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ABSTRACT

Comparative analysis of protein networks has proven to be a powerful approach for elu-
cidating network structure and predicting protein function and interaction. A fundamental
challenge for the successful application of this approach is to devise an efficient multiple
network alignment algorithm. Here we present a novel framework for the problem. At the
heart of the framework is a novel representation of multiple networks that is only linear in
their size as opposed to current exponential representations. Our alignment algorithm is
very efficient, being capable of aligning 10 networks with tens of thousands of proteins each
in minutes. We show that our algorithm outperforms previous approaches for the problem,
and produces results that are more in line with current biological knowledge.
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1. INTRODUCTION

Recent technological advances enable the systematic characterization of protein-protein interaction

(PPI) networks across multiple species. Procedures such as yeast two-hybrid (Ito et al., 2001a) and

protein co-immunoprecipitation (Aebersold and Mann, 2003) are routinely employed nowadays to generate

large-scale protein interaction networks for human and most model species (Uetz et al., 2000; Ito et al.,

2001b; Ho et al., 2002; Gavin et al., 2002; Stelzl et al., 2005). Key to interpreting these data is the inference of

cellular machineries. As in other biological domains, a comparative approach provides a powerful basis for

addressing this challenge, calling for algorithms for protein network alignment.

In the network alignment problem, one has to identify network regions that are conserved in their

sequence and interaction pattern across two or more species. While the general problem is hard, gener-

alizing subgraph isomorphism, heuristic methods have been devised to tackle it. One heuristic approach for

the problem creates a merged representation of the networks being compared, called a network alignment

graph, facilitating the search for conserved subnetworks. In a network alignment graph, the nodes represent

sets of proteins, one from each species, and the edges represent conserved PPIs across the investigated

species.

The network alignment paradigm has been applied successfully by a number of authors to search for

conserved pathways (Kelley et al., 2003) and complexes (Sharan et al., 2005a,b; Koyuturk et al., 2006).
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However, its extension to more than a few (three) networks proved difficult due to the exponential growth

of the alignment graph with the number of species. Recently, an algorithm was suggested to overcome this

difficulty, which is based on imitating progressive sequence alignment techniques (Flannick et al., 2006).

The latter algorithm was successfully applied to align up to 10 microbial networks. Another framework for

multiple network alignment was suggested by Dutkowski and Tiuryn (2007). Their method is based on

clustering the proteins into orthology groups, reconstructing an ancestral network over representatives of

these groups, and identifying conserved modules in this network. To date, this approach was applied to

align three networks only.

Here we propose a new algorithm for multiple network alignment that is based on a novel representation

of the network data. The algorithm avoids the explicit representation of every set of potentially orthologous

proteins (which form a node in the network alignment graph), thereby achieving dramatic reduction in time

and memory requirements. We compare our algorithm to those of Flannick et al. (2006) and Dutkowski and

Tiuryn (2007), showing that it is extremely fast and accurate, providing results that are more in line with

current biological knowledge.

2. METHODS

2.1. Data representation

Given k protein-protein interaction networks, we represent them using a k-layer graph, which we call a

layered alignment graph. Each layer corresponds to a species and contains the corresponding PPI network.

Additional edges connect proteins from different layers if they are sequence similar. Formally, layer i has a

set Vi of vertices and a set Ei of edges. Additionally, we have a set of inter-layer edges denoted by EH. Let

GH¼ ([iVi,EH) denote the graph restricted to the inter-layer edges. Let n be the maximum number of

proteins in a species. Let m be the maximum number of sequence similarity edges in GH between any pair

of species.

The relation between an alignment graph and a layered alignment graph should be clear: while in the

former every set of potentially orthologous proteins is represented by a vertex; in the latter such a set is

represented by a subgraph of size k, which includes a vertex from each of the layers. We call such a

subgraph a k-spine. Key to the algorithmic approach presented below is the assumption that a k-spine

corresponding to a set of truly orthologous proteins must be connected and, hence, admits a spanning tree.

Thus, we can identify all potential vertex sets inducing k-spines by looking for trees instead.

A collection of (connected) k-spines induces a candidate conserved subnetwork. We score it using a

likelihood ratio score as described in Sharan et al. (2005b). The score evaluates the fit of the protein-protein

interactions within this subnetwork to a conserved subnetwork model versus the chance that they arise at

random. The conserved subnetwork model assumes that each pair of proteins from the same species in the

subnetwork should interact, independently of all other pairs, with high probability b. Note that we do not

score the conservation of interactions, but rather score the conservation of subnetwork density across

species. More elaborate models that aim to score interaction conservation directly are described in Hirsh

and Sharan (2006). The random model assumes that each species’ network was chosen uniformly at random

from the collection of all graphs with the same vertex degrees as the ones observed. This random model

induces a probability of occurrence puv for each edge (u, v) of the graph. To accommodate for information

on the reliability of interactions, the interaction status of every vertex pair is treated as a noisy observation,

and its reliability is combined into the likelihood score. Overall, for a subnetwork with vertex set U, the

likelihood ratio score factors over the vertex pairs in it: L(U)¼
P

(u, v)2U · U w(u, v) where w(v,v)¼ 0 and

for u= v,

w(u, v)¼ log
bPr(OuvjTuv)þ (1� b)Pr(OuvjFuv)

puvPr(OuvjTuv)þ (1� puv)Pr(OuvjFuv)
,

Here Ouv denotes the set of experimental observations on the interaction status of u and v, Tuv denotes the

event that u and v truly interact, and Fuv denotes the event the u and v do not interact. The computation of

Pr(OuvjTuv) and Pr(OuvjFuv) is based on the reliability assigned to the interaction between u and v (Sharan

et al., 2005b).

This notion of a conserved subnetwork is extended easily to a layered alignment graph. If we con-

sider every k-spine to correspond to a node in an alignment graph, then a d-node subgraph is a subgraph of
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d k-spines (possibly sharing vertices among them) that are densely interconnected with PPI edges. For-

mally, define a d-subnet as a collection U of k multi-sets Ui¼ {u1
i , . . . , ud

i }, corresponding to the species

1, . . . , k, with the following properties:

� For all 1� i� k and 1� j� d, u
j
i 2 Vi.

� For all 1� j� d, the set Uj¼ {u
j
1, u

j
2, . . . , u

j
k} forms a k-spine.

The score G(U) of the d-subnet is given by G(U)¼
Pk

i¼ 1 L(Ui), where the definition of L is naturally

extended to multi-sets by considering the corresponding sets.

In the following, it will be convenient for us to denote adjacency relations between multi-sets in a

d-subnet. For two multi-sets U1,U2, denote (U1, U2) 2 EH if and only if (u
j
1, u

j
2) 2 EH for all 1� j� d. We

also define a mapping s(�) from multi-sets of vertices from the same species to the index of the species they

represent.

2.2. The search algorithm

The main algorithmic task is to look for high scoring d-subnets. This problem is computationally hard

even when there is only a single network, and edge-weights are restricted to þ1 for all edges, and �1 for all

non-edges (Shamir et al., 2004). Thus, we resort to a greedy heuristic which starts from high weight seeds

and expands them using local search. Such greedy heuristics have been successfully applied to search for

conserved subnetworks in a network alignment graph (Sharan et al., 2005b; Flannick et al., 2006; Koyuturk

et al., 2006).

There are two sub-tasks we need to tackle: (i) computing high weight seeds and (ii) extending a seed. We

provide algorithmic solutions for both tasks below.

Computing seeds. We start by computing d-subnets as seeds, where d is a small constant. Notably,

even when d¼ 2, we do not know of any algorithm better than the naive approach, which involves looking

at all pairs of k-spines. This O(ndk) time algorithm is intractable for typical networks, so we consider two

alternative assumptions on the inter-layer edges that reduce the computational complexity while retaining

the sensitivity of the algorithm.

The first assumption asserts that the k-spines of a seed support the same topology of inter-connections. This

is motivated by the observation that proteins within the same pathway or complex are typically present or

absent in the genome as a group (Pellegrini et al., 1999). Thus, we consider the following problem:

Problem 1. d-identical-spine-subnet. Compute a set of d k-spines with identical topologies and

maximum score.

Theorem 1. The d-identical-spine-subnet problem admits an O(k3md3k) solution.

Proof. First, consider the case where each of the d k-spines is restricted to be a path. This implies that

the d-subnet itself can be considered as a path, i.e., there exists some permutation p : {1, . . . , k}!
{1, . . . , k} such that Up(1), . . . , Up(k) is a path (see Figure 1 for an example in which p is the identity

permutation). For a subset of species S, let G(U, S) denote the score of the best d-subnet that uses only

species in S, and consists of a path that ends with U. To compute G(U, S), note that we only need to recurse

using the predecessor of U in the path. Formally:

G(U, S)¼

max G(W , Sn{s(U)})þL(U) if jSj4 1

(U, W) 2 EH

s(W) 2 Sn{s(U)}

L(U) ifjSj ¼ 1

8>><
>>:

The recursion is computed for every pair (U, W) 2 EH (O(k2md) in total), and each subset S (2k possibil-

ities). For a proposed multi-set W, it takes O(k) time to check whether s(W) 2 S. Thus, the overall time is

O(k3md2k).

A similar recursion can be applied when searching for k-spines that are trees with identical topology. For

a subset of species S, let G(U, S) denote the score of the best d-subnet that uses only the species in S, and

consists of a tree rooted at U. Then for jSj> 1:
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G(U, S)¼
max G(U, S1)þG(W , SnS1)

(U, W)2EH , S1�S

s(U)2S1, s(W)2SnS1

To analyze the complexity, notice that there are O(3k) variations of (S, S 1,S\S1). Thus, the overall time is

O(k3md3k). &

A second, slightly different assumption is based on the phylogeny (described as a rooted, binary tree T )

of the investigated species. Consider a set of vertices a, b, c whose underlying species form the phylo-

genetic triple (s({a}), (s({b}), s({c}))). We assume that if a, b, c are connected via inter-layer edges, then

there is an edge connecting b and c. This implies that we can restrict our attention to k-spines that are

guided by the phylogeny T in the following sense: any restriction of the k-spine to species that form a clade

in T is a subtree of the k-spine. Note that two guided spines can have very different topologies (Fig. 2).

Problem 2. The d-guided-spine-subnet problem. Compute a set of d k-spines, guided by the under-

lying phylogeny, with maximum score.

Unfortunately, we do not know of any efficient algorithm better than the naive O(nkd) for this problem.

However, we show a better solution when the k-spines are restricted to be paths guided by the phylogeny.

Theorem 2. The d-guided-spine-subnet problem can be solved in O(k(kn)2djEH jd) time when restricted

to paths.

1U1U

PPI edge

inter−layer edge

Species 2Species 1 Species k

kU3U2U

FIG. 1. A seed defined by a d-identical-spine subnet, where the k-spines are restricted to be paths with identical

topology. Vertical lines denote PPIs; solid horizontal arcs denote edges in EH; dashed arcs hint to paths connecting via

sequence-similarity edges the nodes of the multi-sets U2, U4, . . . , Uk; and the light gray dashed region encloses one of

the three k-spines.
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FIG. 2. Sketch of a 2-guided-spine-subnet. Note that while the paths of the two k-spines have different topologies,

they are both guided by the underlying tree. Following the notation in the proof of Theorem 2, let U¼ {a, j}, W ¼ {h, m},

and consider two possible distant sets X¼ {d, k} and Y ¼ {e, o}. By definition, TLL(U [ X)¼ {a, j}, TLR(U [ X)¼
{d, k}, TRL(Y [W)¼ {e, m}, TRR(Y [W)¼ {h, o}. Hence, G(U, W , T) ‡ G ({a, j}, {d, k}, TL)þG({e, m}, {h, o}, TR) ‡
G({a, i},{b, j},TLL)þG({c,k},{d, l},TLR)þ G({e,m},{f ,n},TRL)þG({g,p},{h,o},TRR) ‡ L(a, i)þL(b, j)þL(c,k)þ
L(d, l)þL(e,m)þL(f ,n)þL(g,o)þL(h,p).
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Proof. Consider a subtree T of the phylogeny with subtrees TL ,TR, respectively. Clearly, each of the d

paths will have one end-point in TL, and the other in TR. However, the order of the species along these paths

is not identical. Therefore, we work with size d subsets U which are not restricted to be within a single

species, but instead can span any species in T.

Let G(U, W , T) denote the best score of a set of d paths guided by a subtree T of the phylogeny, such that

s(U) � TL, s(W) � TR are the end nodes. At the base of the recursion T consists of a single node and

G(U, U, T)¼L(U).

Denote the root of T by root(T). For node u, define its distant set:

DT (u)¼ {xjLCAT (s({u}), s({x}))¼ root(T)}

where LCAT (a, b) is the least common ancestor of a and b in T . Extend this to d elements by defining

DT (U)¼ {Xj LCAT (s({u j}), s({x j}))¼ root(T) 8j}. By definition, if X 2 DT (U) then for all j : s({x j})

2 TL, s({u j}) 2 TR or s({x j}) 2 TR, s({u j}) 2 TL. Define TL(X) (TR(X)) as the set of all vertices in X with

species in TL (TR) respectively. Finally, let TLL ,TLR be the two subtree of TL and let TRL ,TRR be the two

subtrees of TR. Then, as exemplified in Figure 2:

G(U, W , T)¼ max (G(TLL(U [ X), TLR(U [ X), TL)þG(TRL(Y [W), TRR(Y [W), TR))

X2DTL
(U)

Y2DTR
(W)

(X, Y)2EH

Intuitively, the recursion works by dividing the problem of finding a d-guided-subnet (U, W) with respect

to a phylogenetic tree T, into two sub-problems on the two sub-trees, TL and TR. For the running time, note

that there are O((kn)2djEH jd) possible choices for (U, X, Y, W). Since a choice of U and W implies T, the

overall time is O(k(kn)2djEH jd): &

Extending a seed. The next phase of the algorithm is performing an iterative expansion of the seed by

adding, in each iteration, the k-spine that contributes the most to the score. The expansion is repeated while

a k-spine contributing to the score can be found or the extended seed size reaches a predefined limit. Let us

denote by M the current seed, by GM(v, S) the score of the best partial extension of M by a subtree that is

rooted at vertex v and visits the species in S, and by LM(v) the contribution of vertex v to the the extension

score. Then GM(v, S) can be computed using the following recursive relation:

GM(v, S)¼

max GM(v, S1)þGM(w, SnS1) if jSj4 1

(v, w)2EHS1�S

s({v})2S1, s({w})2SnS1

LM(v) if jSj ¼ 1

8>><
>>:

The overall complexity is O(kjEH j3k).

There are two speedups one can introduce to this basic extension scheme. The first is to set in advance

the order of the species along the phylogenetic tree, eliminating the 3k factor. We term this variant

restricted order as opposed to the previous relaxed order variant. The second is to constrain k-spines to

paths (rather than trees), obtaining an O(kjEH j2k) time algorithm.

2.3. Implementation notes and quality assessment

We have designed a software package, NetworkBLAST-M, implementing the multiple network alignment

approach outlined above. The implementation allows looking for 2-identical-spine seeds with relaxed and

restricted orders. For efficiency reasons, we restricted the seed vertices in each network to be of distance at

most 2 from one another.

The final collection of conserved subnetworks was filtered to remove redundant solutions. This was done

using an iterative greedy procedure that selects each time the highest scoring subgraph and removes all

subgraphs intersecting it by more than 50%. For two conserved subnetworks A and B, containing jAj and jBj
proteins, respectively, the intersection level is computed as the number of common proteins over min

{jAj, jBj}.

We evaluate the subnetworks output by the algorithm by computing the functional coherency of their

member proteins with respect to the biological process annotation of the gene ontology (GO) (Ashburner
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et al., 2000), for each species separately. To this end, we used the GO TermFinder tool (Boyle et al., 2004)

to compute empirical enrichment p-values, and corrected for multiple testing using the false discovery rate

(FDR) procedure (Benjamini and Hochberg, 1995), retaining results that passed an FDR threshold of 0.05.

For each species we report the percent of functionally coherent subnetworks discovered, and the number

of distinct GO categories they cover. The first measure quantifies the specificity of the method, and the

second provides an indication on the sensitivity of the method. We also provide analogous results with

respect to the molecular function and cellular component branches of the gene ontology (see Tables A1 and

A2 in Appendix).

To verify that using 2-identical-spines is adequate for our problem, we analyzed alignment nodes within

conserved network regions output by NetworkBLAST (Sharan et al., 2005b) for different network sets.

When aligning the networks of yeast, worm and fly (NetworkBLAST data set), in 85% of the cases the

pertaining alignment nodes respected the yeast-worm-fly phylogeny-based ordering. In two additional

microbial network sets (C. jejuni, E. coli, H. pylori and C. crescentus, V. cholerae and H. pylori; Graemlin

data set), more than 95% of the alignment nodes respected the respective phylogeny-based orientation.

Moreover, 72% of the alignment nodes actually formed cliques in GH.

We have also experimented with the two seed extension variants presented here. Our results in this

regard indicate that the relaxed-order variant yields higher sensitivity on certain data sets while showing

similar specificity (Table 2). In the restricted order variant, the best sensitivity is achieved with spines

whose orientation respects the phylogenetic tree. Interestingly, the difference in results between different

orientations of spines in restricted order is not as significant as could be expected, probably because a large

fraction of spines in functionally enriched alignments form cliques in GH and such spines are robust to

ordering restrictions.

3. RESULTS

We applied our algorithm to eukaryotic and microbial PPI networks (Table 1). The three eukaryotic

networks were taken from Sharan et al. (2005b) (NetworkBLAST data set) or Dutkowski and Tiuryn (2007)

(CAPPI data set), and the microbial networks were taken from (Flannick et al. (2006) (Graemlin data set).

As in Sharan et al. (2005b), we used a BLAST E-value threshold of 10�7 for sequence similarity, ensuring a

corrected significance value of 0.01.

To establish the validity of our method, we first compared it to NetworkBLAST (Sharan et al., 2005b).

NetworkBLAST is an exhaustive approach that relies on explicitly constructing a network alignment graph

Table 1. Summary of the PPI Networks Analyzed in This Study

Species (taxon ID) No. of proteins No. of PPIs

Graemlin data set

S. coelicolor (100226) 6678 230409

E. coli E12 (83333) 4087 216326

M. tuberculosis (83332) 3457 128932

S. typhimurium (99287) 4239 94609

C. crescentus (190650) 3341 40524

V. cholerae (243277) 2948 36038

S. pneumoniae (170187) 1843 25726

C. jejuni (192222) 1442 22116

H. pylori (85962) 1070 12943

Synechocystis sp. (1148) 2371 69439

NetworkBLAST data set

S. cerevisiae (4932) 4738 15147

C. elegans (6239) 2853 4472

D. melanogaster (7227) 7165 23484

CAPPI data set

S. cerevisiae (4932) 4726 15103

C. elegans (6239) 2619 3950

D. melanogaster (7227) 7032 20782
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and, hence, is limited in application to the alignment of up to 3 networks. Both methods use the same

scoring function, and scoring parameters were set equal for both methods for fair comparison (which is the

default configuration for both applications). The results in Table 3 show that the performance of Net-

workBLAST-M is comparable to that of NetworkBLAST. The latter has higher specificity, but fewer GO

categories enriched. The sensitivity of NetworkBLAST-M further improves when using the relaxed-order

variant. Notably, the application of NetworkBLAST-M took less than 30 seconds in both configurations,

while NetworkBLAST’s run took more than six hours. The difference in the sensitivities of the two

algorithms is due to a more relaxed definition of a k-spine (or an alignment graph node) that is used in the

current work as compared to that in Sharan et al. (2005b).

To compare to the CAPPI method (Dutkowski and Tiuryn, 2007), we applied both methods to the data

set which was used in the original publication, executing them with default parameters. In order to apply

NetworkBLAST-M to these data we assigned identical scores (0.8) to all interactions, as no reliability

information was available for them. As shown in Table 4, the NetworkBLAST-M yields generally higher

specificity and consistently higher sensitivity than CAPPI.

Table 2. NetworkBLAST-M Performance Evaluation of Relaxed versus Restricted Order

Configurations for All Possible Orientations of Spines in a Yeast-Worm-Fly Data Set

Species Specificity (%) No. of GO categories enriched

Relaxed order

S. cerevisiae 94.6 45

C. elegans 67.0 29

D. melanogaster 90.1 41

(Y,(W,(F))) order

S. cerevisiae 100.0 32

C. elegans 65.6 29

D. melanogaster 98.4 37

(Y,(F,(W))) order

S. cerevisiae 98.5 35

C. elegans 61.9 23

D. melanogaster 92.4 33

(W,(Y,(F))) order

S. cerevisiae 98.0 27

C. elegans 62.0 17

D. melanogaster 88.0 29

Table 3. Comparison of NetworkBLAST-M and NetworkBLAST on Three Eukaryotic Networks

from the NetworkBLAST Data Set

Species Specificity (%) No. of GO categories enriched

NetworkBLAST

S. cerevisiae 100.0 14

C. elegans 88.0 13

D. melanogaster 94.9 16

NetworkBLAST-M restricted order

S. cerevisiae 100.0 29

C. elegans 65.6 29

D. melanogaster 98.4 37

NetworkBLAST-M relaxed order

S. cerevisiae 94.6 45

C. elegans 67.0 29

D. melanogaster 90.1 41

For these networks, NetworkBLAST produced 59 conserved regions, while NetworkBLAST-M identified 64 regions in the

restricted-order variant and 92 in the relaxed-order variant, with sizes ranging from 8 to 15 k-spines.
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Next, we compared the performance of NetworkBLAST-M to that of Graemlin (Flannick et al., 2006) on

a set of 10 microbial networks. Graemlin’s results were taken from the original publication, considering

only alignments which contain all 10 species (a total of 21 conserved regions). NetworkBLAST-M was

applied only in the restricted-order variant due to the high computation burden. The algorithm detected a

total of 33 conserved network regions. As summarized in Table 5, NetworkBLAST-M outperforms

Graemlin, providing uniformly higher specificity and sensitivity.

Table 4. Comparison of NetworkBLAST-M and CAPPI on Three Eukaryotic Networks

from the CAPPI Data Set

Species Specificity (%) No. of GO categories enriched

CAPPI

S. cerevisiae 91.4 29

C. elegans 70.0 21

D. melanogaster 72.7 20

NetworkBLAST-M restricted order

S. cerevisiae 97.3 40

C. elegans 59.2 25

D. melanogaster 85.1 39

NetworkBLAST-M relaxed order

S. cerevisiae 99.0 46

C. elegans 61.1 21

D. melanogaster 86.7 48

For these networks, CAPPI reported 38 conserved regions and NetworkBLAST-M identified 74 conserved subnetworks in the

restricted-order variant and 98 in the relaxed-order variant, with sizes ranging from 5 to 15 k-spines.

Table 5. Comparison of NetworkBLAST-M and Graemlin on 10 Microbial Networks

Species Specificity (%) No. of GO categories enriched

NetworkBLAST-M restricted order

S. coelicolor 100 17

E. coli E12 90 16

M. tuberculosis 87.9 17

S. typhimurium 93.1 14

C. crescentus 84.8 15

V. cholerae 90.6 16

S. pneumoniae 97.0 14

C. jejuni 96.2 12

H. pylori 92.3 13

Synechocystis N/A N/A

Graemlin

S. coelicolor 71.4 12

E. coli E12 76.5 10

M. tuberculosis 76.9 8

S. typhimurium 81.3 10

C. crescentus 86.7 11

V. cholerae 80.0 9

S. pneumoniae 71.4 8

C. jejuni 76.9 9

H. pylori 56.3 8

Synechocystis N/A N/A

Results are provided for nine of the ten species for which we had gene ontology information (for Synechocystis, we did not have

functional information readily available). The conserved subnetworks detected by NetworkBLAST-M ranged in size from 5 to 15

k-spines.
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Statistics on the running times of NetworkBLAST-M on different sets of microbial networks with 3–10

species are given in Table 6. Evidently, the restricted-order variant is considerably faster than the relaxed-

order variant and can process up to 10 networks in minutes.

4. CONCLUSION

We have provided a fast and accurate framework for multiple network alignment. Our framework is

based on a novel representation of multiple protein-protein interaction networks and the orthology relations

among their proteins. The framework performs comparably to an exhaustive approach while allowing

dramatic reduction in running time and memory requirements. It is shown to outperform previous ap-

proaches for the problem.

Future research includes a more extensive comparison of the different seed computation variants pre-

sented here, as well as experimenting with other scoring functions. For example, it could be interesting to

incorporate into the NetworkBLAST-M framework a scoring function which is based on modeling protein

complex evolution, extending the method of Hirsh and Sharan (2006) to multiple networks.

The development of efficient network alignment techniques, such as the one described here, is crucial to

the study of protein network evolution and is expected to become increasingly important as protein-protein

interaction databases continue to grow in size and species coverage.

5. APPENDIX

Table 6. NetworkBLAST-M Run-Time as a Function of the Number of Species

and the Size of the Layered Alignment Graph

No. of

species

No. of

nodes

No. of PPI

edges

No. of sequence

similarity edges

Restricted order

run time (sec)

Relaxed order

run time (sec)

3 8132 102288 26834 40 44

5 11945 193843 57142 72 1587

7 17236 301365 103887 83 46686

10 31458 877032 327219 140 N/A

All the tests were performed on Intel Xeon 3.06-GHz 3-GB memory machine.

Table A1. Comparison of NetworkBLAST-M and CAPPI with Respect to Cellular Component

and Molecular Function Ontologies

Cellular component Molecular function

Species

Specificity

(%)

No. of GO

categories enriched

Specificity

(%)

No. of GO

categories enriched

CAPPI

S. cerevisiae 85.7 29 85.7 29

C. elegans 42.3 11 48.3 13

D. melanogaster 74.1 20 63.6 21

NetworkBLAST-M (restricted order)

S. cerevisiae 74.3 29 98.6 24

C. elegans 40.6 21 70.3 19

D. melanogaster 50.0 29 81.1 30

NetworkBLAST-M (relaxed order)

S. cerevisiae 78.6 33 96.9 26

C. elegans 46.3 20 69.4 15

D. melanogaster 43.3 29 84.7 34

FAST AND ACCURATE ALIGNMENT OF MULTIPLE PROTEIN NETWORKS 997



ACKNOWLEDGMENTS

V.B. was supported in part by a research gift from Glaxo SmithKline. This research was supported by the

Israel Science Foundation (grant 385/06).

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Aebersold, R., and Mann, M. 2003. Mass spectrometry-based proteomics. Nature 422, 198–207.

Ashburner, M., et al. 2000. The gene ontology consortium. gene ontology: tool for the unification of biology. Nat.

Genet. 25, 25–29.

Benjamini, Y., and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to

multiple testing. J. R. Statist. Soc. 57, 289–300.

Boyle, E., Weng, S., Gollub, J., et al. 2004. GO::TermFinder—open source software for accessing Gene Ontology

information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics

20, 3710–3715.

Dutkowski, J., and Tiuryn, J. 2007. Identification of functional modules from conserved ancestral protein-protein

interactions. Bioinformatics 23, 149–158.

Flannick, J., et al. 2006. Graemlin: general and robust alignment of multiple large interaction networks. Genome Res.

16, 1169–1181.

Gavin, A., et al. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes.

Nature 415, 141–147.

Table A2. A Comparison of NetworkBLAST-M and Graemlin with Respect to Cellular Component

and Molecular Function Ontologies

Cellular component Molecular function

Species

Specificity

(%)

No. of GO

categories enriched

Specificity

(%)

No. of GO

categories enriched

NetworkBLAST-M (restricted order)

S. coelicolor 95.5 7 100 18

E. coli E12 63.0 7 93.9 19

M. tuberculosis 66.7 5 93.9 20

S. typhimurium 61.5 7 100 18

C. crescentus 67.9 8 93.9 18

V. cholerae 88.5 8 97.0 20

S. pneumoniae 64.0 6 100 18

C. jejuni 57.1 5 96.7 15

H. pylori 63.6 6 90.9 15

Synechocystis N/A N/A N/A N/A

Graemlin

S. coelicolor 66.7 6 82.4 13

E. coli E12 46.2 6 82.4 13

M. tuberculosis 63.6 4 76.9 9

S. typhimurium 76.9 7 87.5 13

C. crescentus 66.7 5 93.8 13

V. cholerae 76.9 7 75.0 12

S. pneumoniae 75.0 7 92.9 12

C. jejuni 62.5 3 78.6 11

H. pylori 47.7 4 68.8 11

Synechocystis N/A N/A N/A N/A

998 KALAEV ET AL.



Hirsh, E., and Sharan, R. 2006. Identification of conserved protein complexes based on a model of protein network

evolution. Bioinformatics.

Ho, Y., et al. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry.

Nature 415, 180–183.

Ito, T., Chiba, T., and Yoshida, M. 2001a. Exploring the yeast protein interactome using comprehensive two-hybrid

projects. Trends Biotechnol. 19, 23–27.

Ito, T., et al. 2001b. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad.

Sci. USA 98, 4569–4574.

Kelley, B., et al. 2003. Conserved pathways within bacteria and yeast as revealed by global protein network alignment.

Proc. Natl. Acad. Sci. USA 100, 11394–11399.

Koyuturk, M., et al. 2006. Pairwise local alignment of protein interaction networks guided by models of evolution.

J. Comput. Biol. 13, 182–199.

Pellegrini, M., Marcotte, E., Thompson, M., et al. 1999. Assigning protein functions by comparative genome analysis:

protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96, 4285–4288.

Shamir, R., Sharan, R., and Tsur, D. 2004. Cluster graph modification problems. Discrete Appl. Math. 144, 173–182.

Sharan, R., Ideker, T., Kelley, B., et al. 2005a. Identification of protein complexes by comparative analysis of yeast and

bacterial protein interaction data. J. Comput. Biol. 12, 835–846.

Sharan, R., et al. 2005b. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102,

1974–1979.

Stelzl, U., et al. 2005. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122,

830–832.

Uetz, P., et al. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature

403, 623–627.

Address correspondence to:

Dr. Roded Sharan

School of Computer Science

Tel Aviv University

Tel Aviv, 69978 Israel

E-mail: roded@post.tau.ac.il

FAST AND ACCURATE ALIGNMENT OF MULTIPLE PROTEIN NETWORKS 999




