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Abstract

MicroRNAs (miRNAs) are small regulatory RNAs that act by blocking the translation and increasing the degradation of target
transcripts. MiRNAs play a critical role in many biological processes including development and differentiation and many
studies have shown that major changes in miRNA levels occur in cancer. Since miRNAs degrade target messages, we used
this property to develop a novel computational method aimed at determining the actual biological activity of miRNAs using
variations in gene expression. Using the method described here, we quantified miRNA activity in papillary thyroid carcinoma
and breast cancer, and found a strong and distinctive signal of increased global miRNA activity, embedded in the pertaining
gene expression measurements. Interestingly, we found that in these two cancers, miRNA activity is globally increased, and
is associated with a global downregulation of miRNA target genes. This downreguation of miRNA regulated genes is
particularly noticeable for genes carrying multiple target sites for miRNAs. Among the miRNA-repressed genes, we found a
significant enrichment of known tumor suppressors, thereby suggesting that the increased miRNA activity was indeed
tumorigenic.
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Introduction

MicroRNAs are single-stranded non-coding RNA molecules of

about 22 nucleotides that pair with messenger RNAs (mRNAs)

carrying a complementary sequence [1]. MicroRNAs bind to

target mRNAs within the RNA-induced silencing complex (RISC),

which contains a member of the Argonaute protein family. This

binding prevents translation and accelerates the degradation of the

targeted mRNAs [2]. In the last few years, miRNAs have been

shown to play a key role in the regulation of gene expression, and

there is evidence that miRNAs are involved in central biological

processes, including development, organogenesis, tissue differen-

tiation, cell cycle, and metabolism [3–5]. Remarkably, the spatial

and temporal expression of miRNAs is characteristic of tissues and

developmental stages, and several studies have shown a link

between miRNAs expressed in particular tissue types and

regulation of tissue-specific genes [6].

Changes in miRNA expression have been shown to occur in

cancer [7] However, the nature and impact of most of these

changes remain unclear. Notably, conflicting findings exist over

the question of whether miRNA levels are globally decreased or

increased in cancer. Mature miRNAs have been shown in some

studies to be decreased in cancer [8], while other studies have

detected upregulation of miRNAs in many tumors [9]. One

possible explanation for these diverging findings may be

differences between tumor types, tissues analysed, or even

measurement techniques. Another putative explanation is that

the deregulation that miRNAs undergo in cancer is a complex

process. That is, the outcome of miRNA regulation on gene

expression is dependent not only on the levels of the miRNAs, but

also on numerous other factors that mediate the influence of

miRNAs on their target genes, such as components of the RISC

complex. Consequently, the availability of these factors could

markedly modulate the overall influence of miRNAs effect on their

target genes, and, as a result, provide additional feedback on the

levels of miRNAs themselves. Such global variations of miRNA

activity are suggested by studies that have shown that the

Argonaute2 (EIF2C2) gene, which is incorporated in the RISC

complex, is frequently duplicated in tumors [10]. Since this gene is

not directly involved in miRNA biogenesis, one could expect that

when this gene is duplicated, the degradation of miRNA target

genes would increase, with no associated increase in miRNA

levels. For this reason, we attempted to determine the overall effect

of miRNAs on their target genes, their biological activity, and

designed a method for measuring this effect directly from the

pertaining target gene expression levels.

Our method, called MiRABELLE (MicroRNA Activity Based on

Expression Levels), is based on the observation that miRNAs are

known to accelerate the degradation of their target transcripts, and

that this activity leaves a signature on the mRNA levels of their target

genes. A decrease in the expression levels of mRNAs carrying a

binding site for a miRNA species can be detected upon transfection

with the cognate miRNAs [11]. Additionally, several studies have

shown a clear correlation between miRNAs that are highly expressed

in a given tissue and the downregulation of their target transcripts

[6,12,13]. Thus, a shift of expression of the set of genes targeted by a

miRNA in a sample is an indication that the biological activity of a

corresponding miRNA species changes in this sample.
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The MiRABELLE approach relies on the principle that gene

expression levels reflect the regulatory effect of higher-order

modules, and therefore, one could assess the impact of these

modules, by observing transcriptional changes [14,15]. In

particular, recent reports have shown that variation in the activity

of miRNAs can be detected by comparing the levels of miRNA

target genes across various tissues [16,17]. Our method, though

similar in its concept, diverges from previously published

approaches in that it is designed to capture characteristic features

of miRNA regulation on mRNA transcripts.

It is widely accepted that miRNA binding is determined

primarily by the 39 untranslated region (UTR) of mRNAs. The

presence of a 7-mer complementary to a miRNA seed (nucleotides

2–8) in the 39 UTR of a gene is a key factor of miRNA

recognition; and several algorithms, such as TargetScan [18,19],

have succeeded to identify miRNA-gene associations by carefully

identifying genes with conserved sequences corresponding to miR

recognition patterns. Nevertheless, an established association

between a miRNA and a target gene does not imply that all

transcripts produced from this gene would be subject to miRNA

regulation. About half of human genes can undergo polyadenyl-

ation at multiple sites, or be subject to alternative splicing

influencing their last exons [20,21], and thus produce transcripts

which differ in their 39 UTR sequences. Among mRNAs

transcribed from such loci, only those that carry the miRNA

recognized sequence between the stop codon and the polyA tail

would be affected by miRNA regulation. This property,

remarkably differentiates miRNA effect from transcription regu-

lation occurring at the gene promoter site, and which affects all

isoforms of the gene. We used this property to design a method

that would specifically assess the effect of miRNA regulation.

This approach is made possible by the fact that some

microarray platforms, like Affymetrix, measure transcript abun-

dance using several sequences taken from the 39 end of the gene.

Affymetrix gene expression data is summarized in probe-sets, and

there are several probe-sets available for most genes. Some of these

probe-sets are reliable indicators of miRNA activity, meaning that

they detect sequences that could only appear in the isoforms of a

gene that include a binding site for a given miRNA: all of the

transcripts detected by these probe-sets would be affected by a

change in the activity of a given miRNA. The first step of our

analysis was thus to identify these probe-sets and the miRNAs for

which they detect activity. We did this by mapping the sequence of

the probes, and determining their position in the gene with regard

to the miRNA target sites predicted for the gene.

MiRABELLE uses the expression values measured by these probe-

sets to calculate a biological activity score for each miRNA seed.

Basically, it takes as input a gene expression dataset and compares, in

each sample, the expression levels of probe-sets that are reliable

indicators for activity of a given miRNA seed ‘‘miR-seed’’, with the

expression levels of other probe-sets present on the array, which serve

as reference. The output of MiRABELLE is a ‘‘miR activity matrix’’,

providing the activity scores for each miRNA family (identified by the

seed sequence), and each sample. By convention, positive scores are

given when targets for a miRNA family display downregulation,

indicating that the biological activity of the cognate miRNAs is

increased in the sample, while negative values are obtained for

upregulation of targets, suggesting a decreased activity.

Methods

MiRABELLE tool
MiRABELLE takes as input an expression dataset and produces

a miR-seed activity matrix, giving for each sample in the dataset, the

activity scores computed for each of the miRNA species for which

predictions exist. Positive values are obtained when targets for a

given miR-seed display more downregulation than the reference,

indicating that the activity of this miR-seed is increased in the

sample, while negative values are obtained for upregulation of

targets, suggesting a decreased activity. This tool is written in Perl.

MiR-seeds activity score calculation
MiRABELLE first standardizes the gene expression levels

reported in the input dataset using Z-scores, to correct for the

varying sensitivity of probe-sets, and disparity between average

level of transcripts present in the tissue. Next, it uses the t-statistic

to calculate activity scores, comparing, in each sample, the Z-

scores of probe-sets that are reliable detectors of a given miR-seed,

with the Z-scores of other probe-sets. We used the two-tailed, two-

sample t-statistic, with unequal variance (two sample Welch’s t-

statistic). On a randomly shuffled gene expression dataset, the

variance of this statistic is 1, and its distribution is normal when

based on at least 20 detector probe-sets.

MiRNA targets predictions
In this study, we used TargetScan 4.0 predictions (July 2007) of

miRNA targets [18,19]. TargetScan 4.0 uses both evolutionary

conservation, and specific context determinants to predict miRNA

targets. Targetscan 4.0 predictions are available for about 158

different conserved miRNA seeds, representative of about 450

mature miRNAs in the human. Among these miR-seeds, four were

reliably detected by less than 20 probe-sets in the microarray, and

were hence excluded from the analyses.

Mapping of probe-sets to miR-seeds
In Affymetrix gene expression microarrays, it is common to have

several probe-sets for the same gene, each recognizing a different

sequence. According to the location of the sequences recognized by

probe-sets, it is possible to determine whether a given probe-set

detects only isoforms that carry a miR-seed target site, or also

isoforms that may be exempt from the miR-seed target site. Probe-

sets detecting exclusively transcripts carrying a miR-seed target are

more strongly affected by miRNA regulation than probe-sets that

detect a region of the gene shared by transcripts that do not carry the

miR target sequence. Thus, a prior step to our analysis was to assign

to each probe-set available on the microarray a list of miR-seeds that

will affect all the isoforms detected by the probe-set. We used the

following rule for assigning probe-sets to miR-seeds: when the

sequence corresponding to a given miR-seed is directly recognized by

a probe-set or is located upstream to the sequences detected by the

probe-set in the gene and on the same exon, we consider this probe-

set to be a reliable indicator of activity for this miR-seed. However, if

the sequence corresponding to this miR-seed is located downstream

to the sequences recognized by the probe-set, the probe-set might

detect short mRNAs that do not contain a miRNA target sites, and

we do not assign it to the miR-seed. We performed this mapping

using the UCSC genome browser database [22], human build 17

(http://genome.ucsc.edu). We downloaded the TargetScan predic-

tions from the website (http://www.targetscan.org) and mapped

them to the UCSC genome; we used the ‘‘knownGene’’ table for

mapping chromosomal locations to genes; we used the ‘‘affyU133-

Plus2’’ and ‘‘affyU133’’ tables for finding the location of sequences

recognized by probe-sets in the genes (Text S1).

Datasets analyzed
Pappilary thyroid carcinoma and breast cancer datasets were

retrieved from the GEO database [23], accession GSE3467,

MicroRNA Activity in Cancer

PLoS ONE | www.plosone.org 2 June 2009 | Volume 4 | Issue 6 | e6045



GSE3744, and ArrayExpress database [24], accession E-MEXP-

882. We used the normalized expression values from the database.

When raw data was available, we downloaded it, and renorma-

lized it using GCRMA, RMA and MAS 5.0 packages on

Bioconductor [25]. MiRABELLE predictions and enrichment of

downregulated targets were not significantly affected by the

normalization algorithm used. Validation experiments of trans-

fection with microRNAs and antagomirs were retrieved from the

GEO database, accession GDS1858, GDS2657, and GSE3425.

TF enrichment analysis
Binding sites (BS) for TF were determined by scanning the

promoters of all probe-sets present in the affymetrix microarray for

matches with Transfac matrices, as described in [26]. In each

promoter, the 500 base pairs (bp) immediately before the

transcription start sites were scanned, in accordance with the fact

that most active TFBS appear close to the transcription start site

[27]. The hypergeometric distribution was used to assess

enrichment between the background set of probe-sets and a

sample set.

GO Annotations
We used the GO biological process annotations for the

U133Plus2 array from Affymetrix website (http://www.affyme-

trix.com).

Statistics
We used the two-tailed, two-sample t-test with equal variance in

order to identify the miR-seeds showing the most significant

deviations in tumors vs. normal tissues, and ranked these MiRs

according to this test. This test was performed in Excel. We

performed one sample Kolmogorov-Smirnov (KS) tests to assess

the normality of the distribution of miR activity scores computed

by MiRABELLE on the dataset, and two-sample KS tests for

comparing the distributions of miR activity scores computed from

the original and a randomly shuffled dataset. The KS tests and the

associated histograms were performed in Matlab 7 (Mathworks).

The enrichment tests were performed using the hypergeometric

cumulative distribution function in Matlab.

Enrichment of downregulated genes with increasing
number of miR target sites (Table 1)

For the given set of miR-seeds, we performed enrichment tests

iteratively for each i between 0 and the maximal number of target

sites, as follows. The total population size (N) was the number of

informative probe-sets having at least i target sites for the

considered set of miR-seeds, the number of probe-sets reporting

downregulation were counted as successes (m). We tested for

enrichment of downregulation in the sample of probe-sets

detecting at least i+1 target sites for these miR-seeds.

Enrichment of GO annotations (Table S6)
We used the hyper-geometric distribution to identify the most

significantly enriched annotations in the sample of 9542 probe-sets

associated with the 77 miR-seeds, with regard to the population of

all probe-sets on the array (A). 5069 of these miR targets were

effectively downregulated in tumors. In the second analysis, we

identified the most significantly enriched annotations in the sample

of 5069 downregulated probe-sets, with regard to the population

of the 9542 predicted targets (B).

Table 1. Gene expression trends obtained for probe-sets that were mapped to the 77 miR-seeds that were found by t-test to
display the most significant upregulation in breast cancer (FWER p,0.05).

minimal number of
target sites in transcripts Up- Down-

percentage of
downregulated probe-sets

P-value for enrichment
(hypergeometric distribution)

regulated probe-sets

0 23660 16879 41.6%

1 4473 5069 53.1% 5.94?102148

2 2999 3575 54.4% 1.36?1024

3 2164 2715 55.6% 2.66?1024

4–5 1576 2104 57.2% 9.87?1025

6–7 882 1316 59.9% 3.27?1025

8–9 547 821 60.0% 4.48?1021

10–11 303 547 64.4% 1.81?1025

12–13 191 341 64.1% 6.08?1021

14–15 117 250 68.1% 2.81?1023

16–18 69 159 69.7% 2.30?1021

19–21 42 92 68.7% 7.15?1021

22–24 24 59 71.1% 2.79?1021

25–26 12 32 72.7% 4.56?1021

27–30 6 21 77.8% 2.72?1021

31–33 2 9 81.8% 5.28?1021

. = 34 0 9 100.0% 1.82?1021

The table gives the expression trends observed from probe-sets, according to the number of target sites predicted in the transcripts they detect. We observe that the
proportion of probe-sets detecting downregulation in tumors gradually increases with the number of target sites for these miRs, and this increase is associated with
significant hypergeometric p-values.
doi:10.1371/journal.pone.0006045.t001
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Results

Validation of the MiRABELLE Method
We first validated the MiRABELLE method in tissues where the

abundance of a particular miRNA had been experimentally

increased. Lim et al. [11] transfected HeLa cells with miR-124,

miR-1, and miR-373, and measured gene expression after 12 and

24 hours. Wang et al. [28] transfected HepG2 cells with miR-124

and measured gene expression at various time intervals. We

subjected the gene expression data to MiRABELLE analysis, which

computed the miR-seed activity for each sample. In the samples that

were transfected with microRNAs, our tool correctly identified very

significant increases in microRNA activity, specifically for the miR-

seeds miR-124, miR-1, and miR-373, in the corresponding

experiments (Text S1). In order to ensure that MiRABELLE is

suitable for detection of changes of miRNA activity occurring in vivo,

we analyzed the gene expression data generated in the experiment

of Krutzfeldt et al., where miR-122 was silenced by systemic

injection of an antagomir [29]. We found that our tool correctly

identified the significant decrease of activity for miR-122 occuring

after treatment with the antagomir (Text S1).

Inferring MicroRNA activity in Human Papillary Thyroid
Carcinoma

Papillary Thyroid Carcinoma (PTC) is a malignancy that

accounts for ,80% of human thyroid cancers. Two independent

studies have reported specific alterations of miRNA levels in PTC.

It was therefore interesting to quantify the biological activity of

miRNAs in PTC using the MiRABELLE tool and compare these

with the changes in miRNA expression levels reported in these two

studies.

He et al. [30] measured miRNA levels in tissue samples from 15

PTC patients using miRNA microarrays. Concomitantly, they also

used Affymetrix microarrays to determine gene expression in nine

tumors (T-PTC) and nine paired surrounding tissues (N-PTC). We

analyzed the gene expression data using MiRABELLE to infer a

miR-seed activity matrix (Table S1). As evident from this table,

miR-seed activity scores were substantially higher in tumors than

in normal tissues, suggesting that PTC tumors are characterized

by an intensification of miRNA activity. Indeed, the median

miRNA activity score in tumors is higher than the median activity

score in normal samples for 97% of the miR-seeds. To determine

the miR-seeds for which the increase of activity is the most

pronounced in tumors, we used the two-sample t-test to compare

the activity scores obtained from normal and tumor samples

(Table S2). He et al., reported that miR-146, miR-221, miR-222

and miR-21, displayed the most dramatic overexpression in

tumors with levels 19- to 4-fold higher in tumors than in adjacent

tissue. The t-test applied to our activity scores (using only the

subset of seeds that were used by He et al., in their microRNA

array) has successfully identified the 3 miR-seeds belonging to

these 4 microRNAs among the six most significant p-values (out of

65 different seeds). Thus, in the PTC case, the top miR-seeds

identified by their biological activity coincide with the top

overexpressed miRNAs.

The match between our predictions and the biological

measurements is not incidental and as we show below, results

from a very strong signal present in gene expression. The activity

scores computed by the MiRABELLE tool are based on t-statistics,

and in the absence of a common regulation of these genes, these

statistics follow a normal distribution. Figure 1A displays the

distribution of the miR-seed activity scores in normal and tumor

tissues. It can be seen that activity scores are significantly higher in

tumors than in normal tissues (p,102125 by a Kolmogorov-

Smirnov (KS) test). As a control, we computed hypothetical

activity scores on the same dataset after random shuffling of the

probe-sets (Fig. 1B). In the latter case, the KS test does not detect a

significant difference between the distribution of activity scores in

tumor and normal tissues, as one would expect.

Inferring MicroRNA activity in breast cancer
Having found that microRNA activity is globally increased in

papillary thyroid carcinoma, we proceeded to investigate miRNA

activity in breast cancer, which is the second most common type of

cancer, and a subject of extensive studies on gene expression, with

some very valuable datasets available in public repositories.

Richardson et al., published a gene expression study on breast

cancer [31], which is based on a dataset that included seven

normal tissue samples and 40 breast tumors, among which 18 were

basal-like cancers (BLC), a poorly differentiated and highly

aggressive form of cancers. The activity matrix inferred for this

dataset appears in Table S3. As demonstrated in Figure 1C, the

level of miRNA biological activity in tumor samples is here also

significantly higher than in normal samples; the KS test shows that

activity scores in tumor and normal samples have a distinct

distribution (p,102298). Comparing the median activity scores in

cancer and normal tissue samples, all but four miR-seeds appear to

have higher activity in cancer than in normal tissue. Even after

choosing a restrictive cut-off of p,3?1024 (corresponding to a 0.05

significance level after a Bonferroni correction for multiple testing),

we find that 77 (out of the 150) miR-seeds have a significant

increased activity in tumors (Table S4). Altogether, the micro-

RNAs corresponding to these 77 miR-seeds are predicted by

TargetScan to regulate about 6,000 genes. The increased miRNA

activity observed is indeed reflected in a marked decrease in the

expression of these target genes. Out of the 9,542 probe-sets

associated with transcripts regulated by one of these 77 miR-seeds,

5,069 (53.1%) have lower average expression in tumors (i.e., the

corresponding target genes are downregulated) than in normal

tissue, compared with 41.6% of all the 40,539 probe-sets in the

array (p,102147 by a hypergeometric test, Figure 1).

To provide additional support for our conclusion that micro-

RNAs are the main cause of the massive downregulation of these

genes, we examined the extent of gene target downregulation as a

function of the number of the associated binding sites for the miR-

seeds. This investigation has been motivated by previous

observations suggesting that the mRNA degradation following

binding of miRNA is more efficient for transcripts carrying

multiple target sites for miRNAs [32–34]. Table 1 summarizes the

expression trends observed for probe-sets that are mapped to the

77 miR-seeds displaying the most significant increase of activity in

tumors. As mentioned above, 9,542 probe-sets detect transcripts

that have at least one binding site for MiR-seeds, 53.1% of them

displaying downregulation in tumors. When one considers the

6,574 probe-sets detecting transcripts carrying at least 2 target

sites, the percentage improves to 54.4% (p,1.3?1024 by a

hypergeometric test), and it continues to increase for probe-sets

detecting transcripts carrying more sites for miRNA binding,

reaching about 70% for the 228 probe-sets detecting transcripts

with more than 15 target sites. It is remarkable that even though

MIRABELLE algorithm did not use the number of miRNA

binding sites in its calculations–activity scores were computed from

probe-sets identified as indicators of a miR-seed, regardless of the

number of binding sites they may carry–the miRNAs that it

identified as undergoing a significant change activity, displayed a

clear dose-response effect. Hence, the gradual increase in the

proportion of downregulated genes with the number of target sites

MicroRNA Activity in Cancer
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provides strong support to the notion that the decreased expression

of target genes is indeed due to increased miRNA activity.

Since many genes are regulated by several miRNA species, we

wished to ensure that the detected global downregulation of

miRNA target genes was not due to the increase in just a few

specific species of miRNAs (which share target genes with the

other miRNA species) out of this set of 77 active miR-seeds. To

this end, we performed the hypergeometric enrichment test

described earlier (i.e,. testing for enrichment of down-regulated

genes among probe-sets that detect targets of at least one miR-seed

in the set examined) in an iterative manner. In the first iteration,

we examined the hypergeometric enrichment obtained when
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Figure 1. Distribution of the MiR activity scores calculated for tumor samples (red) and normal samples (cyan). (A) Histogram
displaying the distribution of miR-seed activity scores computed for tumor (red) and normal samples (cyan) in the papillary thyroid carcinoma
dataset. Activity of miRNAs is globally higher in tumor tissues relative to normal tissues. The KS test rejects the hypothesis of equality of the
distributions of activity scores in tumor and in normal tissues, with a p-value P<102126. Normality of the activity scores is rejected with P,102300. (B)
To show that the deviation between scores computed for normal and tumor tissues is not due to our method of calculating the activity scores, we
computed these scores from a random permutation of the probe-sets from the PTC dataset. For both normal and tumor tissues, the activity scores
follow approximately a normal distribution, as expected for a t-statistic. There is no observable deviation between tumor and normal tissues, and the
KS test does not reject equality of the two distributions. (C) Histogram displaying the distribution of miR-seed activity scores computed for tumor
(red) and normal samples (cyan) in breast cancer dataset. MiRNA activity is significantly higher in tumor tissues relative to normal tissues. The KS test
rejects the hypothesis of equality of the distributions of activity scores in tumor and in normal tissues, with a p-value P,102298. (D) Histogram
displaying the distribution of miR-seed activity scores for a random permutation of the probe-sets from the breast dataset.
doi:10.1371/journal.pone.0006045.g001
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considering the expression patterns of the targets of only the first

miR-seed. In the second iteration, we examined the hypergeo-

metric enrichment obtained when considering the expression

patterns of the targets of the first and second miR-seeds, and so on.

Remarkably, the best score was obtained when considering the

targets of the first 74 miR-seeds, confirming that, indeed, almost

all of the original 77 biologically-active miRNA species contribute

to the observed expression downregulation. To ensure that these

results were not due to specific features of the analyzed data, we

investigated other breast cancer datasets, such as E-MEXP-882

[35], and processed them with different normalization schemes

(GC-RMA, MAS5.0). Using the hypergeometric test, we found a

similarly significant downregulation of miRNA target genes (81

biologically-active miR-seeds, p,102134 hypergeometric enrich-

ment test), furthering strengthening the hypothesis that the global

downregulation of miRNA targeted genes observed in breast

cancer is not specific to a particular study.

A potential cause for the observed downregulation of micro-

RNA target genes could be the action of transcription factors (TFs)

that co-regulate those genes [36]. Searching for known TF binding

sites in the promoter regions of target transcripts of each of the 77

miR-seeds, we found a significant enrichment (p,0.05) for 82 TFs

(Methods). Binding sites for these TFs were found in 30% of the

probe-sets present in the array. After excluding all transcripts with

putative binding sites for those TFs, we still observed a very

significant p-value for enrichment of downregulated genes among

miRNA targets (p,10296).

Next, we set to list the genes that have predicted target sites for

the 77 miR-seeds and are therefore expected to be affected by the

increased miRNA activity (Table S5). We functionally character-

ized them using gene ontology (GO) annotation, and looked for

statistical enrichment of specific annotations (Table S6). This

analysis shows that several biological processes were overrepre-

sented among gene targets of these miRNAs: regulation of

transcription, development and differentiation, ubiquitin cycle,

signal transduction, transport, and tumor suppression (synonym

category: regulation of progression through cell cycle) (FDR

p,1029). As we saw earlier, most of these genes displayed

decreased expression values in tumors, but not all. We looked for

functional annotations that could characterize the probe-sets that

were downregulated in tumors, compared to the other predicted

targets that were not effectively downregulated. We found that

cell-cycle arrest was the most significantly enriched annotation

(FDR p,2?1022), suggesting that miRNA-regulated genes that

cause cell-cycle arrest are indeed downregulated in tumors.

Since the efficiency of gene silencing by microRNAs improves

with the number of target sites, we looked for genes carrying the

highest number of target sites for our 77 miR-seeds. This

corresponds to the top of Table S5. In accordance with the top

identified GO annotations, we find genes regulating gene

transcription: CPEB4 (cytoplasmic polyadenylation element bind-

ing 4), which encodes a protein believed to control polyadenyl-

ation-induced translation in early development, has the highest

number of target sites (38), and is downregulated. Two other

members of the CPEB family, CPEB2 and CPEB3, also appear

high in the list with 26 and 25 target sites, respectively, and are

also downregulated; DDX3X (DEAD box polypeptide 3, X-linked),

a RNA helicase, has 33 target sites, and its associated probe-sets

also report downregulation (p = 0.002, 0.00001); PURB (Purine-

rich element binding protein B), a single-stranded DNA binding

protein that is implicated in the control of both DNA replication

and transcription has 30 target sites (deletion of this gene has been

associated with myelodysplastic syndrome and acute myelogenous

leukemia) and is downregulated. MECP2 (methyl CpG binding

protein 2), which participates in the repression of methylated

promoters, carries 29 sites, and appears to be efficiently silenced (t-

test p<0.001 for 2 probe-sets detecting transcripts with target

sites); likewise ZBTB4, a CpG binding protein that participates in

the repression of transcription from methylated promoters carries

22 sites and its transcript levels appear to be significantly reduced

(p,1027).

We also find important tumor suppressors: FOXP1 (Forkhead

box P1), a transcription factor that is believed to act as a tumor

suppressor as it is lost in several tumor types, carries 15 predicted

target sites from the most upregulated miR-seeds, and a significant

downregulation is detected. Also, KLF4 (Kruppel-like factor) that

controls the G1/S cell cycle checkpoint upon DNA damage has 14

predicted target sites for the most upregulated miR-seeds; (t-test

showing that its expression levels are very significantly reduced in

cancer (p,0.000001 for the two probe-sets available for this

gene)). ESR1 (estrogen receptor 1), a gene frequently silenced in

breast cancer, carries 12 predicted miRNA targets, and is

downregulated. Interestingly, PDCD4 (Programmed Cell Death

4), a tumor suppressor whose inhibition in breast cancer has been

linked to an increase in miR-21 [37], has 7 target sites for this

group of miRNAs (including one for miR-21), and here is also

significantly downregulated.

Lu et al. [8] have shown that microRNA levels measured by

bead-flow permit the classification of human cancers by non-

supervised methods such as hierarchical clustering. To ascertain

that the miRNA activity scores computed by MIRABELLE do

also provide this level of information, we subjected the miR-seed

activity matrix produced for the breast cancer datasetto hierar-

chical clustering [38]. Interestingly, hierarchical clustering based

on activity scores allowed to distinguish between tumor and non-

tumor samples (Fig. 2). Moreover, the clustering procedure

appears to distinguish between subtypes of tumors, with most

BLC samples grouped together.

Discussion

We have described here a method that allows inferring of

miRNA activity from gene expression data. During the course of

this study, other reports were published presenting analogous

approaches [16,17], which also concluded that miRNA regulation

information can be extracted from gene expression data. The

method we present here, although similar in its principle with the

methods described in these reports, is the first to incorporate input

from the location of the probes within the gene to detect variations

that are specific to changes in miR activity. By applying this

method to two types of human cancer, we found a strong signal of

increased miRNA activity in tumors. This increase appears to

have a very significant impact on gene expression, and we observe

a substantial number of miRNA target genes downregulated in

tumors, with the downregulation being stronger for genes carrying

multiple sites for miRNAs. Among these genes, we identified a

significant enrichment of tumor suppressor genes, suggesting a

mechanism by which the increase in miRNA activity could be

advantageous to tumors. In addition to their destabilizing effect on

mRNA transcripts, microRNAs have been shown to repress

protein translation, and therefore, one could expect that at the

protein level, these miRNAs repressed genes are even more

strongly silenced than what their probe-sets suggest.

Our method uses the changes in mRNA levels detected by

indicator probe-sets to measure changes in miRNA activity across

samples. It is remarkable that the moderate fluctuations exerted by

miRNAs at the mRNA level, could give such a strong signal of

miRNA activity when collected from these probe-sets, and this
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finding is consistent with reports that show that each miRNA

represses hundreds of genes at the mRNA level [11,39,40]. In

addition, the statistical signal of miRNA activity in gene expression

data has also been observed in two recent reports [16,17].

Our activity scores are based on variations in levels of mRNA

transcripts, and the specific effect of microRNAs on protein

translation is not assessed by these scores. Nonetheless, there is

increasing evidence that the translational effect of microRNAs is

accompanied by changes in mRNA level, and that mRNA

destabilization is the dominant component of repression. Baek et

al. [39], have shown that genes undergoing microRNA repression

by more than a third also display detectable mRNA destabiliza-

tion, and that highly repressed targets were silenced primarily at

the mRNA level. Additionally, Selbach et al. [40] showed that

most microRNA targets are repressed both at the mRNA and the

translational levels. MicroRNA species typically repress hundreds

of targets, and most of them are repressed at least at the mRNA

level. Therefore, it is reasonable to think that microRNAs that

decrease or increase significantly their activity would be noticed by

their effect on mRNA levels.

The increase in activity of miRNAs that we identified in the two

types of cancer studied could be due either to increased biogenesis

of miRNAs, or to improved efficiency of the mediators of miRNA

effect on target genes. In the first case, the increase in miRNA

activity would have to be accompanied by an increase in the levels

of miRNAs, while in the latter, mature miRNA transcripts levels

Figure 2. Hierarchical clustering of breast samples by MiR-seed activity scores. Clustering was done by complete linkage on cluster 3.0
according to the correlation (centered) similarity metric, after selecting miR-seeds for which the SD is at least 4. It can be observed that normal
samples are clustered together. Most of the BLC tumor samples are also grouped together. Prior to clustering, samples were randomly shuffled. Color
code: red means increased activity of miR-seeds; green decreased (Spearman rank correlation, complete linkage).
doi:10.1371/journal.pone.0006045.g002
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may not undergo a significant change. In PTC and breast cancer,

an increase in the level of few miRNAs species has been reported

[30,41,42], but not a global increase in the levels of many miRNA

species. Such a global increase could suggest an alteration in the

post-biogenesis regulation of the miRNA effects. This may possibly

occur at the level of the Argonaute proteins, which form the core

components of the RISC effector complex RISC mediating

miRNA function [1]. In support of this hypothesis, a genome-wide

search for copy number alterations in cancer has shown frequent

duplication of the Argonaute2 (EIF2C2) gene, as well as DICER1

in tumors [10].

Interestingly, Kumar et al., have found that tumorigenesis is

accelerated after DICER conditional deletion in the K-ras model

of lung cancer, and that RNA interference against DICER

increases cell-growth in several tumor cell lines [43]. This suggests

that DICER repression, and hence reduction of miRNA activity,

enhances tumorigenesis, and could appear to conflict with our

findings that breast cancer and PTC are accompanied by an

increase in miRNA activity. In accordance with Kumar et al., who

stated that other studies showed that overexpression of miRNAs

accelerates tumorigenesis, we do not think that there is a

contradiction here, and the effect of changes in miRNA activity

are likely to vary with cancer types and stages of tumorigenesis.

Further biological studies would be needed to confirm the

increase of miRNA activity identified here bioinformatically in two

types of cancer and identify its mechanism. If the downregulation

is confirmed, this would suggest that the increase in miRNA

activity occurring in certain types of cancer as reported here may

play a key role in the pathogenesis of these types of cancers, and

could offer an attractive diagnostic and therapeutic avenue.
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