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Abstract. Comparative analysis of protein networks has proven to be a
powerful approach for elucidating network structure and predicting pro-
tein function and interaction. A fundamental challenge for the successful
application of this approach is to devise an efficient multiple network
alignment algorithm. Here we present a novel framework for the prob-
lem. At the heart of the framework is a novel representation of multiple
networks that is only linear in their size as opposed to current expo-
nential representations. Our alignment algorithm is very efficient, being
capable of aligning 10 networks with tens of thousands of proteins each
in minutes. We show that our algorithm outperforms a previous strategy
for the problem that is based on progressive alignment, and produces
results that are more in line with current biological knowledge.

1 Introduction

Recent technological advances enable the systematic characterization of protein-
protein interaction (PPI) networks across multiple species. Procedures such as
yeast two-hybrid ([1]) and protein co-immunoprecipitation ([2]) are routinely em-
ployed nowadays to generate large-scale protein interaction networks for human
and most model species ([3–7]). Key to interpreting these data is the inference
of cellular machineries. As in other biological domains, a comparative approach
provides a powerful basis for addressing this challenge, calling for algorithms for
protein network alignment.

In the network alignment problem one has to identify network regions that are
conserved in their sequence and interaction pattern across two or more species.
While the general problem is hard, generalizing subgraph isomorphism, heuristic
methods have been devised to tackle it. One heuristic approach for the problem
creates a merged representation of the networks being compared, called a network
alignment graph, facilitating the search for conserved subnetworks. In a network
alignment graph, the nodes represent sets of proteins, one from each species, and
the edges represent conserved PPIs across the investigated species.

The network alignment paradigm has been applied successfully by a number
of authors to search for conserved pathways [8] and complexes [9–11]. However,
its extension to more than a few (3) networks proved difficult due to the ex-
ponential growth of the alignment graph with the number of species. Recently,



an algorithm was suggested to overcome this difficulty, proposing the idea of
imitating progressive sequence alignment techniques [12]. The latter algorithm
was successfully applied to align up to 10 microbial networks. Very recently,
Dutkowsky and Tiuryn [13] proposed another framework for efficient alignment
of multiple networks, but this approach was applied to date to three networks
only.

Here we propose a new algorithm for multiple network alignment that is based
on a novel representation of the network data. The algorithm allows avoiding
the explicit representation of every set of potentially orthologous proteins (which
form a node in the network alignment graph), thereby achieving dramatic reduc-
tion in time and memory requirements. We compare our algorithm to previous
approaches using various data sets, showing that it is extremely fast and accu-
rate, outperforming the progressive alignment approach. For lack of space, some
proofs are shortened or omitted.

2 Methods

2.1 Data representation

Given k protein-protein interaction networks, we represent them using a k-layer
graph, which we call a layered alignment graph. Each layer corresponds to a
species and contains the corresponding network. Additional edges connect pro-
teins from different layers if they are sequence similar. Formally, layer i has a
set Vi of vertices and a set Ei of edges. For exposition purposes, assume that
|Vi| = n for all i. Additionally, we have a set of inter-layer denoted by EH . Let
GH = (∪iVi, EH) denote the graph restricted to the inter-layer edges. Let δ be
the largest degree in GH . The relation between an alignment graph and a lay-
ered alignment graph should be clear: while in the former every set of potentially
orthologous proteins is represented by a vertex; in the latter such a set is repre-
sented by a subgraph of size k which includes a vertex from each of the layers.
We call such a subgraph a k-spine. Key to the algorithmic approach presented
below is the assumption that a k-spine corresponding to a set of truly orthol-
ogous proteins must be connected and, hence, admits a spanning tree. Thus,
we can identify all potential vertex sets inducing k-spines by looking for trees
instead.

A collection of (connected) k-spines induces a candidate conserved subnet-
work. We score it using a likelihood ratio score as described in [11]. The score
evaluates the fit of the protein-protein interactions within this subnetwork to a
conserved subnetwork model versus the chance that they arise at random. The
conserved subnetwork model assumes that each pair of proteins from the same
species in the subnetwork should interact, independently of all other pairs, with
high probability β. The random model assumes that each species’ network was
chosen uniformly at random from the collection of all graphs with the same ver-
tex degrees as the ones observed. This random model induces a probability of
occurrence puv for each edge (u, v) of the graph. To accommodate for informa-
tion on the reliability of interactions, the interaction status of every vertex pair is



treated as a noisy observation, and its reliability is combined into the likelihood
score. Overall, for a subnetwork with vertex set U , the likelihood ratio score
factors over the vertex pairs in it: L(U) =

∑
(u,v)∈U×U w(u, v) where w(v, v) = 0

and for u 6= v,

w(u, v) = log
βPr(Ouv|Tuv) + (1− β)Pr(Ouv|Fuv)

puvPr(Ouv|Tuv) + (1− puv)Pr(Ouv|Fuv)
,

Here Ouv denotes the set of experimental observations on the interaction status
of u and v, Tuv denotes the event that u and v truly interact, and Fuv denotes
the event the u and v do not interact. The computation of Pr(Ouv|Tuv) and
Pr(Ouv|Fuv) is based on the reliability assigned to the interaction between u
and v (see [11] for further details).

This notion of a conserved subnetwork is extended easily to a layered align-
ment graph. If we considered every k-spine to be a (super-)node in a graph, then
an m-node subgraph is a subgraph of m k-spines, with a dense interconnection
of PPI edges. Formally, define an m-subnet as a collection U of k multi-sets
Ui = {ui[1], . . . , ui[m]} with the following properties:

– For all 1 ≤ i ≤ k and 1 ≤ j ≤ m, ui[j] ∈ Vi.
– For all 1 ≤ j ≤ m, the set U [j] = {u1[j], u2[j], . . . , uk[j]} is a k-spine.

The score S (U) of the m-subnet is given by S (U) =
∑k

i=1 L(Ui).

2.2 The search algorithm

The main algorithmic task is to look for high scoring m-subnets, for a fixed m.
This problem is computationally hard even when there is only a single network,
and edge-weights are restricted to +1 for all edges, and −1 for all non-edges [14].
Thus, we resort to a greedy heuristic which starts from high weight seeds and
expands them using local search. Such greedy heuristics have been successfully
applied to search for conserved subnetworks in a network alignment graph [11].

There are two sub-tasks we need to tackle: (i) computing high weight seeds;
and (ii) extending a seed. We provide algorithmic solutions for both tasks below.

Computing seeds: We start by computing d-subnets as seeds, where d << m.
Notably, even when d = 2, we do not know of any algorithm better than the
naive approach, which involves looking at all pairs of k-spines. This O(ndk) time
algorithm is intractable for typical sized networks, so we consider two assump-
tions on the inter-layer edges that reduce the computational complexity while
retaining sensitivity.

The first assumption asserts that the k-spines of a seed support the same
topology of inter-connections. This is motivated by the observation that pro-
teins within the same pathway or complex are typically present or absent in the
genome as a group [15]. Thus, we consider the following problem:

Problem 1. d-identical-spine-subnet : Compute a set of d k-spines with iden-
tical topologies and maximum score.



Theorem 1. The d-identical-spine-subnet problem admits an O((nδ)dk3k) so-
lution.

Proof. Recall that a d-subnet can be described as a collection U of size d multi-
sets U1, U2, . . . Uk. Let (Ui1 , Ui2) ∈ EH iff (ui1 [j], ui2 [j]) ∈ EH for all 1 ≤ j ≤ d.

First, consider the case where each of the d k-spines is restricted to be a path
(Figure 1). This implies that the d-subnet itself can be considered as a path
Ui1 , Ui2, . . . , Uik

. For a subset of species S, let S (U, S) denote the score of the
best d-subnet that uses only species in S, and consists of a path that ends with
U . Let s(U) be the species corresponding to U . To compute S (U, S), note that
we only need to recurse using the predecessor of U in the path. Formally:

S (U, S) =


max

(U,W )∈EH

s(W )∈S\{s(U)}

S (W,S \ {s(U)}) + L(U) if |S| > 1

L(U) if |S| = 1

Thus, for paths, the overall complexity is O((nδ)dk2k).
A similar recursion can be applied when searching for k-spines that are trees

with identical topology. For a subset of species S, let S (U, S) denote the score
of the best d-subnet that uses only the species in S, and consists of a tree rooted
at U . Then for |S| > 1:

S (U, S) = max
(U,W )∈EH ,S1⊂S

s(U)∈S1,s(W )∈S\S1

S (U, S1) + S (W,S \ S1)

The overall complexity is O((nδ)dk3k). ♣
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Fig. 1. A seed defined by a d-identical-spine subnet, where the k-spines are restricted
to be paths with identical topology. The dashed line encloses one of the three k-spines.

A second, slightly different assumption is based on the phylogeny (described
as a rooted, binary tree T ) of the investigated species. Consider a set of nodes
a, b, c whose underlying species follow the phylogenetic triple (s(a), (s(b), s(c))).



We make the following phylogenetic assumption: if a, b, c are connected via inter-
layer edges, then b and c must be connected. This implies that we can restrict
our attention to k-spines that are guided by the phylogeny T in the following
sense: any restriction of the k-spine to species that form a clade in T is a subtree
of the k-spine. Note that two guided spines can have very different topologies
(see Figure 2).
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Fig. 2. Sketch of a 2-guided-spine-subnet . Note that while the paths of the two k-
spines have different topologies, they are both guided by the underlying tree. Follow-
ing the notation in the proof of Theorem 2, let U = {a, j}, W = {h, m}, and consider
two possible distant sets X = {d, k} and Y = {e, p}. By definition, TLL(U ∪ X) =
{a, j}, TLR(U ∪ X) = {d, k}, TRL(Y ∪W ) = {e, m}, TRR(Y ∪W ) = {h, p}. Hence,
S (U, W, T ) ≥ S ({a, j}, {d, k}, TL) + S ({e, m}, {h, p}, TR) ≥ S ({a, i}, {b, j}, TLL) +
S ({c, k}, {d, l}, TLR) +S ({e, m}, {f, n}, TRL) + S ({g, o}, {h, p}, TRR) ≥ L(a, i) +
L(b, j) + L(c, k) + L(d, l) +L(e, m) + L(f, n) + L(g, o) + L(h, p).

Problem 2. The d-guided-spine-subnet problem: Compute a set of d k-
spines guided by the underlying phylogeny, with maximum score.

Unfortunately, we do not know of any efficient algorithm better than the naive
O(nkd) for this problem. However, we show a better solution for d-guided-paths,
where the k-spines are restricted to be paths guided by the phylogeny.

Theorem 2. The d-guided-path-subnet problem can be solved in O(k3(n3δ)d).

Proof. Consider a subtree T of the phylogeny with subtrees TL, TR, respectively.
Clearly, each of the d paths will have one end-point in TL, and the other in TR.
However, the species topology of these paths is not identical. Therefore, we work
with size d subsets U which are not restricted to be within a single species, but
instead can span any species in T .

Let S (U,W, T ) denote the best score of a d-guided-path-subnet restricted to
a subtree T of the phylogeny such that s(U) ⊆ TL, s(W ) ⊆ TR are the end nodes.
At the base of the recursion T consists of a single node and S (U,U, T ) = L(U).



Otherwise, let U = 〈u[1], u[2] . . . u[d]〉 ∈ TL, and W = 〈w[1], w[2] . . . w[d]〉 ∈ TR.
Denote the root of T by root(T ).

For a node u, s.t. s(u) ∈ T , define its distant set DT (u) = {x|LCAT (s(u), s(x)) =
root(T )}, where LCAT (a, b) is the least common ancestor of a and b in T . Extend
this to d elements by defining DT (U) = {X|LCAT (s(u[j]), s(x[j])) = root(T )∀j}
The key idea to note is that if X ∈ DT (U), then for all j s(x[j]) ∈ TL, s(u[j]) ∈
TR or s(x[j]) ∈ TR, s(u[j]) ∈ TL. Define TL(U ∪X) (TR(U ∪X)) as the set of all
vertices in U ∪X with species in TL (TR). Then,

S (U,W, T ) = max
X∈DTL

(U)

Y ∈DTR
(W )

(X,Y )∈EH

(S (TLL(U∪X), TLR(U∪X), TL)+S (TRL(Y ∪W ), TRR(Y ∪W ), TR))

For an example see Figure 2. For the running time, note that there are k2n2d

cells in the table S . For each cell, there are knd choices for the set X and for
each there are δd choices for a set Y s.t. (X,Y ) ∈ EH . The total time is therefore
O(k3(n3δ)d). ♣

In fact, we can improve the running time to O((k2n2δ)d) (the proof will ap-
pear in the full version of the paper), but this is still not practical for reasonable
values of n.

Extending a seed: The next phase of the algorithm is performing an iterative
expansion of the seed by adding, in each iteration, the k-spine that contributes
the most to the score. Let us denote by H = (V ′, E′) the current seed, and
by S (v, S) the score of the best partial extension of H by a subtree that is
rooted at vertex v and visits the species in S. Further denote by s(v) the species
corresponding to vertex v, and let W (v) =

∑
u∈V ′ w(u, v). Then S (v, S) can be

computed using the following recursive relation:

S (v, S) =


max

(v,w)∈EH ,S1⊂S

s(v)∈S1,s(w)∈S\S1

S (v, S1) + S (w, S \ S1) if |S| > 1

L(v) if |S| = 1

The overall complexity is O(nδk3k).
There are two speedups one can introduce to this basic extension scheme. The

first is to constrain k-spines to paths (rather than trees), obtaining an O(nδk2k)
time algorithm. The second is to set in advance the order of the species along the
tree, eliminating the 3k factor. We term this variant restricted order as opposed
to the previous relaxed order variant.

2.3 Implementation notes

We have designed a software package, NetworkBLAST-M, implementing the mul-
tiple network alignment approach outlined above. The implementation allows



looking for 2-identical-spine seeds with spines constrained to trees with relaxed
and restricted topologies. For efficiency reasons, we restricted the seed vertices
in each network to be of distance at most 2 from one another.

To verify that using 2-identical-spines is adequate for our problem, we an-
alyzed alignment nodes within conserved network regions output by Network-
Blast [11] for different networks sets. When aligning yeast, worm and fly net-
works, in 85% of the cases, the pertaining alignment nodes respected the yeast-
worm-fly phylogeny-based orientation. In two additional microbial network sets
(C. jejuni, E. coli, H. pylori and C. crescentus, V. cholerae and H. pylori) more
than 95% of the alignment nodes respected the same phylogeny-based orienta-
tion. Moreover, 72% of the alignment nodes actually formed cliques in GH .

The final collection of conserved subnetworks was filtered to remove redun-
dant solutions. This was done using an iterative greedy procedure that selects
each time the highest scoring subgraph and removes all subgraphs intersecting
it by more than 50%. For two conserved subnetworks A and B, containing |A|
and |B| proteins, respectively, the intersection rate is computed as the number
of common proteins over min{|A|, |B|}.

3 Results

We applied our algorithm to eukaryotic and microbial PPI networks, summarized
in Table 1. The three eukaryotic networks were taken from [11] and the microbial
networks were taken from [12]. As in [11], we used a BLAST E-value threshold
of 10−7 for sequence similarity, ensuring a corrected significance value of 0.01.

Table 1. A summary of the PPI networks analyzed in this study.

Species (tax id) #Proteins #PPIs

S. coelicolor (100226) 6678 230409
E. coli E12 (83333) 4087 216326
M. tuberculosis (83332) 3457 128932
S. typhimurium (99287) 4239 94609
C. crescentus (190650) 3341 40524
V. cholerae (243277) 2948 36038
S. pneumoniae (170187) 1843 25726
C. jejuni (192222) 1442 22116
H. pylori (85962) 1070 12943
Synechocystis sp. (1148) 2371 69439

S. cerevisiae (4932) 4738 15147
C. elegans (6239 2853 4472
D. melanogaster (7227) 7165 23484

We evaluated the identified conserved subnetworks by computing the func-
tional coherency of their member proteins with respect to the biological pro-
cess annotation of the gene ontology (GO) [16], for each species separately. To



this end, we used the GO TermFinder tool [17] to compute empirical enrich-
ment p-values, and corrected for multiple testing using the false discovery rate
procedure [18]. For each species we report the percent of process coherent sub-
networks discovered, and the number of distinct GO categories they cover. The
first measure quantifies the specificity of the method, and the second provides
an indication on the sensitivity of the method.

To establish the validity of our method, we first compared it to Network-
BLAST [11]. NetworkBLAST is an exhaustive approach that relies on explicitly
constructing a network alignment graph and, hence, is limited in application to
the alignment of up to 3 networks. Both methods use same scoring function and
scoring parameters were set equal for both methods for fair comparison. The
results in Table 2 show that the performance of NetworkBLAST-M is compara-
ble to that of NetworkBLAST. The latter has higher specificity, but fewer GO
categories enriched. The sensitivity of NetworkBLAST-M further improves when
using the relaxed-order variant. Notably, the application of NetworkBLAST-M
took less than 30 seconds in both configurations, while NetworkBLAST’s run
took more than six hours.

Table 2. A comparison of NetworkBLAST-M and NetworkBLAST on three eukaryotic
networks. For these networks NetworkBLAST produced 59 conserved regions, while
NetworkBLAST-M identified 64 regions in the restricted-order variant and 92 in the
relaxed-order variant.

Species Specificity (%) # GO categories
enriched

NetworkBLAST
S. cerevisiae 100.0 14
C. elegans 88.0 13
D. melanogaster 94.9 16

NetworkBLAST-M restricted order
S. cerevisiae 100.0 29
C. elegans 68.8 32
D. melanogaster 98.4 37

NetworkBLAST-M relaxed order
S. cerevisiae 94.6 45
C. elegans 67.0 29
D. melanogaster 90.1 41

Next, we compared the performance of NetworkBLAST-M to that of Graem-
lin [12] on a set of 10 microbial networks. Graemlin’s results were taken from
the original publication, considering only alignments which contain all 10 species
(a total of 21 conserved regions). NetworkBLAST-M was applied only in the
restricted-order variant due to the high computation burden. The algorithm
detected a total of 33 conserved network regions. As summarized in Table 3,



NetworkBLAST-M outperforms Graemlin, providing uniformly higher specificity
and sensitivity.

Table 3. A comparison of NetworkBLAST-M and Graemlin on 10 microbial networks.
Results are provided for nine of the ten species for which we had gene ontology infor-
mation (for Synechocystis we did not have functional information readily available).

Species Specificity (%) # GO categories
enriched

NetworkBLAST-M restricted order
S. coelicolor 100 17
E. coli E12 90 16
M. tuberculosis 87.9 17
S. typhimurium 93.1 14
C. crescentus 84.8 15
V. cholerae 90.6 16
S. pneumoniae 97.0 14
C. jejuni 96.2 12
H. pylori 92.3 13
Synechocystis N/A N/A

Graemlin
S. coelicolor 71.4 12
E. coli E12 76.5 10
M. tuberculosis 76.9 8
S. typhimurium 81.3 10
C. crescentus 86.7 11
V. cholerae 80.0 9
S. pneumoniae 71.4 8
C. jejuni 76.9 9
H. pylori 56.3 8
Synechocystis N/A N/A

Statistics on the running times of NetworkBLAST-M on different sets of mi-
crobial networks with 3-10 species are given in Table 4. As evident, the restricted-
order variant is considerably faster and can process up to 10 networks in minutes.

4 Conclusions

We have provided a fast and accurate framework for multiple network alignment.
Our framework is based on a novel representation of multiple protein-protein in-
teraction networks and the orthology relations among their proteins. The frame-
work performs comparably to an exhaustive approach while allowing dramatic
reduction in running time and memory requirements. It is shown to outperform
a previous approach based on progressive alignment ideas.



Table 4. NetworkBLAST-M run-time as a function of the number of species and
the size of the layered alignment graph. All the tests were performed on Intel Xeon
3.06GHz 3GB memory machine.

#Species #Nodes #PPI edges #Sequence similarity Restricted order Relaxed order
edges run time (sec) run time (sec)

3 8132 102288 26834 40 44
5 11945 193843 57142 72 1587
7 17236 301365 103887 83 46686
10 31458 877032 327219 140 N/A

Future research includes a more extensive comparison of the different seed
computation variants presented here. Our initial experiments in this regard in-
dicate that the relaxed-order yields higher sensitivity on eukaryotic data sets,
while the two perform similarly on microbial networks (data not shown). This
may reflect the fact that sequence similarity among the pertaining microbial
proteins tends to be transitive and, hence, any order of the species will form
a tree in GH . The development of efficient network alignment techniques, such
as the one described here, is crucial to the study of protein network evolution
and is expected to become increasingly important as protein-protein interaction
databases continue to grow in size and species coverage.
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