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This paper presents a new method, steady-state regulatory flux balance analysis (SR-FBA), for
predicting gene expression and metabolic fluxes in a large-scale integrated metabolic–regulatory
model. Using SR-FBA to study the metabolism of Escherichia coli, we quantify the extent to which the
different levels of metabolic and transcriptional regulatory constraints determine metabolic
behavior: metabolic constraints determine the flux activity state of 45–51% of metabolic genes,
depending on the growth media, whereas transcription regulation determines the flux activity state
of 13–20% of the genes. A considerable number of 36 genes are redundantly expressed, that is, they
are expressed even though the fluxes of their associated reactions are zero, indicating that they are
not optimally tuned for cellular flux demands. The undetermined state of the remaining B30% of
the genes suggests that they may represent metabolic variability within a given growth medium.
Overall, SR-FBA enables one to address a host of new questions concerning the interplay between
regulation and metabolism.
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Introduction

Significant efforts have been made in reconstructing genome-
scale metabolic and regulatory networks for model organisms,
and in the development of computational approaches for
systematically interrogating their functions (Price et al, 2004;
Salgado et al, 2004). Constraint-based metabolic models
employ stoichiometric, thermodynamic, flux capacity and
possibly other constraints to determine the space of possible
flux distributions attainable by the network. Flux balance
analysis (FBA) is a commonly used constraint-based approach
that assumes that the organism maximizes its biomass
production rate (Fell and Small, 1986; Kauffman et al, 2003),
which was shown to successfully predict various metabolic
phenotypes (Edwards and Palsson, 2000; Forster et al, 2003;
Shlomi et al, 2005; Deutscher et al, 2006). Transcriptional
regulation has been modeled by a wide range of approaches,
which in most cases were applicable only for small-scale
systems (de Jong, 2002). Recently, a Boolean matrix formula-
tion was used to represent small-scale regulatory networks
and identify functional states across multiple conditions
(Gianchandani et al, 2006).

Although the metabolic and regulatory systems are known
to be highly dependent, most previous studies had focused on
the analysis of either system alone. Recently, several studies
have developed and investigated genome-scale, integrated

metabolic and regulatory models by incorporating regulatory
constraints within FBA models (Covert et al, 2004; Herrgard
et al, 2006). Two basic computational approaches were used to
study the workings of such integrated models: (i) rFBA
(regulatory flux balance analysis)—a method for simulating
growth in batch cultures by predicting dynamic flux profiles
(i.e., a series of steady-state flux distributions) in a changing
environment (Covert et al, 2001, 2004; Herrgard et al, 2006).
This method works by iteratively predicting a regulatory and
metabolic steady state for short successive time intervals. For
each time interval, a regulatory state that is consistent with the
metabolic steady state of the previous interval (and with the
availability of nutrients in the changing growth media) is
computed. Then, FBA is used to find a steady-state flux
distribution that is consistent with the regulatory state of the
current time interval. The new metabolic state possibly leads
to a new regulatory state, and the process is further iterated.
The main limitation of this approach is that it arbitrarily
chooses one single metabolic steady state at each time interval,
from a space of possible solutions provided by rFBA. This
arbitrary choice of specific regulatory and metabolic trajec-
tories leaves out a whole space of possible dynamic flux
profiles uncharacterized. (ii) The identification of consistent,
steady-state metabolic and regulatory behaviors in a given,
constant environment, using an extreme pathway analysis
(Covert and Palsson, 2003). This method, which essentially
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prunes extreme pathways that are inconsistent with the given
active regulatory constraints and yields a characterization of
permissible alternative solutions, is however not applicable for
large-scale models, in which the enumeration of all extreme
pathways is computationally intractable.

This paper presents a new method, steady-state regulatory
flux balance analysis (SR-FBA), which enables, for the first
time, a comprehensive characterization of steady-state beha-
viors in a genome-scale, integrated metabolic–regulatory
model. The method is applied to characterize the flux activity
and gene expression of Escherichia coli metabolism across
different growth media. This characterization is used to study
the effect of transcriptional regulation on cellular metabolism,
by quantifying the extent to which regulatory versus metabolic
constraints determine flux activity. Subsequently, the inte-
grated model is used to identify specific genes and metabolic
functions in which regulation is not optimally tuned for
cellular flux demands.

Results and discussion

The SR-FBA method characterizes the metabolic–
regulatory solution space

Integrated metabolic and transcriptional regulatory models
consist of two dependent components that represent metabo-
lism and regulation (Figure 1). The functional state of the
metabolic component is represented by steady-state fluxes
through its reactions. The functional state of the transcrip-
tional regulatory system at steady state is represented by a
fixed, steady-state Boolean value for each gene, indicating
whether it is expressed or not. The combined functional state
of the entire system in a given constant environment, referred

to as metabolic–regulatory steady state (MRS), is described by
a pair of consistent metabolic and regulatory steady states,
which satisfy both the metabolic and regulatory constraints
(Covert and Palsson, 2003).

To identify an MRS for the integrated metabolic–regulatory
model, we developed a new method, SR-FBA, which is based on
mixed integer linear programming (MILP; Materials and
methods). Specifically, an MILP problem is formulated to
identify MRS solutions by translating the Boolean logic under-
lying the regulatory constraints and the mapping between genes
and reactions to linear equations. Within this framework, we
employ flux variability analysis (FVA) (Mahadevan and
Schilling, 2003) to explore alternative MRS solutions (Materials
and methods). An implementation of SR-FBA is provided in
Supplementary Dataset 1 (and in the supplemental website:
http://www.cs.tau.ac.il/~shlomito/SR-FBA).

Each transcription factor (TF) and TF-regulated gene (i.e.,
genes associated with a regulatory rule in the model) can be
either in an expressed (non-expresses) state if it is expressed
(non-expressed) in all alternative MRS solutions attainable
within a given growth medium. In both cases, the genes are
considered to have a determined expression state. Alterna-
tively, a gene is considered to have an undetermined
expression state if it is expressed in some of the alternative
MRS solutions but non-expressed in others in the same
medium. In parallel, each gene is characterized by its flux
activity state, which reflects the existence of non-zero flux
through one of the metabolic enzymatic reactions that it
encodes. It can have a determined activity state, that is, be in an
active (inactive) state across all MRS in a given media, or else
have an undetermined activity state. Obviously, the expression
and activity states are inter-dependent as a gene cannot be
metabolically active if it is not expressed. Hence, the
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Figure 1 A schematic representation of an integrated metabolic and regulatory network. The regulatory network component consists of a set of interactions between
TFs and other TFs and genes. The metabolic network component consists of a set of biochemical reactions between metabolites, with metabolites available from growth
medium as input, and a pseudo-metabolite representing biomass production as output. The regulatory component affects the metabolic component through the
expression of proteins that catalyze the biochemical reactions (downward pointing arrows). The metabolic component affects the regulatory component via the activation
or inhibition of TF expression via the presence of specific metabolites (upwards arrows).
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combinations of ‘non-expressed and active’, ‘non-expressed
and non-determined activity’ and ‘non-determined expression
and active’ are not possible.

Gene expression and metabolic flux activity in
E. coli across multiple media

We employed SR-FBA to compute the expression and flux
activity states of all genes in the E. coli model of Covert et al
(2004) under 110 minimal growth media (66 aerobic environ-
ments and 44 anaerobic environments). As described in the
previous section, the expression and metabolic activity states
of a gene may vary within a given growth medium (intra-
medium variability), implying that its state is undetermined.
One may extend this notion in a natural way and quantify the
extent to which the expression and metabolic activity states of
a gene are undetermined (variable) across different growth
media, referred to as its inter-media variability. Statistics on
the annotation of TFs, TF-regulated genes and non TF-
regulated genes (genes without an associated Boolean regula-
tion rule) according to their expression and activity patterns
across different media are shown in Table Ia and b (and in
Supplementary Tables 1–4). We find that the intra-media
variability in gene expression is minute compared with its
inter-media variability. In difference, the flux activity has a
much larger intra-media variability compared with its inter-
media variability. This testifies that gene expression is likely to
be more strongly coupled with environmental conditions than
the reactions’ flux activities.

To validate the predicted expression patterns, we compared
the predicted changes in expression following oxygen depriva-
tion in a glucose medium with gene expression measurements
(Covert et al, 2004). Specifically, the model predicts a set of 61
differentially expressed genes (having an expressed state in
aerobic conditions and a non-expressed state in anaerobic
conditions, or vice versa) and another set of 31 genes that are
only putatively differentially expressed, that is, genes whose
expression state is determined only in one of the (aerobic or
anaerobic) states and is undetermined in the other. We find
that differentially expressed genes have indeed significantly
higher expression in an aerobic (t-test P-valueo1�10�300)
or anaerobic (t-test P-valueo3.6�10�11) glucose medium
(Supplementary Figure 2). In contradistinction, the expression
of genes that the model predicted to be only putatively

differentially expressed is indeed not significantly different in
aerobic versus anaerobic media. This testifies that the MRS
solutions space correctly identifies the truly differentially
expressed genes. For further validation, we compared fluxes
predicted under glucose minimal media to experimentally
measured fluxes via NMR spectroscopy in the central carbon
metabolism (Emmerling et al, 2002; see Supplementary
Figure 3 and its caption for further details). We find a statis-
tically significant high Spearman correlation of 0.942
(P-valueo1.5�10�8) between the predicted and measured
fluxes, compared with a correlation of 0.914 (P-valueo2.8�
10�7) for predictions obtained with the common metabolic
FBA method.

The direct and indirect functional effects of
transcriptional regulation on metabolism

We quantify the effect of transcriptional regulation on
metabolism by measuring the fraction of genes whose flux
activity is determined by the integrated model but not by the
metabolic component alone (i.e., the standard FBA model).
The metabolic component yields a determined flux activity
state for 45–51% of all genes in the network, on the average,
depending on the growth medium (Figure 2A). Such genes are
termed metabolically determined. The activity of a core set of
30% of all genes is determined in all growth media, involving
membrane lipid metabolism, cofactor biosynthesis and cell
envelope biosynthesis. Overall, the metabolic constraints
determine the activity state of 57% of the genes in at least
one or more growth media. The activity of the remaining genes
in the metabolic-only model is undetermined, forming
alternative pathways (or isozymes) for which the activity
state cannot be determined solely by metabolic constraints.

The integrated metabolic–regulatory model determines the
flux activity state of additional 13–20% of all genes in the
network, depending on the growth medium (Figure 2A). The
set of these regulatory-determined genes varies significantly
between different media, overall covering 36% of the genes in
the model. A core set of 5% of all metabolic genes are
regulatory-determined in all growth media. The large majority
of regulatory-determined genes (13–17% of the total number
of genes in the model) are the direct targets of some TF
(Supplementary Table 5). However, a small fraction of the
regulatory-determined genes (about 2–3% of the total

Table I Statistics on the expression (a) and metabolic flux activity (b) of genes in the model

Expressed Non-expressed Non-determined Inter-media variability Total

(a)
TFs 15 31 3 54 103
TF-regulated genes 140 74 7 260 481

Active Inactive Non-determined Inter-media variability Total

(b)
TF-regulated genes 21 125 46 289 481
Non TF-regulated genes 50 111 127 138 311

The numbers of genes with uniform expression or flux activity states across all media are denoted in gray.
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across the growth media, on average, and 6% overall) are not
TF-regulated. Thus, transcriptional regulation can indirectly
determine the activity of reactions that are not subject to TF
regulation, by regulating their pathway-associated reactions,
corresponding with the findings of Rossell et al (2006).
The flux activity of a considerable fraction of the genes
(B30% of the total) remains undetermined at steady state
even in the integrated model. This may be the result of missing
constraints, for example, constraints associated with post-
transcriptional regulation. Alternatively, these genes’ unde-
termined flux activity state may reflect biologically plausible
metabolic variability determined by biological factors that are
out of the model’s scope (e.g., stress), or potential variability
within a cell population (Bilu et al, 2006).

Redundant expression of metabolic genes

In the previous section, we have shown that the flux activity
states of about half of the genes are already determined by the
metabolic constraints alone. Here, we study the extent to
which the regulatory constraints match the flux activity states
of these genes. This investigation is motivated by previous
findings of a significant, but rather moderate correlation
between the flux rate through a metabolic reaction and the
expression level of its associated genes. This moderate-only
correlation may either result from the intermediary effects of
post-transcriptional regulation, reflect the complex interplay

between hierarchical and metabolic regulation (Rossell et al,
2006) or reflect the non-optimality of the regulatory system in
expressing the minimal set of genes required to fulfill meta-
bolic demands (Akashi, 2003; Daran-Lapujade et al, 2004).

Examining the metabolically determined genes that are TF
regulated, we find that 22–31% of them are metabolically
active across different media, whereas the rest are inactive
(Figure 2B). Of the latter, 26 genes are predicted to be
redundantly expressed in some media—that is, they are
expressed even though their associated reactions have zero
fluxes. Additionally, 10 genes whose flux activity is regulatory-
determined are also predicted to be redundantly expressed in
some of the media examined. Overall, some of these 36 genes
are redundantly expressed in only very few (1%) of the growth
media, whereas others are redundantly expressed in almost all
growth media (96%; Supplementary Figure 4). Three func-
tional categories are significantly enriched with redundantly
expressed genes (hypergeometric P-valueo0.05), including
membrane lipid metabolism, TCA cycle and extracellular
transporters (Figure 2C). Interestingly, several redundantly
expressed transporters are affected by Crp, a major global
regulator of catabolic-sensitive operons. In the absence of
arabinose and gluconate in the model, Crp turns on the
expression of both arae (an arabinose transporter) and gntp
(a gluconate transporter) in a redundant manner, as their
flux activity state requires the availability of arabinose and
gluconate in the growth medium. Notably, in the case of
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transporters, maintaining a minimal expression level where
cells starve for glucose may be beneficial for switching to
utilizing alternative carbon source once they become available
(Setty et al, 2003). Other examples of redundantly expressed
genes in the model are fada, fadb, fadd and fadf, which are
expressed in all aerobic conditions although they actively
degrade fatty acids only in a glycerol medium.

Using the limited pertaining expression data (Covert et al,
2004; Fong et al, 2005), we tested whether genes are indeed
significantly highly expressed in media where they are
predicted to be redundantly expressed, compared with their
expression levels in media where they are predicted to be non-
expressed. Correspondingly, we find that eight genes that are
predicted to be redundantly expressed in growth media lacking
glucose have significantly high expression levels in these
media (both for glycerol (t-test Po4.5�10�105) and for lactate
(t-test Po2.4�10�9), compared with a glucose minimal
medium in which they are predicted to be non-expressed.
Similarly, the expression of four genes, which are predicted to
be redundantly expressed in an aerobic glucose medium, is
significantly higher in this medium compared with their
expression in anaerobic glucose medium in which they are
predicted to be non-expressed (t-test Po5�10�20). Notably,
the validation of the predicted redundantly expressed genes
could be strengthened by experimentally showing that they are
indeed metabolically inactive even though they are highly
expressed. Unfortunately, a validation of this nature is
currently hampered by the very limited available data
concerning flux measurements.

In summary, this paper presents a new method for
predicting the expression and metabolic fluxes of a large-scale
integrated metabolic model. This method paves the way to
computationally study an array of new questions concerning
the relationship between transcriptional regulation and
cellular metabolism. Tackling a few such questions that
naturally arise, we have quantified the effect of transcriptional
regulation in determining metabolic flux activity in E. coli, and
identified a mismatch between flux demands and transcrip-
tional regulation. A host of related questions that can be
addressed by the new approach await further investigation,
including the study of the optimization that transcription
regulation has evolved to exert upon metabolism, and a
comparative investigation of the regulatory–metabolic inter-
play across species.

Materials and methods

Metabolic steady-state prediction in pure
metabolic models

FBA employs mass balance, thermodynamic and flux capacity
constraints to identify a metabolic state (i.e., a vector, �vARm, of flux
reaction rates) that provides a maximal biomass production rate. The
mass balance constraints are formulated as

S � �v ¼ 0 ð1Þ

where SARn�m is the stoichiometric matrix, with Sij representing the
stochiometric coefficient of metabolite i in reaction j. Thermodynamic
constraints that limit the directionality of reaction and flux capacity
constraints are formulated as:

�ap�vp�b ð2Þ

where �aARm and �bARm represent lower and upper bounds on the flux
reaction rates �v. Reaction directionality is enforced by setting ai¼0 for
directional reactions. The biomass production maximization is
implemented by defining an additional reaction vgro, representing the
production of essential biomass compounds. The stoichiometric
coefficients of this reaction are based on experimentally derived
proportions ci of the metabolite precursors Xi that contribute to
biomass production:

X
cjXj ! Biomass ð3Þ

The search for a flux distribution, v, that maximizes vgro and satisfies
the above constraints is performed using a linear programming solver.

An integrated metabolic and regulatory model
of E. coli

The integrated metabolic and regulatory model of the bacteria E. coli
was obtained from Covert et al (2004). The model accounts for k¼1010
genes, j¼817 proteins, m¼1083 reactions (933 enzymatic reactions and
150 external transport reactions) and n¼761 metabolites.

The complex mapping between genes, proteins and reactions is
formulated with Boolean equations. Each reaction is associated with
a Boolean equation representing its dependency on the presence of
one or multiple proteins. For example, the equation ‘R1¼(P1 AND
P2) OR (P3 AND P4)’ specifies that reaction R1 is catalyzed by
either the enzyme complex consisting of proteins P1 and P2, or by
the enzyme complex consisting of proteins P3 and P4. Proteins are
further assigned with equations representing their dependency on
one or multiple genes. For example, the equation ‘P1¼G1 AND G2
AND G3’ specifies that protein P1 is the combined product of genes
G1, G2 and G3.

Transcriptional regulation is formulated as an additional set of
Boolean equations. Specifically, genes are associated with Boolean
equations, reflecting their dependency on the expression of other
genes in the model (i.e., TFs). For example, the equation
‘G1¼NOT(TF1) AND TF2’ specifies that the gene G1 is expressed if
and only if TF1 is not expressed and TF2 is expressed. TFs, in turn, are
treated similar to other genes in the model, having additional
regulatory equations of their own.

Metabolic regulation, that is, the activation or repression of genes
based on the presence of certain metabolites, is incorporated within
the regulatory equations using flux predicates of specific flux rates. For
example, the flux predicate ‘FLUX(R1)40’ may be a part of a
regulatory equation G2¼TF1 AND ‘FLUX(R1)40’, specifying that G2
is expressed if and only if TF1 is expressed and there is non-zero
(positive) flux through reaction R1. The model consists of a total of
l¼117 such flux predicates.

The SR-FBA method for predicting MRS

The SR-FBA method employs MILP to identify consistent regulatory
and metabolic states. The metabolic state is denoted as �vARm (as in the
above formulation). The regulatory state is denoted as �gA{0,1}k,
representing the Boolean expression state of all genes. The inter-
dependency between the metabolic state and the regulatory state
is formulated by using the following auxiliary variables: (i) the
protein state �pA{0,1}j, representing the presence of each protein;
(ii) the reaction state �rA{0,1}m, representing the presence of a catalyz-
ing enzyme for each reaction; and (iii) the flux predicate state
�bA{0,1}l, representing the state of each flux predicate.

The MILP problem is formulated to maximize the flux through the
growth reaction vgro with the following constraints imposed on
�v; �g; �p; �r; �b:

Metabolic constraints: The metabolic state �v should satisfy the
stochiometric, thermodynamic and flux capacity constraints formu-
lated in equations (1) and (2).

Regulatory constraints: The regulatory state �g and flux predicate
state �b should satisfy the Boolean regulatory equations defined in the
integrated model. Boolean equations can be formulated via a set of
linear constraints using the following rules: (i) the expression ‘a¼b
AND c’ is formulated as �1p2bþ 2c�4ap3; and (ii) the expression
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‘a¼NOT b’ is formulated as aþb¼1. Other Boolean operators can be
expressed with the above operators (which together form the
universal operator NAND). A compound Boolean equation composed
of a few nested Boolean expressions is formulated as a set of linear
constraints by recursively iterating over the structure of the equation,
while adding auxiliary variables representing intermediate Boolean
terms.

Genes-to-reactions mapping constraints: The regulatory state �g and
protein state �p should satisfy the Boolean mapping function defined in
the integrated model. The formulation of these Boolean equations as
linear constraints is performed as described above for the regulatory
constraints. The Boolean mapping between the protein state �p and
reaction state �r is also formulated as linear constraints in a similar
manner.

Reaction enzyme state constraints: The absence of a catalyzing
enzyme for a specific reaction should constrain the flux through this
reaction to zero. Specifically, for each reaction i, the rule ‘if �ri ¼ 0 then
�vi ¼ 0’ is formulated via the following linear constraints:
viþ (1�ri)bipbi and aipviþ (1�ri)ai.

Reaction predicates constraints: The reaction predicate bi represents
a rule in the form ‘FLUX(j)4c’, where cAR. This rule can be
formulated via the following linear constraints:
bj(cþ e�bi)þ vipcþ e and bj(ai�c�e)þ viXai, where e¼10�4

The resulting complete MILP formulation is hence as follows:

max
�v;�g;�p;�r;�b

vgro

s:t:

S � �v ¼ 0

�ap�vp�b

Regulatory constraints (�g; �b)
Genes to reactions mapping constraints (�g; �p; �r)
Reaction enzyme state constraints (�r; �v)
Reaction predicates constraints (�v; �b)

v 2 Rn g; p; r; b 2 0; 1f gm

The formulation of SR-FBA in the integrated metabolic–regulatory
model of E. coli (Covert et al, 2004) results in an MILP problem with
5380 variables (4296 Boolean variables) and 7323 equations. Solving
this problem for a given instance takes less than a second using the
commercial CPLEX 7.5 solver.

Characterizing alternative gene expression and
flux activity states

To characterize alternative possible expression states of a gene in a
given growth medium, we solve two MILP problems for each gene,
once setting it to be expressed and the other setting it to be non-
expressed. The gene is determined to be expressed or non-expressed if
a feasible MRS solution is obtained for one of the two problems. A gene
is considered undetermined if both problems have a feasible solution.

To characterize alternative flux activity states of a gene, we use the
following method: (i) solve an MILP problem while considering the
gene as not expressed in the Boolean equations of its associated
proteins. If there is no feasible MRS solution following this modifica-
tion, then the gene must be associated with a reaction with non-zero
flux, and hence the gene is considered to be active. (ii) If there is a
feasible MRS solution, then, to determine whether the gene is non-
active or undetermined, we test whether it is associated with a reaction
that may have a non-zero flux. This is carried out by applying FVA
(Mahadevan and Schilling, 2003) on the MRS solution space to
determine whether one of the reactions associated with the gene may
be active.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).

Acknowledgements
We are grateful to Erez Braun, Naama Brenner, Markus Herrgard and
Jennifer Reed for very fruitful discussions. We also thank Elhanan
Borenstein for critical reading of the paper. TS was supported by the
Tauber Fund. RS was supported by an Alon Fellowship. This research
was supported in part by grants from the Israeli Science Fund (ISF), the
German–Israeli Fund (GIF) and the Yeshaya Horowitz Association
through the Center of Complexity Science.

References

Akashi H (2003) Metabolic economics and microbial proteome
evolution. Bioinformatics 19 (Suppl 2): II15

Bilu Y, Shlomi T, Barkai N, Ruppin E (2006) Conservation of expression
and sequence of metabolic genes is reflected by activity across
metabolic states. PLoS Comput Biol 2: e106

Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004)
Integrating high-throughput and computational data elucidates
bacterial networks. Nature 429: 92–96

Covert MW, Palsson BO (2003) Constraints-based models: regulation
of gene expression reduces the steady-state solution space. J Theor
Biol 221: 309–325

Covert MW, Schilling CH, Palsson B (2001) Regulation of gene
expression in flux balance models of metabolism. J Theor Biol
213: 73–88

Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH,
Pronk JT (2004) Role of transcriptional regulation in controlling
fluxes in central carbon metabolism of Saccharomyces cerevisiae.
A chemostat culture study. J Biol Chem 279: 9125–9138

de Jong H (2002) Modeling and simulation of genetic regulatory
systems: a literature review. J Comput Biol 9: 67–103

Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006) Multiple
knockouts analysis of genetic robustness in the yeast metabolic
network. Nat Genet 38: 993–998

Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico
metabolic genotype: its definition, characteristics, and capabilities.
Proc Natl Acad Sci USA 97: 5528–5533

Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T,
Wuthrich K, Bailey JE, Sauer U (2002) Metabolic flux responses
to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184:
152–164

Fell DA, Small JR (1986) Fat synthesis in adipose tissue. An
examination of stoichiometric constraints. Biochem J 238:
781–786

Fong SS, Joyce AR, Palsson BO (2005) Parallel adaptive evolu-
tion cultures of Escherichia coli lead to convergent growth
phenotypes with different gene expression states. Genome Res 15:
1365–1372

Forster J, Famili I, Palsson BO, Nielsen J (2003) Large-scale evaluation
of in silico gene deletions in Saccharomyces cerevisiae. Omics 7:
193–202

Gianchandani EP, Papin JA, Price ND, Joyce AR, Palsson BO (2006)
Matrix formalism to describe functional states of transcriptional
regulatory systems. PLoS Comput Biol 2: e101

Herrgard MJ, Lee BS, Portnoy V, Palsson BO (2006) Integrated analysis
of regulatory and metabolic networks reveals novel regulatory
mechanisms in Saccharomyces cerevisiae. Genome Res 16: 627–635

Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance
analysis. Curr Opin Biotechnol 14: 491–496

Mahadevan R, Schilling CH (2003) The effects of alternate optimal
solutions in constraint-based genome-scale metabolic models.
Metab Eng 5: 264–276

Price ND, Reed JL, Palsson BO (2004) Genome-scale models of
microbial cells: evaluating the consequences of constraints. Nat Rev
Microbiol 2: 886–897

Rossell S, van der Weijden CC, Lindenbergh A, van Tuijl A, Francke C,
Bakker BM, Westerhoff HV (2006) Unraveling the complexity of

The interplay between regulation and metabolism
T Shlomi et al

6 Molecular Systems Biology 2007 & 2007 EMBO and Nature Publishing Group



flux regulation: a new method demonstrated for nutrient starvation
in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 103: 2166–2171

Salgado H, Gama-Castro S, Martinez-Antonio A, Diaz-Peredo E,
Sanchez-Solano F, Peralta-Gil M, Garcia-Alonso D, Jimenez-
Jacinto V, Santos-Zavaleta A, Bonavides-Martinez C, Collado-
Vides J (2004) RegulonDB (version 4.0): transcriptional
regulation, operon organization and growth conditions in

Escherichia coli K-12. Nucleic Acids Res 32 (Database issue):
D303–D306

Setty Y, Mayo AE, Surette MG, Alon U (2003) Detailed map of a cis-
regulatory input function. Proc Natl Acad Sci USA 100: 7702–7707

Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off mini-
mization of metabolic flux changes after genetic perturbations.
Proc Natl Acad Sci USA 102: 7695–7700

The interplay between regulation and metabolism
T Shlomi et al

& 2007 EMBO and Nature Publishing Group Molecular Systems Biology 2007 7


