some of the non-colored vertices can be used as insertion vertices, many are too far from any

colored vertex to be feasible insertions under the given upper bound Nins. Let v be a non-colored vertex, and

let d0(u, v) be the the length (number of edges) of the shortest path between u and v where every vertex on

the path is required to be non-colored. We keep v if there are colored vertices u1, u2 such that d0(u1, v) þ
d0(u2, v) � Nins þ 1, and the corresponding paths are vertex-disjoint. Otherwise, we remove v from the

network. On the networks and complexes that we tested, subnetworks containing only colored vertices are

usually of size less than 50, those allowing 1–2 insertions have 200–1000 vertices, and those allowing more

insertions typically cover up to 99% of the network.

After computing the current subnetwork to search in, we partition it into its connected components and

search in each one independently. A component is feasible if the color constraints of its vertices contain at least

k� Ndel colors of the query. Next, we process feasible connected components of increasing size, searching for

the highest scoring matched complex using any of our methods. We increase the number of indels, generating

larger connected components, until a solution is found that contains the minimal number of insertions and

deletions, where insertions are preferred over deletions, as they can be better attributed to incomplete data.

Running the query algorithms. When querying a connected component, its unique properties dictate

which of our methods will find a match more efficiently. In the case when the connected component does

not contain any special insertion vertices, we begin with the shortest-path heuristic, which terminates

quickly. If it returns a match, we accept it as the solution for this connected component. Otherwise, we

attempt either the DP or the ILP methods. While the ILP solution is faster on many cases, its running time is

unpredictable, unlike the DP algorithm, which tends to be more stable in running time and also guarantees

optimality or determines that no solution exists. We therefore chose to use it only in certain cases: As a rule

of thumb, when the number of vertices is very close to the number of colors k, and k is large, the ILP

algorithm is preferable, since we observed that its running time is less sensitive to k, while the color-coding

algorithm is exponential in k. Based on empirical tests, we apply the ILP algorithm whenever 2n�k < 3k,

where n is the size of the connected component. This condition was satisfied in about 2/3 of the connected

components we tested. For the DP algorithm, we used the multiple colors per vertex model, generating

color assignments for the vertices using the bounds described in Section 3.3, thus reducing the number of

iterations required.

Scoring. We score a set of proteins matching a query using the approach of Sharan et al. (2005). Briefly,

a match is assigned a likelihood ratio score, which measures its fit to a protein complex model (assuming

that every two proteins in a complex should interact with high probability, independently of all other pairs)

versus the chance that its connections in the target network arise at random. The protein complex model

assumes that every two proteins in a complex should interact, independently of all other pairs, with high

probability b. The random model assumes that the PPI graph was chosen uniformly at random from the

collection of all graphs with the same vertex degrees as the observed one. This random model induces a

probability of occurrence puv for each edge (u, v) of the graph. To accommodate for information on the

reliability of interactions, the interaction status of every vertex pair is treated as a noisy observation, and

its reliability is combined into the likelihood score. Overall, for a match U, the likelihood ratio score is

expressed as a sum over the vertex pairs in the match:

L(V)¼
X

(u, v)2U · U

log
bPr(Ouv j Tuv)þ (1� b)Pr(Ouv j Fuv)

puvPr(Ouv j Tuv)þ (1� puv)Pr(Ouv j Fuv)
, (25)

where Ouv denotes the set of experimental observations on the interaction status of u and v, Tuv denotes the

event that u and v truly interact, and Fuv denotes the event the u and v do not interact. The computation of

Pr(Ouv j Tuv) and Pr(Ouv j Fuv) is based on the reliability assigned to the interaction between u and v.

When applying the DP algorithm, we output the highest scoring tree rooted at each vertex. Then, for each

such solution tree, we compute the score of the subgraph that is induced by its vertices, taking into account

edges and non-edges, to produce a final score for this vertex set.

Parameter setting. Our tests were performed using the following set of parameters. We queried

complexes of size 4–25. Query and network protein sequence similarities were evaluated using BLAST.

For a vertex v and a color g, we let c 2 C(v) if the BLAST E-value obtained by comparing the sequences of

v and the query protein corresponding to g was less than 10�7. Such protein pairs are sequence similar. For
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each complex, we allowed Torque to run at most one hour, and took the best solution up to that point. We

set the maximum number of allowed insertions and deletions to 2 of each for small complexes (size < 7), 3

of each for medium sized complexes (size 8–14), and 4 of each for larger complexes.

The algorithms were implemented with Python 2.5.2; for the ILP, we used CPLEX 11.0.1 with the

default settings. The test machine was a 3 GHz Intel Xeon (only one CPU was used) with 8 GB of memory,

running Debian GNU=Linux 4.0.

7. EXPERIMENTAL RESULTS

We applied Torque to query protein complexes within the three largest eukaryotic PPI networks

available to date: yeast (5430 proteins, 39936 interactions), fly (6650 proteins, 21275 interactions), and

human (7915 proteins, 28972 interactions). As queries, we used six collections of protein complexes from

different species: yeast, fly, human, bovine, mouse, and rat. The first three served us to validate our

algorithm and compare it to the state-of-the-art QNet algorithm (Sharan et al., 2008).3 The last three, for

which no large-scale PPI information exists, allowed us to explore the power of the algorithm in querying

protein complexes for which no topology information is available. We compared our results for all data

collections in yeast with those of MOTUS (http:==genome.imim.es=~vlacroix=motus=), a program for

querying for colorful motifs in networks that is based on the work of Lacroix et al. (2006). In the following,

we describe the data, the evaluation measures, and the results obtained.

Data acquisition. For yeast, fly, and human, we used the networks recently published by Yosef et al.

(2009). Their networks were obtained using up-to-date PPI data gathered from several papers (Stanyon et

al., 2004; Rual et al., 2005; Stelzl et al., 2005; Gavin et al., 2006; Krogan et al., 2006; Reguly et al., 2006)

and from public databases (Xenarios et al., 2002; FlyBase-Consortium, 2003; Peri et al., 2003). High-

throughput mass spectrometry data (Gavin et al., 2006; Krogan et al., 2006) was translated into binary PPIs

using the spoke model (Bader and Hogue, 2002). Yeast complexes were downloaded from SGD (SGD

project, 2008) (Macromolecular Complex GO-Slim category). Fly complexes were obtained using the

AmiGo (GO Consortium, 2008) browser to collect all proteins annotated with GO:0043234 (protein

complex). The complexes for all mammals (human, mouse, rat, bovine) were downloaded from the

CORUM website (Ruepp et al., 2008).

Quality evaluation. To evaluate the quality of the matches, we used two measures: functional coherence

and specificity. The first measure reports the percent of matches that are significantly functionally coherent

with respect to the Gene Ontology (GO) (GO Consortium, 2000) annotation. Note that while the query is

functionally coherent, the reported matches may not be so due to permissive homology matching and the

noise in the PPI data. To compute the functional coherence of a match, represented as a set of proteins, we

used the GO TermFinder (Boyle et al., 2004) tool. The p-values returned by the tool were further corrected

for multiple match testing using the false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995).

The second measure reports the specificity of the suggested solution, i.e., the fraction of matches that

significantly overlap with a known protein complex. The significance of the overlap was evaluated using

the hypergeometric distribution. The resulting p-value was compared to those obtained on 100 random sets

of proteins of the same size to produce an empirical p-value. Those p-values were FDR-corrected for

multiple testing. This specificity computation was applied to the matches that had a non-zero overlap with

the collection of complexes to which they were compared. We also report separately those novel matches

that had no overlap with known complexes. Although it is possible that some of these non-overlapping

matches are false positives, we believe that the high percentage of specific matches indicate that some—or

most—of these are indeed novel complexes.

Comparison to QNet. Our first set of experiments focused on the yeast, fly and human networks and

protein complex collections. For each of the three species, we queried its complexes in the networks of

the other two species. As large-scale networks are available in this setting, we could compare ourselves to

the QNet algorithm (Sharan et al., 2008), which was designed to tackle topology-based queries. While exact

topology for the query complexes is mostly unknown, QNet infers it by projecting the complexes onto the

3A comparison to GraphFind (Ferro et al., 2008) was not feasible, since its interface does not allow automated
execution of the more than 600 queries.

TOPOLOGY-FREE QUERYING OF PPI NETWORKS 247



corresponding network. This results in a set of possible spanning trees for the complex that are hence

provided to QNet as inputs. This makes QNet very dependent on the quality of the source network, in

addition to the usual dependence on the quality and completeness of the target network. We used the

original QNet code with the same machine setup and parameters as our algorithm: sequence similarity,

insertions and deletions, and time limits.

A striking difference between Torque and QNet can be seen from the results in Figure 2: out of 433

feasible queries overall, Torque detected matches for 311 of them, while QNet found matches for 114

only. As we show below, this 170% gain in sensitivity did not harm the specificity of the results.

Next, we turned to evaluate the results using the functional coherence and specificity measures described

above. The results for the three data sets are summarized in Table 1. As evident from the table, even though

Torque matched many more queries, its results exhibit higher functional coherence and similar specificity

levels. As our functional coherence results are highly significant, it may be possible to predict new anno-

tations for the proteins in our solutions that are not enriched with the GO terms known for the query complex.

Topology-free queries. A unique characteristic of Torque is its ability to query protein complexes for

which a topology is not known. Here we apply our algorithm to query, for the first time, sets of protein

complexes of mouse (59 complexes), rat (55), and bovine (10)—species for which no large scale PPI data

are currently available. In Table 2, we present the results of querying these complexes within the networks

of yeast, fly and human. As evident from the table, more than 95% of the feasible queries had a match, and

the majority of the matches were functionally enriched or matched a known complex.

Comparison to MOTUS. MOTUS (Lacroix, 2009) is software for colored motif search and inference in

vertex colored graphs. Its inputs are a network (list of unweighted edges), where each vertex has a label,
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FIG. 2. Comparison of number of matches for Torque and QNet.

Table 1. Quality Results

Functional coherence Specificity Novel matches

Network Complex Torque QNet Torque QNet Torque QNet

Yeast Fly 23 (100%) 2 (100%) 19 (82%) 2 (100%) 7 0

Human 134 (95%) 49 (98%) 119 (85%) 47 (94%) 8 2

Fly Yeast 8 (100%) 3 (60%) 8 (100%) 4 (80%) 1 0

Human 56 (90%) 21 (87%) 62 (100%) 23 (95%) 22 5

Human Yeast 48 (84%) 25 (78%) 43 (75%) 23 (71%) 8 6

Fly 21 (72%) 0 (—) 21 (72%) 0 (—) 7 0

Total 290 100 272 99 46 13

The table lists the number and percentage of matches, out of all found matches, that pass a significance threshold of 0.05, and the

number of novel complexes detected.
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and a query motif, modeled as a set of labels. MOTUS then lists all connected occurrences of this motif in

the network. The version we tested, provided by the authors in March 2009, does not include support for

multiple labels per vertex (equivalent to our multiple colors per vertex), deletions and gaps (insertions), or

weighted edges. Therefore, we tested MOTUS on our data in the cases where every network protein was

similar to at most one query protein, implying that there is only a single color (or label) per vertex. We

removed from the query all nodes that had no similar vertex in the network at all (a priori deletions). For

each occurrence found, we looked at the subgraph induced by this occurrence on our original weighted-

edges network, and scored the subgraph as described in Section 6. We tested MOTUS on complexes from

all species queried in the yeast PPI network. On this reduced set of instances, MOTUS found a match for 44

out of 220 feasible complexes (*20%), while Torque found a match in 199 (*90%) of the cases. MOTUS

returned a match for most small motifs (sizes 3–5) that did not require insertions or deletions, while larger

motifs or those that Torque matched using indels were usually not found within the time constraint of one

hour and the memory constraint of 8 GB. Since MOTUS finds all possible occurrences of the motif, the

optimal, highest scoring solution can also be found in its output.

Indels and running time. A major advantage of our approach is its flexibility in allowing insertions and

deletions. Indeed, only 80 of our 482 identified matches required no insertions or deletions at all. The

number of allowed insertions affects the size of the components tested, and therefore affects the running

time. In general, the running time of Torque depends on many factors: complex size, number of homologs

for each query protein, and the size of the connected component tested. Figure 3 gives the running time

Table 2. Statistics of Querying Protein Complexes for Which No Topology Information Is Available

Network Complex No. feasible No. matches Functional coherence Specificity Novel matches

Yeast Bovine 4 4 4 4 0

Mouse 17 17 16 13 1

Rat 23 20 19 9 6

Fly Bovine 3 0 — — —

Mouse 14 7 0 1 6

Rat 34 21 17 7 14

Human Bovine 4 4 2 1 0

Mouse 48 46 32 24 6

Rat 44 43 32 24 4

Total 191 162 122 83 37

FIG. 3. Runtime distribution of queries. The figure shows the cumulative percentage of queries completed within

each running time. Queries were stopped after 3600 seconds, so 100% is not reached.
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distribution of all queries, i.e., the fraction that were completed within each time frame, for each of the

three target networks. As the graph shows, more than 30% of queries from all networks were processed in

10 seconds or less, and 100 seconds are enough for more than 70% of queries. For a few of the queries, the

running time required is higher; however, approximately 95% of the queries ended under the 1 hour time

bound. Of the 624 feasible complexes, only 32 did not end in time. The three networks show similar

behavior, and we attribute the minor differences among them to the difference in the quality and com-

pleteness of the networks.

8. CONCLUSION

In this study, we presented a method and a tool for querying protein complexes within a PPI network,

where no topology information about the complex is available. Our method combines three algorithms: a

dynamic programming exact algorithm, an integer linear programming formulation, and a fast heuristic.

Compared to a topology-based approach and to heuristics for colorful motif finding, our approach produces

substantially more matches, while preserving high functional coherence. Thus, our tool is appropriate for a

wide range of network query tasks, and in particular when interaction data on the query species are sparse

or unavailable. Our method also suggests new complexes for which no prior experimental evidence is

available, as they do not overlap any known complex. Checking these hypotheses experimentally is an

interesting next step.

Our approach has several limitations that we hope to address in future work:

� The running time for some queries is still prohibitively high, depending on the problem size and the

number of colors (query size) and their distribution. We are examining additional heuristics in an

attempt to bring the running time down further.
� The integer linear programming formulation proved very powerful, and usually performs well in

practice, especially when commercial software was used. However, the performance depends on the

availability of such software, and the specific algorithm chosen by such software is often not trans-

parent and hence its behavior is less predictable.
� Since our methods do not rely on the topology of the query, they do not depend on PPI data from the

query species. However, our approach is sensitive to the quality of the PPI data in the target species,

and specifically to the false negative rate in that network (fraction of true interactions that are still

unknown). A true complex in the target network, which biologically is a match to the query complex,

may not be found if the corresponding subnetwork is disconnected due to false negative edges. This

can be seen, for example, in the fly network, which is noisier than the human and mouse networks:

there are many feasible queries for which Torque finds no solution. False positive edges in the target

network are less problematic, as they do not disrupt the connectivity (but can create spurious solu-

tions).
� Extending the notion of similarity between query and target proteins might also improve the solutions.

Currently we rely on sequence similarity, and a fixed threshold for sequence similarity is used.

Combining other similarity measures such as structural similarity could be considered. Furthermore,

replacing the threshold by a weighted model could improve the results.

On the theoretical side, several follow-up directions are of interest. It would be interesting to see how the

ideas from the ILP concerning modeling of connected subgraphs can be adapted to other network problems

such as identification of significantly responding subnetworks (‘‘activity modules’’) (Ulitsky and Shamir,

2007). The main problem that we addressed can be generalized also to allowing special insertions where

colored vertices may repeat freely without penalty for reuse. The DP approach can be generalized to cover

that version as well, and we intend to implement and test it.

Finally, a web-server that allows the use of Torque for online queries has recently been implemented and

is available at www.cs.tau.ac.il=*bnet=torque.html. For further details, see Bruckner et al. (2009b).
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