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ABSTRACT
Motivation: The binding of transcription factors to specific
regulatory sequence elements is a primary mechanism
for controlling gene transcription. Recent findings suggest
a modular organization of binding sites for transcription
factors that cooperate in the regulation of genes. In this
work we establish a framework for finding recurrent cis-
regulatory modules in the promoters of a selected set of
genes and scoring their statistical significance.
Results: Proceeding from a database of identified binding
site motifs and their genomic locations we seek motifs
whose frequency in the selected promoters is different
than in a background promoter set. We present several
statistical tests designed for this purpose. We provide a
hashing algorithm for detecting combinations of these
motifs that co-occur in clusters within the selected
promoters. The significance of such co-occurrences is
evaluated using novel statistical scores. Our methods are
combined in CREME, a suite of software which includes a
browser for viewing the pattern of occurrence of selected
cis-regulatory modules. We applied our methodology to
find modules within human-mouse conserved promoter
segments, focusing on cell cycle regulated genes and
stress response related genes. To validate the biological
significance of the identified modules we tested whether
the associated genes tended to be co-expressed or share
similar function. In the cell cycle set five of the seven
identified sets of genes were coherently expressed. On
the stress response data four of the six detected sets fell
predominantly into well-defined functional sub-categories.
Availability: http://icsi.berkeley.edu/�roded/creme.html.
Contact: roded@icsi.berkeley.edu.
Keywords: Cis-regulatory module, transcription factor
binding site, motif cluster, statistical test.
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INTRODUCTION
The complex program of gene expression allows the liv-
ing cell to cope with changing developmental and envi-
ronmental conditions. A key mechanism for controlling
protein abundance is the modulation of gene transcription
by transcription factors (TFs) that bind specific regulatory
sequence elements. Recent studies demonstrate combina-
torial regulation of transcription in eukaryotes (Yuh et al.,
1998): The expression level of a gene is determined by an
interplay among several TFs, whose sites are organized in
a modular fashion along the gene’s promoter. Character-
izing functional combinations of TF binding sites is key
to understanding gene regulation and remains in large an
unanswered computational challenge. The difficulty lies in
the low specificity of the binding site motifs, which makes
it hard to accurately detect them within long stretches of
background sequence.

TF binding site motifs are commonly modeled using
a position weight matrix (PWM). The most complete
database of carefully evaluated binding sites is TRANS-
FAC (Wingender et al., 2000), which contains over
400 PWMs for vertebrate genomes. There is a vast
literature on characterizing and finding TF binding sites
(see (Stormo, 2000) and references thereof). Recently,
computational and statistical methods were developed for
identifying pairs of TFs that exhibit functional synergism,
or tend to co-occur in close proximity in sequences of
interest (Wasserman and Fickett, 1998; Pilpel et al., 2001;
Sudarsanam et al., 2002; Hannenhalli and Levy, 2002;
Thakurta and Stormo, 2001; Elkon et al., 2003).

Although much information can be gained from study-
ing single TFs or interactions between pairs of TFs, the
generalization to inferring whole regulatory mechanisms
is a non-trivial task. A combination of binding sites for
TFs that cooperate in the regulation of genes is termed a
cis-regulatory module (CRM). There are several studies on
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the identification of occurrences of known CRMs, both in
Drosophila (Berman et al., 2002; Rebeiz et al., 2002; Hal-
fon et al., 2002) and in human (Krivan and Wasserman,
2001; Frith et al., 2001; Klingenhoff et al., 1998). Two
previous papers addressed the statistical problem of scor-
ing the occurrences of a given CRM, assuming that the
binding sites of each participating TF occur according to
independent Poisson processes (Wagner, 1999; Frith et al.,
2002). Another study by Kel-Margoulis et al. (2002) used
a genetic algorithm to search in the space of TF sets a
densely occurring CRM.

In this paper we propose a framework for finding CRMs
and scoring the statistical significance of their frequency
of occurrence in a family of promoters. The biological
significance of the overabundance or underabundance of
a CRM within a family is not clear, but one might specu-
late that overabundance indicates a functional role in reg-
ulating genes within the family, whereas underabundance
indicates that the CRM is not operative in such genes, or
is operative only in a subfamily. For simplicity we orient
our description of statistical methods towards the detec-
tion of overabundance (or enrichment), but the methods
apply equally well to the detection of underabundance, and
we report results in both directions. Our method is based
on several components: (1) Restriction to conserved motif
hits: We concentrate on promoter segments in the human
genome that are conserved in mouse, and consider only
sequence motifs that are aligned and locally conserved be-
tween human and mouse. This restriction allows us to re-
duce drastically the number of false positive hits of the
PWMs, while preserving the number of true positives. (2)
Statistical measures for the enrichment (or underrepresen-
tation) of binding sites in a given set of genes compared
to a background set. Using these scores we can pinpoint
PWMs that are (statistically) relevant to the set of studied
genes and carry further analysis on this set of motifs only.
(3) A novel algorithm for finding CRMs in a set of promot-
ers. The algorithm uses a hashing technique to go through
all observed PWM combinations in the promoters of in-
terest. (4) Significance measures for the co-occurrence of
groups of motifs in the selected set relative to the frequen-
cies of their constituent motifs. Our main measure explic-
itly treats the scoring problems resulting from similarity
between different PWMs.

Our methods are embodied in CREME, a software suite
which includes a browser for viewing the occurrences of
selected cis-regulatory modules. We applied our method-
ology to find modules within human-mouse conserved
promoter segments, focusing on cell cycle regulated genes
and stress response genes. To validate the biological
significance of the identified modules we tested whether
the associated genes tended to be co-expressed or share
similar function. On the cell cycle set we discovered seven
putative CRMs with two to four component TFs. We

tested the expression coherence of the genes containing
each of the CRMs using the expression dataset of Whit-
field et al. (2002); the coherence was highly significant
in five cases and marginally significant in one more. For
the stress response genes, we found six putative CRMs; in
four cases the associated gene sets fell predominantly into
well-defined functional subcategories.

PRELIMINARIES
A motif is a pattern of nucleotides, commonly modeled
using a position weight matrix. A PWM for a transcription
factor F of length lF is a 4� lF real matrix, recording for
each relative position p and nucleotide N the probability
of observingN at position p of a binding site for F . Using
the PWM one can readily estimate the probability that a
binding site for F occurs at a given position. Applying an
appropriate threshold yields a set of positions in which the
binding site is likely to occur along a given sequence. We
call each such probable occurrence a hit and we associate a
position with it. Full details on the computation of hits and
their associated positions are given in the Results Section.

A promoter p is a sequence of nucleotides in the
upstream region of a gene’s transcription start site. We
denote its length by L(p). For a motif m of length lm,
Lm(p) � 2(L(p)� lm +1) is the number of positions in
p at which m can occur when looking at both strands, and
hm(p) is its number of hits in p.

The main subject of this work is identifying sets of TFs
whose binding sites tend to co-occur in close proximity
along a set of promoters of interest. This notion of co-
occurrence is captured by the following definition: A w-
motif cluster w.r.t. to a promoter p is a set of distinct motifs
that occur at least once in p in an interval of length at most
w. Biological examples suggest that the size of a motif
cluster is typically bounded by a small number r of motifs
(Krivan and Wasserman, 2001) giving rise to the notion of
an (r; w)-motif cluster.

Let I be some instance of a w-motif cluster C . Define
the interval of I as the interval [lI ; rI ], where lI is the
starting position of I and rI is the maximum position in
[lI ; lI + w � 1] which contains a hit for some m 2 C .
We say that instance I1 dominates an instance I2 if the
interval that corresponds to I1 contains the interval that
corresponds to I2. The count hC(p) of a motif cluster C is
obtained in the following way: We scan p in the direction
of the positive strand. For each position that starts an
instance I of C , we increment our count if no previous
instance of C dominates I .

FINDING RECURRENT MOTIF CLUSTERS
In this section we treat the algorithmic question of identi-
fying (r; w)-motif clusters in a given set of promoters G
and calculating their counts. In the next section we study
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the question of scoring the statistical significance of a clus-
ter based on its count. For lack of space some algorithmic
details are omitted.

Let n be the number of distinct motifs that we consider.
Let M be the multiset of all motif hits in G, ordered
by their positions, and denote M = jMj. Let q be the
maximum number of distinct motifs that occur within an
interval of length w in G. Typical parameter values are
n = 30, r = 4, w = 100, q = 20 and M = 10000.
The count of a given (r; w)-motif cluster can be computed
in O(M) time. Thus, one can identify all such clusters
in G and compute their counts in O(minfnr; qrMg �
M) time, by enumerating all possible sets of at most r
motifs that occur in a window of length w and calculating
their counts. This approach is too expensive for realistic
values of the parameters. We next present a more efficient
approach for the identification and counting of motif
clusters.

A consecutive instance of a w-motif cluster C is an
interval of length at most w in some p 2 G, that
contains at least one hit for every m 2 C , and no hit
for any other motif. Our empirical results suggest that a
large fraction of the recurrent motif clusters have at least
one consecutive occurrence. An algorithm for identifying
all w-motif clusters in G with an least one consecutive
occurrence is given in Figure 1.

Algorithm ConsecID(�) runs in O(Mr) time, since
the size of the list of active clusters, Copen, is bounded
by r. Using this algorithm we can identify and count
motif clusters with at least one consecutive occurrence in
O(M 2) time, since there are at most O(M) such motif
clusters and counting each of them takes O(M) time.
The algorithm can be generalized in a straightforward
way to identify and count motif clusters that do not
necessarily have a consecutive occurrence, at the expense
of increasing the complexity to O(qrM). We omit the
details.

THE STATISTICAL FRAMEWORK
In this section we describe statistical scores for assessing
the significance of the occurrences of a single motif
or a motif cluster in a set of promoters. We denote
by G the set of promoters of interest and by B a set
of background promoters, which does not intersect G.
Typically, G consists of several hundred promoters and B
is larger by an order of magnitude. We call G the gene set
and B the background set.

Single Motif Abundance Tests
We present several scores for the frequency of a motif m
in G compared to the background set B. In the following
we denote by nb and ng the number of promoters in the
background set and the gene set, respectively. We denote

by hb and hg the number of promoters that contain m in
B and G, respectively.

For any promoter p, let X(p;m) be the event that
promoter p contains at least one occurrence of m. Let
us take the null hypothesis that the events X(p;m) are
independent and identically distributed; in particular, the
probability of X(p;m) does not depend on whether
promoter p lies in B or in G. Following (Tavazoie et al.,
1999) the probability of observing hg or more promoters
in G that containm, given that hg+hb promoters in G[B
contain m, is the tail of a hypergeometric distribution. A
small tail probability would indicate that occurrences ofm
are enriched in G relative to B; a tail probability close to
1 would indicate the opposite. Note that this score does
not take into account the number of motif hits in each
promoter.

The above assumption of equal probability is reasonable
when all examined promoters have similar lengths. How-
ever, promoters may vary in length, and our restriction
to evolutionarily conserved segments creates additional
variation. In order to take into account the length of
the promoters we propose two approaches. The first
approach is based on binning the promoters according to
their length. For each bin b we use the background set
to estimate the expectation E(b) and variance V (b) of
the number of hits for m in a promoter belonging to b,
and we take the null hypothesis that, for each bin b, the
number of hits for m in promoters from G also have this
expectation and variance. By the Central Limit Theorem
(for independent, non-identically distributed random
variables), the total number of hits for m in G is ap-
proximately normally distributed, where the expectation
E and variance V of this distribution can be estimated
from the bin information. Specifically, for a promoter p
let b(p) denote its bin. Then E =

P
p2G

E(b(p)) and
V =
P

p2G V (b(p)). These estimates allow us to derive
a normal-based p-value for m.

The second approach assumes that motif occurrences
are generated by a Poisson process with the same rate
across all promoters. This assumption can be verified for
each PWM separately, e.g., using a chi-square test: One
counts the number of hits for the PWM on each of the
promoters (more precisely, on equal-length segments of
the promoters) and tests the goodness of fit of these counts
to the Poisson assumption. Let Lg =

P
p2G Lm(p) and

Lb =
P

p2B Lm(p). Then, assuming that hits for motif
m occur according to a constant-rate Poisson process, the
probability of observing hg or more hits in G, given that
there are hb + hg hits overall, is the tail of a binomial
distribution with parameters (hb+hg; Lg=Lb). This is true
regardless of the (unknown) rate of the Poisson process.
This tail probability can be used to detect whether hits of
m are overrepresented or underrepresented in G compared
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ConsecID(M):
C  ; # A hash of motif clusters whose keys are motif sets.
Copen  ; # A hash of active clusters and their starting positions.
For i = 1 to jMj do:

Let h be the i-th hit inM occurring at position pos(h).
For every (C; start) 2 Copen do:

If (pos(h)� start � w or h 62 C) then Insert(C,C); Delete(Copen,C).
If (h 62 C and jCj < r) then Insert(Copen,(C [ fhg; start)).
If C = fhg then start pos(h).

If fhg 62 Copen then Insert(Copen,(fhg; pos(h))).
For every C 2 Copen do: Insert(C,C) # Add remaining active clusters.
Output C.

Fig. 1. An algorithm for identifying all motif clusters with at least one consecutive instance in a given sequence. Procedures Insert(H ,e) and
Delete(H ,e) insert/delete an element from a hash table H .

to B. We refer the reader to (Waterman, 1995) for a
thorough presentation of statistical tests for pattern counts.

Scoring a Cluster Count
In this section we restrict our attention to clusters of
motifs and present methods for measuring the significance
of the counts of such clusters within G. Two motivating
questions for these methods suggest themselves: (1)
Which clusters occur more frequently in G than would be
expected from their frequencies in B? (2) Which clusters
occur more frequently in G than would be expected from
the frequencies in G of their component motifs? The first
question could be attacked using the hypergeometric or
normal tests described already for single motifs. However,
a cluster could be overrepresented in G relative to B
merely because its component motifs are overrepresented
in G. Therefore we have chosen to focus on the second
question, which concerns whether these motif hits tend to
co-occur in proximity within G, leading to a higher cluster
frequency than we would expect from the frequencies of
their constituent motifs.

A complicating factor in addressing this question is
the tendency of certain pairs of motifs to have frequent
overlapping occurrences merely because certain positions
within them have similar nucleotide distributions. To avoid
giving weight to this effect we restrict attention to cluster
occurrences that are spaced, meaning that, in addition to
the usual requirement that all the motif hits comprising
the cluster occurrence lie in a window of length w, the
start positions of each such pair of hits must differ by at
least h, where h is a parameter which is set to 4 in our
computations.

Let us say that a set of motif hits within a promoter is
independent if every pair of start positions among these
hits differs by at least h. In order to focus on spaced

cluster occurrences we replace each promoter by a set of
t spaced promoters, each of which contains a randomly
chosen maximal independent subset of the motif hits on
the original promoter. These maximal independent subsets
are generated by t executions of a randomized greedy
algorithm. The idea is that these spaced promoters will
contain a good sampling of the spaced occurrences of any
cluster, while eliminating from consideration all cluster
occurrences that are not spaced.

Having replaced the original promoters by t times as
many spaced promoters, we wish to determine whether
a given cluster occurs on these spaced promoters signifi-
cantly more frequently than would be expected by chance,
given the positions of the motif hits, the number of hits
for each motif, and the number of (spaced) promoters
containing each given motif. We attack this question by
a Monte Carlo method. Consider each motif hit within
the set of spaced promoters as having a location and a
label, where the label is the name of the corresponding
motif. Call a permutation of the labels conservative if
for each motif, the number of promoters containing it
is unchanged. We run k Monte Carlo calculations, each
of which generates a random conservative permutation
of the labels. Each Monte Carlo simulation starts with
the original (true) labels and performs a long series of
random conservative interchanges, each of which either
interchanges the labels of two motif hits, or replaces all
occurrences of some label A on one promoter by a differ-
ent label B, and all occurrences of B on a second promoter
by label A (where the requirement that the interchange is
conservative implies that number of changes of A to B is
equal to the number of changes of B to A).

For j = 1; : : : ; t, let pj be the j-th spaced promoter
derived from promoter p 2 G and for s = 1; : : : ; k,
let Cs(p; j) be the number of occurrences of cluster C
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in pj after the s-th Monte Carlo relabeling of the motif
hits on pj . From these empirical values we can estimate
E(C(p; j)) and V (C(p; j)), which are, respectively, the
expectation and variance of the number of occurrences
of cluster C on spaced promoter pj after a random
conservative relabeling. By the Central Limit Theorem,
the total number of occurrences of C on spaced promoters
is approximately normal with mean

P
p;j

E(C(p; j))

and variance bounded above by t
P

p;j
V (C(p; j)) (this

upper bound accounts for the positive correlation between
C(p; j) for different j-s). This yields an upper bound
on the p-value for the number of occurrences of C on
spaced promoters under the original labeling. In this way
we can determine whether occurrences of cluster C are
significantly higher or lower than would be expected by
chance.

An alternative approach for scoring a cluster
C = fm1; : : : ;mlg uses the Poisson clump heuris-
tic (Waterman, 1995). It is based on the assumption that
each of its motifs occurs independently according to a
Poisson process. First, we evaluate the process rate �mi

for each motif mi based on its hits in G. The occurrences
of C are grouped in clumps, i.e., maximal segments
of overlapping intervals of instances of C . We also
empirically evaluate the expected clump size �C . We then
approximate the distribution of the number of clumps
using a Poisson distribution and compute the quality of
the approximation, similar to the approach in (Waterman,
1995): Denote L =

P
p2G L(p) and

pC =

nX

i=1

�mi

Y

1�j�n;j 6=i

(1� e�w�mj ) :

Ignoring boundary effects, the probability density of a
clump start is pC

�C
and the expected number of clumps

is � = LpC
�C

. The event Xi, denoting a clump start at
position i, is independent of any Xj for fj : jj �
ij � wg. Applying Chen-Stein approximation bounds,
as in (Waterman, 1995), we find that the deviation of the
distribution of the number of clumps from the Poisson
distribution (with parameter �) is bounded by �2(1 +
�C)

4w

L
.

THE CREME FRAMEWORK
In this section we collect the methods developed above
into a framework for motif cluster discovery, which we
call CREME (Cis-REgulatory Module Explorer). CREME
embodies an algorithm for finding and scoring motif
clusters, as well as software for visualizing and evaluating
the resulting clusters.

The cluster finding process consists of several stages:
First, we find significantly enriched motifs in G by
scanning the whole set of promoters and identifying

PWMs that occur significantly more (less) frequently
in the gene set compared to the background set. The
enrichment p-values are computed using the normal-based
score described in the Statistical Framework Section. We
verify these p-values empirically, by simulating random
gene sets of size jGj, computing the p-values for m on
these random sets and ranking the real p-value among
the simulated ones. We retain all motifs whose p-value is
smaller than 0:01 and was empirically verified, collecting
both overrepresented and underrepresented motifs. This
step reduces the size of the initial motif set by an order
of magnitude and allows the subsequent stages to focus on
motifs that are statistically relevant to the genes of interest,
saving computation time and reducing the number of false
discoveries.

In the next stage we filter similar PWMs – the output
of the previous stage may include PWMs that are very
similar, e.g., similar matrices that correspond to the same
transcription factor. The goal of this stage is to produce a
non-redundant list of PWMs. We say that two PWMs are
redundant if at least 50% of the occurrences of one PWM
take place in a window of length 7 around an occurrence of
the other. For the filtering we construct a graph, in which
each vertex corresponds to a PWM m and is assigned a
weight � log pm, where pm is its p-value as computed in
the previous stage. We connect by an edge every pair of
vertices that correspond to redundant PWMs. We now use
a greedy algorithm to find a high weight independent set
in this graph. The resulting set of motifs is passed to the
next stage.

Next, we search for significant motif clusters. Concen-
trating on the set of enriched, non-redundant motifs we use
our hashing algorithm to look for combinations of these
motifs that tend to co-occur in G. We implemented the
general version of the algorithm, which does not assume
consecutive occurrences of clusters. Each identified mo-
tif cluster is scored using the Monte Carlo approach de-
scribed in the Statistical Framework Section. The p-values
of all clusters are Bonferroni adjusted for multiple testing,
and only those clusters that pass the 0:05 significance level
(after adjustment) are reported.

Last, we filter similar clusters – the output of the
previous stage may contain redundant clusters that share
some of their motifs and occur at overlapping positions.
To address this problem we filter the list of clusters using
the same elimination procedure as in the single motif
case: Two clusters have an edge in the conflict graph if
they share at least two motifs and at least 75% of the
occurrences of one cluster overlap with occurrences of the
other cluster.

In order to visualize the resulting motif clusters we
created a web-based visualization tool available at http:
//icsi.berkeley.edu/�roded/creme.html. The tool allows the
user to specify a list of motif clusters, a set of genes

5



of interest, a window length and other parameters. Full
details are available on the web page.

RESULTS
Data Preparation
We extracted promoter regions for all RefSeq genes
in the human genome, restricting attention to promoter
segments that are conserved between human and mouse,
and motif hits that are included in such segments and
are locally conserved. This was shown to greatly reduce
false positive hits, while preserving a high fraction of true
positives (Loots et al., 2002). In order to obtain conserved
promoter segments for the genes, we utilized the browser
at http://nemo.lbl.gov/ecrBrowser/, which provides online
access to the complete alignment of the human and mouse
genomes. For every gene, we examined the overlap of the
1200bp upstream region of the transcription start site with
the set of conserved segments. If an overlap was detected,
the overlapping segment closest to the gene’s transcription
start site was extracted for the analysis, provided that its
length exceeded 80. In total, 7749 unique human-mouse
conserved segments were extracted. Henceforth, we call
this set the promoter set. A histogram of the lengths of the
conserved segments is shown in Figure 2.
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Fig. 2. Histogram of the lengths of 7749 human-mouse conserved
segments used in this study.

Next, we searched the promoter set for hits for all 414
vertebrate specific PWMs available in the 6.2 version of
TRANSFAC (Wingender et al., 2000). The search was
performed using the rVista tool (Loots et al., 2002), which
identifies PWM hits that are locally highly conserved,
using the parameters 0:75 and 0:85 for matrix and core
PWM similarity scores, respectively. 389 of the PWMs
had a hit in our promoter set, and about 2; 600; 000 hits
in total. The position of each hit was set to be the center
position of the PWM’s core.

Enriched Clusters in Cell-Cycle Regulated Genes
We applied CREME to a set of genes that were shown
to be cell-cycle regulated in (Whitfield et al., 2002). This

dataset contains the expression profiles of synchronized
HeLa cells in five independent experiments. Whitfield
et al. (2002) identified in the data 874 genes that are cell-
cycle regulated. The analysis was carried out on 336 of
these genes that contained a conserved segment in their
upstream regions.

Our single motif tests identified 47 significant PWMs.
This list included E2F, a key TF in cell-cycle regulation, as
well as other TFs (CREB and NFY) that were suggested
to be related to cell cycle in Elkon et al. (2003). Further
filtering of similar PWMs resulted in a set of 16 enriched
(or underrepresented), non-redundant PWMs.

We searched for motif clusters over this set of motifs,
using a window of length w = 100 and limiting the
search to clusters with at most r = 4 distinct motifs.
The algorithm discovered a total of 1089 motif clusters
that had at least 10 hits in the gene set. About 90% of
the clusters had at least one consecutive occurrence. These
clusters were then scored using the Monte Carlo approach
with two spaced instances for each promoter. 13 of the
clusters were found to be significant at the 5% level (after
Bonferroni adjustment for multiple testing), and further
filtering resulted in 7 significant, non-redundant clusters.
A list of these motif clusters along with their statistical
scores is given in Table 1.

We validated our findings by checking the coherence of
every set of genes containing a given significant cluster
with expression data. The expression dataset of Whitfield
et al. (2002) was obtained using two kinds of arrays.
We chose to focus on three experiments (76 conditions)
that used the larger array, which contained 265 of our
genes, and applied the same data processing methods as
described in (Whitfield et al., 2002). Using the approach
of Pilpel et al. (2001), we define the coherence of a set
of genes as the median pairwise similarity in this set
excluding self-similarities, where the Pearson correlation
coefficient is used as a similarity measure. Let S be a
set of genes containing a given cluster, and let U denote
the whole set of 336 genes. To score the coherence of
S we randomly select 10000 subsets of jSj genes from
U , and compute the coherence of each subset. The p-
value we assign to S is k

10000
, where k is the number of

subsets whose coherence was higher than that of S. Out
of the seven reported clusters, five were found to have a
significant coherence score, using a significance level of
� = 0:05 (Table 1). The coherence is further illustrated
in Figure 3, which shows the distribution of pairwise
similarities in cluster 673 compared to the background
distribution in the whole set of 336 genes. A visualization
of the promoters of this cluster is given in Figure 4.

Enriched Clusters Related to Stress Response
As another test of our methodology we looked for
statistically significant clusters in a set of genes with
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Fig. 3. Left: Histogram of similarity values for all 336 cell cycle regulated genes. Right: Histogram of similarity values for the genes
containing cluster 673. The median similarity of genes in the cluster is significantly higher than in the whole set (p = 0:04).

Fig. 4. Color visualization of motif cluster 673. Shown are all the promoters containing this cluster. A LocusLink ID and cell cycle phase
assignment are indicated for each promoter. Each motif in the cluster is represented by a colored square with a distinct color. Motif hits are
shown only for the motifs that appear in the cluster. Cluster instances are shaded.

similar function, focusing on stress response related genes.
We used the following scheme: We applied CREME
to genes that are annotated as stress response in the
Gene Ontology (GO) database (The Gene Ontology
Consortium, 2000), and then scored the resulting clusters
based on the enrichment of their genes in sub-categories
of this class. Note that the sub-category information is not
used in the cluster discovery process.

The stress response class contains 253 genes for which
we have promoter data. These genes belong to several
sub-categories: Pathogen response (GO:0009613, 159
genes), response to wounding (GO:0009611, 188 genes),
inflammatory response (GO:0006954, 83 genes), and
humoral response (GO:00006959, 62 genes). Applying
CREME to these 253 genes yielded 6 non-redundant
clusters with p-values below 0.05 (after Bonferroni
adjustment). We checked the enrichment of the genes
containing each cluster w.r.t. the four sub-categories,
using a standard hypergeometric score. For each gene we

took the lowest p-value obtained. Four of the clusters had
enrichment p-values below 0.05. These clusters are listed
in Table 1. Markedly, one of the clusters (number 1938)
obtained a very significant enrichment score (p = 0:002)
and 17 of its 18 associated genes were GO annotated as
related to pathogen response.

CONCLUSION
In this paper we presented a framework for discovering
regulatory modules – clusters of transcription factor
binding sites. Our framework includes statistical scores
for assessing the significance of the discovered clusters,
as well as enrichment tests for the motifs that make up
these clusters. We use an efficient enumeration approach
that can discover all combinations of a bounded number
of motifs that appear in a window of certain size. We
demonstrate the effectiveness of our approach on two real
datasets, discovering modules whose associated sets of
genes are coherently expressed or functionally related.
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Data ID Motifs Size p-value Coherence/Enrichment

CC 11 ZF5, USF2 137 0.01 0.03
CC 355 DELTAEF1, GR, HAND1E47, LMO2COM 30 0.002 0.21
CC 421 GR, ZF5 84 0.003 0.02
CC 489 EVI1, GR, HAND1E47, LMO2COM 12 0.02 0.04
CC 673 DELTAEF1, EVI1, GR 11 0.01 0.04
CC 937 NFY, WHN, ZF5, E2F1 18 0.002 0.09
CC 948 HAND1E47, ZF5 90 0.01 0.02

STRESS 288 HSF1, OCT1, NFKB, XVENT1 12 0.02 0.01 (GO:0006954)
STRESS 1726 NFKAPPAB65, CHOP, STAT5B, TCF1P 12 0.004 0.03 (GO:0009613)
STRESS 1938 OCT1, CEBP, STAT, XVENT1 18 0.02 0.002 (GO:0009613)
STRESS 2035 STAT, CHOP, XVENT1, STAT5B 14 0.0003 0.01 (GO:0009613)

Table 1. Clusters discovered in the cell cycle and stress response datasets. The columns are: dataset, cluster ID, component motifs, size and the Monte
Carlo based p-value of its count (corrected for multiple testing). The last column contains the expression coherence p-value for the cell cycle (CC) data
and enrichment p-value and GO sub-category for the stress data. Clusters 11, 421 and 948 were significantly underrepresented; all other clusters were
overrepresented.

Our methods can be refined in several ways: First, fo-
cusing on enriched, non-redundant motifs greatly reduces
the number of false positive PWMs, but may also elimi-
nate true positive motifs. To address this concern one can
incorporate existing knowledge on regulation, and add bi-
ologically relevant PWMs to the list motifs considered.
Second, the definition of a motif cluster can be refined
by considering the order of motif hits in a cluster and the
multiplicity of hits for each motif. This requires design-
ing new statistical measures for motif cluster occurrences.
Third, the statistical tests proposed here can be refined by
taking into account the scores of the different motif hits.
Finally, although our method could be applied under dif-
ferent window lengths (or even under other definitions of
a cluster instance e.g., bounding the gap between adjacent
hits of its motifs), a general score that measures the sig-
nificance of the proximity of motif hits within a cluster,
allowing a flexible definition of a cluster instance, is yet to
be formulated. Some results in this direction were reported
by Wagner (1999) and Frith et al. (2002).
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