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SUMMARY

Drug side effects levy a massive cost on society
through drug failures, morbidity, and mortality cases
every year, and their early detection is critically
important. Here, we describe the array of model-
based phenotype predictors (AMPP), an approach
that leverages medical informatics resources and
a human genome-scale metabolic model (GSMM)
to predict drug side effects. AMPP is substantially
predictive (AUC > 0.7) for >70 drug side effects,
including very serious ones such as interstitial
nephritis and extrapyramidal disorders. We evaluate
AMPP’s predictive signal through cross-validation,
comparison acrossmultiple versions of a side effects
database, and co-occurrence analysis of drug side
effect associations in scientific abstracts (hypergeo-
metric p value = 2.2e-40). AMPP outperforms a previ-
ous biochemical structure-based method in pre-
dicting metabolically based side effects (aggregate
AUC = 0.65 versus 0.59). Importantly, AMPP enables
the identification of key metabolic reactions and bio-
markers that are predictive of specific side effects.
Taken together, this work lays a foundation for future
detection ofmetabolically grounded side effects dur-
ing early stages of drug development.

INTRODUCTION

Drug side effects are major causes of death (Lazarou et al.,

1998), morbidity (Pirmohamed et al., 2004), and late-stage fail-

ures in drug development (Kola and Landis, 2004; Hay et al.,

2014). Reliable approaches for early prediction of drug side ef-

fects are clearly needed, and they would benefit from systems

analysis platforms that are broadly predictive across human

cell types and tissues. An attractive system for such broad-scale

analyses is cellular metabolism, which is a critical actor in many

human diseases and phenotypes (Bordbar and Palsson, 2012).

Metabolism is the only genome-wide network to be reliably con-

verted into predictive models, termed genome-scale metabolic

models (GSMMs) (Oberhardt et al., 2009; Thiele et al., 2013).

The release of GSMMs for humans (Thiele et al., 2013) has
enabled large-scale metabolic analysis of many diseases (Lewis

et al., 2010; Zelezniak et al., 2010; Shlomi et al., 2009; Duarte

et al., 2007) and tissue-specific behaviors, such as the functions

of liver metabolism (Shlomi et al., 2008; Jerby et al., 2010),

obesity (Mardinoglu et al., 2013), and cancer (Folger et al.,

2011; reviewed in Mardinoglu and Nielsen, 2012 and Bordbar

and Palsson, 2012). Moreover, GSMMs provide a promising

approach for predicting gene-to-phenotype linkages, including

drug side effect associations.

One notable recent study used GSMMs, coupled with gene

expression data from human cell lines treated with a variety of

drugs, to identify the molecular underpinnings of the drugs’

side effects (Zielinski et al., 2015). While this is an important

and timely goal, the authors did not focus on applying such

knowledge in a machine-learning fashion to predict which side

effects a new drug might cause, a distinct and complementary

goal. Several other computational methods have emerged

recently to address this need (see, e.g., Cheng et al., 2013).

These methods have typically leveraged large databases of

known drug side effects along with additional chemical and/or

biological information and machine learning (Yamanishi et al.,

2012), and some have gone further and predicted side effect-

associated chemical motifs (Duran-Frigola and Aloy, 2013;

Juan-Blanco et al., 2015; Pauwels et al., 2011). None, though,

to our knowledge, have directly leveraged GSMMs alongside

machine learning for the purpose of drug side effect prediction.

Here we used machine learning to integrate bottom-up ap-

proaches (i.e., the manually curated human GSMM) with the

huge reservoir of top-down data available for human disease,

drugs, and their associated phenotypes into ensembles of meta-

bolically associated side effect predictors.

RESULTS

Model-Based Phenotype Predictors
We present model-based phenotype predictors (MPPs) to pre-

dict whether a side effect is caused by a given metabolically

acting drug (Figure 1). MPPs are support vector machines

(SVMs), which classify drugs as either causing or not causing

a side effect by examining their effect on genome-wide meta-

bolic fluxes. Each MPP predicts a single side effect, so an array

of MPPs (AMPP) is constructed to predict all of the potential

side effects of a given drug. An MPP for a given side effect is

trained on a sample-balanced set of drugs known to and not

to cause the side effect (Experimental Procedures). The features
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Figure 1. Workflow for Building an AMPP

and Using It to Predict Drug Side Effects

(A) Within each MPP, inactivated drug target genes

are represented as knockouts in a human GSMM.

A matrix is formed by representing each drug as a

column of upper and lower flux bounds as calcu-

lated via FVA (these are the features for a SVM).

(B) Each MPP (one per side effect) is trained using

a known drug side effect matrix. Drugs are split into

those known to cause the side effect and those

that don’t, and then an SVM is trained for the side

effect multiple times, with sample-balanced sub-

sets of drugs used each time. Each trained MPP is

then tested using a leave-one-out cross-validation

procedure. Reported AUCs are usually averages

across different sample-balanced training sets.

(C) The resulting AMPPs are used to predict the

side effects of a given drug. First, known targets of

the drug are fed into the AMPP. Each MPP within

the AMPP then predicts whether inactivating the

targets will cause a specific side effect. Prediction

accuracy is quantified using a standard AUC/

receiver operating characteristic (ROC) analysis.
fed into the SVM are reaction bounds for a given drug as pre-

dicted using flux variability analysis (FVA) (Mahadevan and

Schilling, 2003) in a human GSMM after inactivation of the

drug’s targets (Duarte et al., 2007). Because inactivation is

more readily simulated in GSMMs than over-activation, only

drugs that inactivate their targets are considered (this includes

the large majority of all drugs). Thus, side effects for a metabol-

ically acting drug with known targets can be predicted by first

simulating the intracellular metabolic state caused by the drug

(via FVA) and then feeding this state into an AMPP that predicts

which side effects should occur, using a different trained SVM

for each side effect.

Althoughwe focus on drug side effects, the AMPPmethod can

link any metabolically inactivating genetic perturbations with

associated phenotypes. We test this in context of clinical symp-

toms and signs of inborn error of metabolism (IEM) diseases

(Supplemental Experimental Procedures, Note 1; Data S1).
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Prediction of Drug Side Effects
by AMPP
To build an AMPP for predicting drug side

effects, we first extracted data from the

side effect resource (SIDER, Kuhn et al.,

2010) and DrugBank (Knox et al., 2011)

and built a training set of drugs with known

side effects and targets (Supplemental

Experimental Procedures). We screened

for the drugs that exclusively inactivate

metabolic targets (since predictions are

made using a metabolic model), yielding

89 metabolic-targeting drugs with known

associations to 286 side effects (after

filtering out side effects associated with

less than ten drugs). Training an AMPP

with this data yielded 217 significantly pre-

dictive MPPs (after multiple hypothesis

correction), 70 of which (�25%) had areas
under the curve (AUCs) higher than 0.7 and, thus, might be trans-

lationally relevant (Figure 2A; Data S2, Average AUCs for Side

Effects). The top five predictors have AUCs in the range of

0.88–0.99 and operating points at 80%–100% discovery rate

with 10%–20% false positive rate.

Our strict filtering for drugs that exclusively inactivate meta-

bolic targets is desirable, because the SVM features are based

on a GSMM analysis (FVA) that best captures metabolic enzyme

inactivation. However, this filtering has the disadvantage that it

significantly reduces the number of drugs and side effects that

can be predicted. We therefore explored how the ‘‘metabolic-

ness’’ of a drug’s targets influences our predictions in two ways.

First, we rebuilt the AMPP after relaxing the requirement that

all of the drug’s targets must be metabolic (Supplemental Exper-

imental Procedures). This yielded 426 side effects associated

with 190 drugs, doubling the number of metabolic pathways hit

as primary targets (from 27 to 53 of 98 total in the human
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Figure 2. AMPP Predictions

(A) AUC score distributions for the 37 side effects withmean AUCs greater than 0.75, as evaluated over 100 leave-one-out runs with a different (sample-balanced)

set of negative training samples each time, are shown (central marks are medians, boxes are quartiles).

(B) Average AUCs correlate with the metabolicness (see text) of the side effects, in that more metabolically grounded side effects are predicted better by our

AMPP. Box edges are 25th and 75th percentiles and whiskers span data points not considered outliers.

(C) The distribution of AUCs across all side effect predictors is highest for AMPP-CCA, middle for AMPP, and lowest for the H-CCA method. Red dotted lines

indicate mean AUC values.

(legend continued on next page)
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GSMM), but keeping the distribution of pathways highly consis-

tent (Figure S1). Of the 426 side effects, 278 (65%) were signifi-

cantly predictive and 78 (18%) had AUCs higher than 0.7. We

then compared the AMPP-predicted drug side effect association

strengths for drug side effect pairs that have been newly added

to SIDER (since the version of the database on which we trained)

versus those that were newly removed. We found, reassuringly,

that AMPP scored the newly added pairs significantly higher

than the removed ones (p = 2.5e�3, rank sum; Figure 2B).

Second, to better quantify how noise from non-metabolic ef-

fects might reduce our accuracy, we assigned each side effect

in the 286 highly filtered AMPP set a metabolicness score, de-

noting the percentage of genes that are metabolic among all

genes targeted by all drugs known to cause that side effect.

Reassuringly, we found that the metabolicness of a side effect

correlates with the AUC of our predictor for that side effect

(rho = 0.28, p = 1.2e�6 in Pearson correlation across all 286

side effects; rho = 0.57, p = 2.1e�3 when considering only

side effects with AUCs in the top 10%; Figure 2C).

These results emphasize that the AMPP method is most pre-

dictive for metabolically targeting drugs and highly metabolically

associated side effects, but that accurate predictions can still be

made for many side effects even when drugs targeting some

non-metabolic genes are considered.

To better understand the value of metabolic network analysis

in predicting drug side effects, we compared the AMPP to a

highly performing previous method (H-CCA) for predicting drug

side effects, which compares biochemical structures of drugs

via the machine-learning method of canonical correlation anal-

ysis (CCA) to make new drug side effect predictions (Supple-

mental Experimental Procedures; Atias and Sharan, 2011). We

ran H-CCA on the metabolic side effects and drugs we had pre-

viously analyzed (excluding nine of the 89 drugs due to inacces-

sibility of their chemical structures, Supplemental Experimental

Procedures), and we found that the AMPP produced a consider-

ably higher distribution of AUCs than H-CCA across the same

side effects (Figure 2D; AUCs calculated the same way for

each method).

To combine the strengths of both methods, we next devel-

oped the AMPP-CCA algorithm, which combines metabolic

states determined by FVA (instead of biochemical structures)

with the CCA algorithm. This differs from SVM in that it integrates

information from all known drug side effect interactions in

predicting any one drug side effect association (Supplemental

Experimental Procedures). AMPP-CCA outperformed both

AMPP and H-CCA in predicting metabolic drug side effects (Fig-

ure 2D), and thus it should be considered for the task of predict-

ing drug side effect interactions. However, in contrast to the

AMPP method, AMPP-CCA cannot be drawn upon for feature

selection and prediction of biomarkers (see next section), and
(D) AMPP-based drug side effect association scores are significantly higher for ass

(to obtain sufficient sample size, drugs that do not solely target metabolism were

(E) The percentage of biomarker/side effect associations co-occurring in PubMe

(F) AUCs are shown for aggregated ROC for the classification of the side effects

(G) Histogram of the number of biomarkers predictive for varying numbers of drug

inset box.

(H) The numbers of side effects predicted above various cutoffs, using differently

SE, side effect.
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it requires a full drug side effect matrix to predict any one side

effect.

Predictive Features and Metabolic Biomarkers for Drug
Side Effects
We used a random-forest feature selection method to identify

the most predictive reactions for specific side effects (Breiman,

2001; Supplemental Experimental Procedures). Notably, a hand-

ful of reactions were often sufficient to predict side effects with

accuracy comparable to that of the full MPP (Figure 2E; Data

S2, Side Effect Key Reactions). Purine metabolism, hyaluronan

metabolism, and salvage pathways were the most enriched

pathways for top predictive reactions (Data S2, Side Effect

Key Pathways). Reassuringly, many of the highest confidence

feature/side effect pairs were supported by previous literature

(eight of the top 14 feature/side effect pairs; Data S2, Side Effect

Top Reaction Set).

We next performed a second feature selection process

focusing only on cellular exchange reactions, as these may point

to metabolites that could be detectable in bodily fluids and thus

serve as biomarkers (Experimental Procedures). This yielded

218 significantly predictive classifiers (of 286 side effects total),

which we then narrowed to 162 by examining only side effects

that can be predicted using between two and eight top bio-

markers while attaining an AUC > 0.6 (Data S2, Side Effect Bio-

markers). We found that our predicted biomarker/side effect

pairs co-occur in PubMed abstracts (Shlomi et al., 2009) signif-

icantly more commonly than random pairs (Figure 2F; hypergeo-

metric p value = 2.2e�40). Finally, we incrementally built a pre-

dicted biomarker panel, which we increased one biomarker

at a time starting with the most broadly predictive exchange

metabolite, while each time assessing how many side effects

the panel could predict above a significance threshold. Encour-

agingly, only five to ten biomarkers were sufficient for achieving

an AUC > 0.6 for >100 side effects (Figures 2G and 2H). The

AMPP is thus a promising method for determining small diag-

nostic panels of measurable biomarkers that can predict a

wide array of side effects.

DISCUSSION

In summary, we usedmachine learning to predict phenotype-ge-

notype relationships based on steady-state metabolic fluxes in a

genome-scale model of a generic human cell. While this repre-

sentation is highly simplified compared to the many temporal,

spatial, and biological scales through which genotype is con-

verted to phenotype, our approach successfully predicts gene

perturbation-to-macro-phenotype associations on a subset of

the side effects studied. This is even despite the fact that the

approach only accounts for pharmacodynamics (i.e., drug target
ociations added or removed from SIDER since the version onwhich we trained

included, along with their associated side effects).

d records is higher for predicted associations than for random ones.

with significant predictors, using varying numbers of features.

side effects. The biomarkers that predict the most side effects are listed in the

sized biomarker panels, are shown.



effects) and not pharmacokinetics (i.e., effects related to clearing

the drugs), as the linkages of side effects to pharmacokinetic

mechanisms are generally not known. Organ specificity sug-

gests a key area for future improvement: by using organ-specific

constraint-based models (Shlomi et al., 2008; Jerby et al., 2010;

Yizhak et al., 2014), we might obtain more accurate and relevant

side effect predictions. Emphasis on the liver, for example, could

be a key facet in future refinements of the method, since most

drugs are processed in the liver and thus many side effects

may be strongly associated with liver metabolism.

The AMPPs we developed can be used to predict side effects

for other drugs that target metabolism, including those not yet

included in our dataset. In this way, AUCs we list based on these

leave-one-out validations provide important benchmarks for

how well we can predict the phenotypes/side effects caused

by any new drug.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
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