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A network-based analysis of colon cancer splicing
changes reveals a tumorigenesis-favoring regulatory
pathway emanating from ELKI
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Splicing aberrations are prominent drivers of cancer, yet the regulatory pathways controlling them are mostly unknown.
Here we develop a method that integrates physical interaction, gene expression, and alternative splicing data to construct
the largest map of transcriptomic and proteomic interactions leading to cancerous splicing aberrations defined to date, and
identify driver pathways therein. We apply our method to colon adenocarcinoma and non-small-cell lung carcinoma. By
focusing on colon cancer, we reveal a novel tumor-favoring regulatory pathway involving the induction of the transcription
factor MYC by the transcription factor ELKI, as well as the subsequent induction of the alternative splicing factor PTBPI by
both. We show that PTBPI promotes specific RACI, NUMB, and PKM splicing isoforms that are major triggers of colon tumor-
igenesis. By testing the pathway’s activity in patient tumor samples, we find ELKI, MYC, and PTBPI to be overexpressed in con-
junction with oncogenic KRAS mutations, and show that these mutations increase ELKI levels via the RAS-MAPK pathway. We
thus illuminate, for the first time, a full regulatory pathway connecting prevalent cancerous mutations to functional tumor-
inducing splicing aberrations. Our results demonstrate our method is applicable to different cancers to reveal regulatory

pathways promoting splicing aberrations.
[Supplemental material is available for this article.]

Alternative splicing is an evolutionarily conserved mechanism
that increases transcriptomic and proteomic diversity by allowing
the generation of multiple mRNA products from a single gene. It is
highly prevalent as >95% of human multiexonic genes undergo al-
ternative splicing (Pan et al. 2008; Wang et al. 2008b). Numerous
exonic and intronic cis-acting sequences can either enhance or re-
press splicing unit recognition pending on binding of trans-acting
alternative splicing factors (Guigo and Valcarcel 2006). One of
these factors is the polypyrimidine tract-binding protein PTBP1
(previously known as PTB). PTBP1 is a heterogeneous nuclear ribo-
nucleoprotein that binds RNA via four domains of varying func-
tionality (Mickleburgh et al. 2014) and can act as a repressive or
as an enhancing alternative splicing regulator (Xue et al. 2009;
Keppetipola et al. 2012).

Three main types of evidence have established a strong con-
nection between alternative splicing and cancer development.
First, several alternative splicing factors, such as SRSF1, RBFOX2,
PTBP1, HNRNPA1, HNRNPA2B1, and SRSF6, are overexpressed
in different cancer tissues and display oncogenic properties
(Karni et al. 2007; Cooper et al. 2009; Venables et al. 2009; David
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and Manley 2010; Golan-Gerstl et al. 2011; Cohen-Eliav et al.
2013). Second, changes in the splicing patterns of various alterna-
tive splicing events were identified in tumors in comparison with
their corresponding normal tissues (Kim et al. 2008; Liu et al. 2012;
Pesson et al. 2014), and some were demonstrated to play promi-
nent roles in carcinogenesis (Srebrow and Kornblihtt 2006;
Wang and Cooper 2007; Papasaikas et al. 2015). Third, splicing fac-
tors, such as SF3B1 and U2AF1, are highly mutated in several ma-
lignancies (Graubert et al. 2011; Quesada et al. 2012). However, the
underlying causes of the cancerous up-regulation of alternative
splicing factors as well as the specific inducers of splicing aberra-
tions in tumors are still largely unknown.

Colon and rectal tumors constitute a major cause of cancer
mortality, as an estimated 1 million individuals worldwide
develop them yearly with a disease mortality rate of ~33% in the
developed world (Cunningham et al. 2010). The molecular mech-
anism in colon tumorigenesis is largely nonhereditary and is main-
ly triggered by a series of oncogene-activating mutations and
tumor suppressor gene-—deactivating mutations in a relatively
small set of genes (Fearon 2011). The most prevalent are those
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found in APC, KRAS, and TP53 (Wood et al. 2007; Fearon 2011).
Mutations in these genes lead to up-regulation of the Wnt and
RAS-MAPK signaling pathways and to down-regulation of the
TPS3 pathway, resulting in the overexpression of the oncogenic
transcription factor MYC, increased cell proliferation, and, eventu-
ally, colon carcinogenesis (Fearon 2011; The Cancer Genome
Research Atlas Network 2012b).

Several alternative splicing events have been reported to dis-
play different splicing patterns in colon tumors compared with
the normal tissue. Three noteworthy splicing pattern differences
are the inclusion of RACI exon 3b, the increased inclusion of
NUMB exon 9, and the inclusion of PKM exon 10 in conjunction
with exon 9 exclusion (Jordan et al. 1999; Hardt et al. 2003;
Misquitta-Ali et al. 2010). These specifically contribute to colon tu-
morigenesis through proteomic changes that cause Notch path-
way activation and promotion of aerobic glycolysis, genomic
instability, and epithelial-mesenchymal transition (Radisky et al.
2005; Christofk et al. 2008; Misquitta-Ali et al. 2010; Bechara
et al. 2013; Myant et al. 2013). In addition, PRPF6, a member of
the tri-snRNP (small ribonucleoprotein) spliceosome complex,
was shown to positively affect colon cancer proliferation (Adler
et al. 2014).

Several pathways involving transcription factor activity af-
fecting alternative splicing factors have been shown to undergo
overactivation or disruption in different cancer types, thus con-
tributing to carcinogenesis (David and Manley 2010; Das et al.
2012). Nevertheless, current knowledge concerning alternative
splicing regulation in cancer leaves much to be desired, calling
for a systematic examination of the pathways leading to cancerous
splicing aberrations.

Results

Constructing a physical interaction network underlying
cancerous splicing aberrations

Deciphering the regulation of alternative splicing in cancer is fun-
damental to our understanding of the disease processes and ways
to combat them. To study the pathways that govern alternative
splicing factor activity and, subsequently, splicing changes in can-
cer, we integrated large-scale protein—-DNA, protein-RNA, and pro-
tein—protein physical interaction data together with gene
expression and alternative splicing data into a single network
(Methods). Briefly, we analyzed high-throughput cross-linking
and immunoprecipitation (CLIP) data of human alternative splic-
ing factors (Sanford et al. 2009; Xiao et al. 2009; Xue et al. 2009;
Yeo et al. 2009; Hafner et al. 2010; Konig et al. 2010; Wang et al.
2010; Kishore et al. 2011; Lebedeva et al. 2011; Mukherjee et al.
2011; Tollervey et al. 2011; Huelga et al. 2012) to determine their
protein—pre-mRNA interactions in regions encompassing all inter-
nal exons in multiexonic genes and 300-bp-long flanking intronic
regions (15,501 interactions in total). In addition, 16,320 human
protein—-DNA interactions between transcription factors and the
genes they bind, as well as 45,055 protein—protein interactions,
were derived from chromatin immunoprecipitation (ChIP), yeast
two-hybrid, and coimmunoprecipitation screens, as well as from
publicly available databases (Yosef et al. 2011; Hegele et al.
2012). All interactions were assigned confidence scores as previ-
ously described (Yosef et al. 2011). This combined network is a
powerful resource linking three regulatory layers, which are likely
to work in coordination in the context of a biological process of in-
terest. It is available through ANAT (Yosef et al. 2011), a free

Cytoscape (Saito et al. 2012) plug-in for network analysis (http://
www.cs.tau.ac.il/~bnet/ANAT). An initial examination of alterna-
tive splicing factor protein—-protein interaction data in our network
revealed a distinct module of interacting factors that includes
several cancer-associated proteins (Supplemental Fig. S1; Supple-
mental Results).

To focus on splicing aberrations in cancer, we analyzed tran-
scriptome-wide data of cancerous and normal tissues spanning
24,426 alternative splicing events and 18,093 genes (Castle et al.
2008), identitying alternative splicing events that exhibit signifi-
cant splicing differences in tumors compared with corresponding
normal tissues (Methods). We then searched the combined net-
work for high-confidence subnetworks connecting transcription
factors with the determined differentially spliced events in tumors
(schematically depicted in Fig. 1A). The search algorithm builds
upon a previously described method by Yosef et al. (2009) and ad-
ditionally assigns significance values to each inferred subnetwork
that reflect the gene expression changes of its members in cancer.
Briefly, the algorithm jointly optimizes the size of the inferred sub-
network, the confidence of its member interactions, and the con-
fidence of each of the paths connecting a transcription factor to a
differentially spliced event. Significance levels are calculated ac-
cording to the cancerous gene expression changes in the inferred
subnetwork in comparison with the normal tissue gene expression
(Methods). The resulting subnetworks coherently describe signifi-
cant regulatory pathways that emanate from a transcription factor
and are likely to induce splicing aberrations.

Network leading to colon cancer splicing changes
emanates from ELKI

We applied our method to construct the splicing interactomes of
colon adenocarcinoma and lung squamous cell carcinoma NOS
(Fig. 1B; Supplemental Fig. S2, respectively) using transcriptomic
data of tumors and normal tissues (Castle et al. 2008). Interesting-
ly, the constructed subnetworks were significantly enriched for
cancer-associated Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Kanehisa et al. 2012) and genes included in
the Catalogue of Somatic Mutations in Cancer (COSMIC; Forbes
etal. 2011), two gold standard references for the evaluation of can-
cerous gene and protein annotations (Supplemental Table S1).
Focusing on colon cancer, the only significant subnetwork was
that originating in ELK1 (Methods), a member of the oncogenic
ETS family of transcription factors. The network reveals a pathway
involving ELK1, MYC, and PTBP1, accounting for the majority of
alternatively spliced events. Intriguingly, PTBP1 is an alternative
splicing factor previously shown to be overexpressed in brain tu-
mors and implicated in their formation (David et al. 2010). It
has also been suggested to be involved in breast cancer epitheli-
al-mesenchymal transition (Shapiro et al. 2011; He et al. 2014).
In the pathway we identified, ELK1 directly regulates the gene
expression of PTBP1 and MYC, an oncogenic transcription factor
that plays an important role in colon tumor development
(Fearon 2011). Downstream from ELK1, MYC also directly regu-
lates the transcriptional induction of PTBPI as well as that of
HNRNPF, an alternative splicing factor shown to be overexpressed
in colon cancer (Balasubramani et al. 2006). PTBP1 up-regulation
by MYC is known to promote lung tumor formation (Clower
et al. 2010; David et al. 2010), but the addition of MYC activation
by ELK1 and the MYC-independent activation of PTBP1 by ELK1
have not been previously reported in the context of cancer
formation.
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Physical interaction network leading to colon cancer splicing changes. (A) A diagram illustrating the construction of the cancerous splicing

interactome connecting transcription factors (TFs) to alternative splicing events (ASEs) exhibiting splicing pattern differences in tumors compared with
normal tissues (alternative splicing factor [ASF]). (B) ELK1 colon tumor subnetwork. Gene names of exons exhibiting significant splicing changes in the
colon tumor compared with the normal tissue are colored light blue; all other genes and proteins are colored gray. Alternative splicing factors are marked
by red borders. Protein~-DNA and protein—-pre-mRNA interactions are marked by black and red directed arrows, respectively. (C) Hierarchical clustering of
ELK1 subnetwork member gene expression in 48 human tissue and cell lines. Tumor and cancer cell line names are colored red. Cell lines are marked by an
asterisk. White boxes denote missing reads. The color key legend includes a histogram of the gene expression level distribution. (D) Mean gene expres-
sion level difference between colon tumor and normal tissue of genes with promoters bound by ELK1 (n=1937), genes with promoters bound by MYC

(n=3226), and all genes (n=18,093); arbitrary units. Error bars, SEM.

Colon cancer up-regulation of ELKI, MYC, and their target genes

To support the identified regulatory pathway in the ELK1 subnet-
work, we analyzed the subnetwork’s gene expression profile using
transcriptome-wide data spanning 48 human tissues and cell lines,
including the colon tumor, cell lines derived from it, and the cor-
responding normal colon (Fig. 1C; Castle et al. 2008). Our results
demonstrate that a gene cluster including ELK1, MYC, PTBP1,
and HNRNPF exhibits similar gene expression levels. This cluster
substantially differs in its expression pattern from other network
members and, most importantly, is up-regulated in several tumors
and cancer cell lines, including the colon tumor. To test whether
ELK1 and MYC are overactive in colon cancer compared with
the normal colon, we examined the gene expression changes of
their targets. ELK1 and MYC ChIP coupled with high-throughput
sequencing (ChlIP-seq) data (obtained from the ENCODE Project
Consortium 2012) were analyzed to identify high-confidence

read peaks of gene promoters bound by the proteins (Methods).
We then measured the mean difference in the expression level of
these genes between tumor and normal colon tissues (Fig. 1D).
ELK1-bound and MYC-bound genes exhibited significantly higher
mean differences in expression levels compared with all genes
(two-sided Student’s t-test; P=9.67 x 10"'*and P=2.35 x 1071, re-
spectively), implying that ELK1 and MYC are indeed overactive in
colon cancer. Overall, these results reinforce the identified regula-
tory pathway involving ELK1 and MYC, which could be implicat-
ed in colon cancer formation.

PTBPI, RBFOX2, HNRNPHI, and HNRNPF expression levels

are positively correlated with cancer-associated splicing

isoforms their proteins bind

In a previous work, we demonstrated a correlative relationship be-
tween the gene expression of an alternative splicing factor and the
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splicing events it regulates (Llorian et al. 2010). To examine such
relations in the context of the ELK1 subnetwork, we tested wheth-
er the gene expression levels of alternative splicing factors identi-
fied in the subnetwork were correlated with the splicing changes
of exons their proteins bind. All high-throughput CLIP-derived
peaks located in the vicinity of differentially spliced exons in the
colon tumor compared with the normal colon were used in the
analysis. We found that four of the seven alternative splicing fac-
tors in the ELK1 subnetwork—PTBP1, RBFOX2, HNRNPH]1, and
HNRNPF—exhibit strong positive correlations (Fig. 2A). Of these,
PTBP1, the alternative splicing factor that interacts with the high-
est number of differentially spliced events in the subnetwork, also
displays the strongest correlations with the alternative exons
bound by it (mean R=0.51). This indicates that PTBP1 may pro-
mote production of these cancerous splicing isoforms. The strong
correlations exhibited by RBFOX2 (mean R =0.5) are in accordance
with evidence suggesting that this factor drives mesenchymal tis-
sue-specific splicing in both tumors and normal tissues (Venables
et al. 2013). Furthermore, analyses of tissue-specific patterns of al-
ternative splicing and the gene expression levels of alternative
splicing factors revealed similar tissue clusters, including one con-
sisting of several tumors and cancer cell lines (Supplemental
Fig. S3; Supplemental Results), further suggesting that alternative
splicing factor transcriptional changes in cancer may play a role
in bringing forth cancerous alternative splicing programs.

In silico identification of colon cancer alternative splicing
regulators

Based on our findings, we hypothesized that the relationship be-
tween splicing changes and alternative splicing factor gene expres-
sion could be used to identify additional factors that regulate
splicing aberrations in colon cancer, for which high-throughput
CLIP data are currently unavailable. Moreover, not all possible
RNA targets are identified within a single high-throughput CLIP
experiment as the purified RNA molecules in it only correspond
to RNAs bound at the moment of cross-linking (Kloetgen et al.
2014). Our analysis could therefore determine additional regulato-
ry targets (see Supplemental Discussion). To this end, we compiled
a list of 54 experimentally validated alternative splicing events
shown to undergo a splicing pattern change in colon tumor sam-
ples compared with corresponding normal tissue samples (Jordan
et al. 1999; Hardt et al. 2003; Ghigna et al. 2005; Gardina et al.
2006; Klinck et al. 2008; Thorsen et al. 2008; Venables et al.
2009; Langer et al. 2010; Misquitta-Ali et al. 2010; Pio et al.
2010; Choi et al. 2011; Ishimoto et al. 2011; Liu et al. 2012;
Miura et al. 2012; Seo et al. 2012). We then identified the potential
regulators of these cancerous splicing changes by the number
and strength of determined Pearson correlations between the
splicing changes of the 54 alternative events across 48 human
tissues and cell lines and the gene expression of alternative splic-
ing factors in the same tissues (Methods). The mean coefficient
values of the five highest ranking alternative factors are depicted
in Figure 2B.

Here, too, PTBP1 exhibited the strongest relations with the
highest number of alternative splicing events (mean R=0.53). It
is predicted to induce the cancerous isoform of 13 alternative
events, 10 of which lack significant CLIP-seq read peaks (Fig.
2C,D; data not shown). Reassuringly, PTBP1 has been shown to
regulate four of the predicted targets in the PKM, TPM1, ACTNI,
and ATP2B4 genes in other tissues (Clower et al. 2010; Llorian
et al. 2010; Mallinjoud et al. 2014). In accordance with Figure

2A, HNRNPF displayed strong correlations with colon cancer
splicing patterns (mean R=0.44). The QKI and CELF2 alternative
splicing factors exhibited the strongest negative relations with
colon cancer splicing patterns (mean R=-0.47). Interestingly,
the expression of both proteins has been reported to induce a tu-
mor-suppressing effect (Ramalingam et al. 2012; Zong et al.
2014). Our results therefore indicate that PTBP1 could play a previ-
ously unknown role in promoting a number of colon cancer al-
ternative splicing changes, while QKI and CELF2 may have an
opposite effect.

PTBPI promotes colon tumorigenesis-triggering
splicing isoforms

To validate PTBP1’s regulatory role in inducing cancerous splicing
aberrations in the colon based on our analysis (Fig. 2B), RNA inter-
ference-mediated (siRNA) knockdown of PTBPI and of PTBP2 (pre-
viously known as nPTB), its functionally redundant paralog
(Spellman et al. 2007), was performed in the HCT116 colorectal
carcinoma cell line. Splicing pattern changes of PTBP1’s predicted
targets after siRNA treatment were examined via RT-PCR. Upon
treatment with the control siRNA, all examined alternative splic-
ing events displayed the same splicing patterns as those originally
identified in the tumor samples (Fig. 2C,D; Supplemental Fig. S4A,
B, and data not shown; Jordan et al. 1999; Hardt et al. 2003;
Gardina et al. 2006; Thorsen et al. 2008; Misquitta-Ali et al.
2010). Overall, 11 of 13 (85%) predicted PTBP1 targets exhibited
a splicing pattern change following treatment with siRNA directed
against PTBP1 and PTBP2 in accordance with PTBP1’s predicted ef-
fect (Fig. 2C; Supplemental Fig. S4A), shifting splicing patterns to
those observed in normal colon samples, and two in the opposite
direction (Fig. 2D; Supplemental Fig. S4B). A validation of PTBP1
and PTBP2 protein levels upon siRNA treatment demonstrated
they were indeed highly reduced (Fig. 2E).

The tested alternative splicing changes in the RAC1, NUMB,
and PKM genes were shown to affect protein levels or functions
and play an important part in tumorigenesis (see Discussion)
(Radisky et al. 2005; Christofk et al. 2008; Misquitta-Ali et al.
2010; Bechara et al. 2013; Myant et al. 2013). Other events are
not specifically known to be involved in cancer development but
are located within genes that are: TPM1, DNMT3B, NCOR2 (also
known as SMRT), and SLK (Jin et al. 2009; Roovers et al. 2009;
Choietal. 2012; Margalef et al. 2012). As the total number of nucle-
otides in some of these alternative segments is not a multiple of
three, their respective addition or deletion from the mRNA is likely
to cause a premature stop codon, which could lead to the formation
of a truncated protein or to mRNA degradation via nonsense-
mediated mRNA decay (NMD). PTBP1 therefore induces splicing
pattern changes implicated in cancer development in addition to
its interactions with CLIP-derived targets (Fig. 2F). Furthermore,
our results demonstrate the utility of our method in identifying
proteins that regulate cancerous alternative splicing changes.

ELKI overexpression activates a regulatory pathway
that involves MYC and PTBPI

By focusing on the discovered regulatory pathway involving ELK1,
MYC, and PTBP1, we wished to study its induction in a colon tu-
mor—derived cell line. By use of HCT116 cells, the binding of
ELK1 to the MYC and PTBP1 promoter regions (Fig. 3A,B), as
well as that of MYC to the PTBP1 promoter region (Fig. 3C), was
confirmed via ChIP followed by quantitative real-time-PCR
(qPCR; one-sided Student’s t-test; P=0.002, P=0.001, and P=

544 Genome Research
www.genome.org


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cship.org on May 11, 2016 - Published by Cold Spring Harbor Laboratory Press

ELKI regulates splicing changes in colon cancer

>

c

bty
o RE057P=181X10° __ R=0.37;P=0.008 R=0,46;P=921X10¢

R=-048;P=6.28 X 10"

: I N 5=
o Cellline . =] 7|
2 Immune ] . E3 )
+ Internal . - ~
x Mus(le | R = o . ./‘/ < \-_\ 2 .
v nemmumue | 7 | - : e 3
1 = o S >l TS
mmur o4 2 B % - B g
0]~ . ; o . .
: ) 3 8 s B o
ga 0 06 g4 0 06 .04 " 9 X =ga 0 06
PTBP1 expression levels (log,,) PTBPI expression levels (log,;) PTBPI expression levels (logy,) PTBPI expression levels (logyy)
RAC1 NUMB SLK SYNE2
Cont. PTBP KD Cont. PTBP KD Cont.  PTBP KD PTBP KD

5
20

RAC1
\
NUMB
0

ﬂ!
\
10
A

02
Change in inclusion isoform (%)

N
Change in inclusion isofarm (%)
SYNE2
A

!]1

splicing isoforms marked by CLIP-seq peaks

Mean coefficient of correlations with cancerous

Cont.
PTBP1 RBFOX2 HNARNPH1 HNRNPF -
- ——— Emm]

B w
-
g £
E E
s £
2 8
-
S 8 5
3 3
3 3
£ E
=: < <
£ & o O : g 2
g, . § 04 0 06 TG4 0 06 =04 0 § 04
£E 34 & PTBP1 expression levels (log,g) PTBP1 expression levels (log,,) PTBP1 ex presslonlm\s(lngm) 5 pm;zHp,ess,on\ewwum]
&8
35
= NCOR2 2201 st DNMT38
@ % Cont. PTBPKD Cont.  PTBP KD Cont.  PTBPKD Cont. PTBP KD
S &
24 o [m=m] m_m] = m] [ |
g g [mw=] [==] [mm) p—
H
5 8
]
235
EE o
28 < _ SiPTBP1 - +
€ ES siPTBPZ - *
2 E o
5 R
2 PTEPL wm— ——
3 : ¥
g &
i PTBPZ ‘ &
R
8 JL. — s ,
] 0.4 0 [] Actin p—
el & PTBPI expression [zvels(logm} FTE'Pi Enpresslcn levels [Iugmj FTEPi umssuun lEu:IslIcng
T PTBP1  HNRNPF ELAVI4 CELF2 akl
ATP2B4 PKM TPM1
Cont. PTBPKD Cont.  PTBP KD Cont. PTBP KD
[ = ] (= -
[m=] =
[mm ]
F CTTN CLSTNI

NCOR2 ATP2B4
B cur-sea-derivea
Correlation-derived

and experimentally validated
SYNEZ

DNMT38
NUMB

RAC1

:

PTEP1 IE @

@@

Figure2. PTBP1 promotes colon tumorigenesis-triggering splicing isoforms. (A) Mean Pearson coefficients of ELK1 subnetwork alternative splicing factor
gene expression correlations with splicing changes of all cancerous isoforms bound by these factors. Genes displaying fewer than five statistically significant
correlations were omitted. Error bars, SEM. (B) The five highest ranking mean Pearson coefficients of alternative splicing factor gene expression correlations
with the splicing changes of experimentally validated cancerous splicing isoforms. Error bars, SEM. (C,D, top) Per each alternative splicing event predicted to
be regulated by PTBP1, the Pearson correlation between PTBPT gene expression and the change in inclusion splice form across 48 human tissues and cell
lines is depicted. Tissue and cell line groups are represented by different symbols. Each diagram depicts exon positions and the possible transcripts arising
from the alternative splicing event. (Bottom) RT-PCR analysis of the alternative splicing event in HCT116 cells treated with either control siRNA (Cont.) or
siRNA directed against PTBPT and PTBP2 (PTBP KD) is presented as well. PKM and TPM1 RT-PCR products were digested with Pstl. (E) HCT116 cells were
transfected with control siRNA or siRNA directed against PTBPT (siPTBP1) and PTBP2 (siPTBP2), and later cell extracts were subjected to Western blot analysis
with the indicated antibodies. (F) Pathway connecting ELK1 with genes including PTBP1-affected and PTBP1-bound exons exhibiting splicing pattern
changes in the colon tumor compared with the normal colon (genes colored light blue; other proteins are colored gray). Genes including exons derived
from the analysis in B and validated in C and D are marked by yellow borders. Genes including PTBP1-bound exons are marked by red borders.

Genome Research 545
www.genome.org


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cship.org on May 11, 2016 - Published by Cold Spring Harbor Laboratory Press

Hollander et al.

A

MYC promoter Intergenic region

(downstream of MYC)

PTBP1 promater

*

o
asm

op
ooms

o

ChIP relative to input
oom

00005

ChlIP relative to input

01

0 0002 0004 0006 O0OB OD1 0012 00M

186 ELKL 186 ELKL IgG ELK1
D E
ELKIOE -  + EKIOE -+ _
i ]
FLAG pa— vvc I 3 |
Actin 4 | 2
actin [ cin SN 2
=5
g
E ~
2
b
o
e
3
s
Figure 3.

Intergenic region c PTBP1 promoter Intergenic region
(upstream of PTBP1) (upstream of PTBP1)
- g LN T
5 * il
a w
“ £
a2-° 3
[
2 |
5 BE | —
o |
a R
8 R |
3 |
] o
!
S ELK1 1gG MYC 1gG MYC
ELK10E - +
PTBPL s — ]
Actin | . — n

Mean relative PTBP1 protein level
os

ELK1 activates a regulatory pathway that involves MYC and PTBP1. (A-C) HCT116 cells were subjected to ChIP with antibodies against ELK1 (A4, B)

or MYC (C). Immunoprecipitated DNA was quantified by qPCR with primers specific to the MYC (A) and PTBP1 (B,C) promoter regions as well as intergenic
regions used as negative controls (Supplemental Methods). Bars, mean values of four (A,B) or five (C) independent experiments normalized to input
(Supplemental Methods). Error bars, SEM. Asterisks indicate P=0.002, P=0.001, and P=0.004, respectively; one-sided Student’s t-test. (D-F) HCT116 cells
were transfected with a plasmid containing cDNA encoding ELKT (ELK1 OE) or an empty vector in three independent experiments. Cell extracts were sub-
jected to Western blot analysis with the indicated antibodies. Relative protein levels were quantified using Image) (Schneider et al. 2012). Error bars, SEM.

0.004, respectively). Additionally, to examine downstream effects
on MYC and PTBP1 upon ELKI1 level modulation, HCT116 cells
were transfected with a plasmid containing cDNA encoding
ELK1. Upon ELK1 overexpression (Fig. 3D), endogenous MYC
and PTBP1 protein levels were 3.12-fold and 2.1-fold higher on av-
erage, respectively, than in cells expressing normal levels of ELK1
(Fig. 3EJF; Supplemental Fig. S4C,D). This demonstrates that
ELK1 positively affects the level of these proteins. Several alterna-
tive splicing events shown to be affected by PTBP1 knockdown
(Fig. 2C) did not display a splicing pattern change in the majority
of independent ELK1 overexpression experiments (data not
shown). We hypothesize PTBP1 binding to these RNA targets
may be saturated before the increase in endogenous PTBP1 levels
that results from ELK1 overexpression. Additionally, analysis of
PTBP1-regualted alternative splicing events in the normal colon
epithelium cell lines CCD 841 CoN and FHC confirmed that the
splicing differences observed between colon tumor and normal co-
lon are indeed cancer associated and do not result from an epithe-
lial-specific splicing program in the tumor, which includes a
higher concentration of epithelial cells (Supplemental Fig. S5;
Supplemental Results). Overall, our findings demonstrate the acti-
vation of the ELK1-induced pathway in a colon cancer cell line.

ELKI, MYC, and PTBPI are overexpressed in colon tumors compared
with matched normal colon samples

In order to inspect the identified pathway in vivo, we examined
the expression patterns of its genes in colon adenocarcinoma sam-
ples compared with matched normal tissue samples obtained from
19 patients (Supplemental Table S2). ELK1, MYC, and PTBP1 gene
expression levels were measured via qQRT-PCR. Interestingly, ELK1
and PTBP1 were overexpressed in 13 of 19 (68%) patients. In 10 of
these 13 patients, MYC was overexpressed as well as in an addition-

al three (Methods). One patient displayed extremely high ELK1,
MYC, and PTBP1 expression levels and was therefore discarded
from further qRT-PCR analyses. In the remaining 12 patients,
ELK1, MYC, and PTBP1 gene expression levels were, respectively,
5.4-fold, 3.36-fold, and 3.53-fold higher in colon tumors than
in their matching normal tissues (one-sided Student’s t-test; P=
0.02, P=0.04, and P=0.01, respectively) (Fig. 4A). Moreover, as
controls, AQP8 and ETSI1 gene expression levels were measured
(Fig. 4B). Colon tumors were previously shown to express lower
levels of AQP8 in comparison with the normal colon (Gardina
et al. 2006), and 16 patients indeed displayed lower levels by
25-fold (P=0.01). ETS1 was connected to the ELK1 subnetwork
via a protein-protein interaction, while its gene was not overex-
pressed in colon tumors (Fig. 1B,C). Our analysis showed that
ETS1 gene expression does not significantly differ between colon
tumor samples and normal tissue samples (P =0.16). The splicing
patterns of PTBP1-regulated alternative events in the normal and
tumor samples were similar to those observed in previous analyses
of patient samples (Thorsen et al. 2008; Langer et al. 2010;
Misquitta-Ali et al. 2010), as well as in Figure 2, C and D, and Sup-
plemental Fig. S4, A and B (Supplemental Fig. S6).

To assess the pathway in a broader context of colon cancer pa-
tients, we examined colon and rectal tumor data derived from the
Cancer Genome Atlas (Methods) (The Cancer Genome Research
Atlas Network 2012b). Notably, ELK1, MYC, and PTBP1 expression
profiles in 222 tumors were significantly correlated (Fig. 4C), fur-
ther validating our identified pathway. Interestingly, ELKI dis-
played a stronger relation with PTBPI (R=0.47; P=2.36 x 107'3)
than that between MYC and PTBP1 (R=0.27; P=4.16 x 107°), pro-
viding additional evidence that ELK1 could play an important role
in PTBP1 transcriptional induction in colon cancer. The relation
between ELKI and MYC (R=0.21; P=0.002) strengthens our previ-
ously described results implying that ELK1 serves as an activator of
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Figure 4. ELK1, MYC, and PTBP1 overexpression in colon tumors compared with matched normal colons results from KRAS activating mutations. (A,B)
Total RNA was isolated from colon adenocarcinoma and matched normal colon samples and analyzed by qRT-PCR. (A) Mean gene expression levels of
ELKT, MYC, and PTBPT in tumors relative to their matched normal tissues in patients exhibiting tumor overexpression of ELKT and PTBPT (n=12).
Asterisks indicate P=0.02, P=0.04, and P=0.01, respectively; one-sided Student’s t-test. (B) As in A, but of AQP8 and ETST in patients exhibiting AQP8 tumor
underexpression (n=15). All values were normalized to HPRT1 and GAPDH in the same sample. Error bars, SEM. (C) Smoothed color density representation of
the Pearson correlations between the expression levels (log,) of ELKT against PTBP1 (left), MYC against PTBP1 (middle), and ELK1 against MYC (right) in 222
colorectal tumor samples. (D) Fraction of patients bearing tumor vascular invasions among those displaying high ELKT (left) and MYC (right) expression levels
and among those exhibiting low ELKT and MYC expression levels. Asterisks indicate P=0.003 and P = 0.03, respectively; one-sided Fisher’s exact test. (E)
Fraction of patients bearing KRAS mutations (Mut.) among those overexpressing (OE) ELKT and PTBP1 in tumors compared with normal tissues (in A)
and among those that do not. Asterisk indicates P = 0.05; one-sided Fisher’s exact test. (F) HCT116, DLD-1, LoVo, RKO, COLO320, and Caco-2 cells
were treated with U0126 for 24 h, and total RNA was isolated. Bars, mean ELKT gene expression levels measured by qRT-PCR in three independent exper-
iments. Values were normalized to GAPDH levels in the same experiments. Error bars, SEM. Asterisks indicate P=0.03, P=0.01, and P=0.01, respectively;
one-sided Student’s t-test.
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MYC in colon cancer. Examination of Cancer Genome Atlas gene
expression data derived from additional cancers (The Cancer
Genome Research Atlas Network 2008, 2011, 2012a,c, 2013a)
revealed similar correlations in acute myeloid leukemia and
clear cell renal cell carcinoma, suggesting the pathway may be
active in these cancers as well (Supplemental Fig. S7). We also
studied whether a connection exists between our identified path-
way and tumor vascular invasion, a predictor of a poor colon
cancer prognosis (Lim et al. 2010). Tumors exhibiting high ELK1
and MYC expression levels developed more vascular invasions
compared with tumors expressing low levels of these genes (one-
sided Fisher’s exact test, P=0.003 and P =0.03, respectively) (Fig.
4D). This finding corroborates our results demonstrating the posi-
tive effect these two proteins have on PTBP1 expression and
the latter’s promotion of splicing isoforms that lead to increased
cell proliferation and tumor invasiveness. Overall, our findings
indicate that the identified colon cancer-associated pathway is
active in vivo, testifying to the utility of our network construction
method.

KRAS-hyperactivating mutations lead to ELKI overexpression
in tumors through the activity of the RAS-MAPK pathway

We hypothesized that the underlying cause of ELKI overexpres-
sion could be the activation of the RAS-MAPK signaling cascade
in colon cancer, as ELK1 is a downstream target of KRAS via this
pathway (Lee et al. 2010) and KRAS activating mutations were
reported in 40%-55% of colon cancer patients (Wood et al.
2007; Fearon 2011; The Cancer Genome Research Atlas Network
2012b). To eliminate other plausible causes, we scanned the
COSMIC database (Forbes et al. 2011) and Cancer Genome Atlas
data (The Cancer Genome Research Atlas Network 2012b) for
ELKI mutations or copy number variations in colon and rectal tu-
mors, and indeed, none were observed. Next we scanned the 19 tu-
mor and matched normal tissue samples we had obtained for KRAS
mutations (Methods) (Supplemental Table S3). Interestingly, tu-
mors overexpressing ELK1 and PTBP1 compared with matched
normal tissues harbored significantly more KRAS activating muta-
tions (Wood et al. 2007; The Cancer Genome Research Atlas
Network 2012b) than did tumors that do not exhibit ELKI and
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RAS-MAPK

pathway I

(¢ ﬁhﬁ Y
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PTBP1 overexpression (one-sided Fisher’s exact test, P=0.05)
(Fig. 4E), suggesting that ELK1 overexpression in colon tumors re-
sults from the activity of the mutant KRAS protein.

To test whether it is the mutant KRAS protein that specifically
causes ELK1 overexpression through the RAS-MAPK pathway, we
inhibited the pathway’s activity by treatment with U0126
(Fournier et al. 2011) and subsequently examined ELKI expression
levels via qRT-PCR in several colon cancer cell lines: HCT116,
DLD-1, and LoVo, which harbor a hyperactivating KRAS mutation;
RKO, which harbors a hyperactivating BRAF mutation that
also leads to increased activity of the RAS-MAPK pathway; and
COLO320 and Caco-2, which lack mutations leading to increased
activity of the RAS-MAPK pathway (Ahmed et al. 2013). A statisti-
cally significant decrease in ELK1 expression levels was observed in
all three of the cell lines with mutant KRAS (one-sided Student’s
t-test, P=0.03, P=0.01, and P=0.01, respectively) (Fig. 4F) and
in none of the cell lines with wild-type KRAS. This demonstrates
that ELK1 transcription is induced by the mutant KRAS through
the RAS-MAPK pathway. Thus, our findings illuminate, for the first
time, a full regulatory pathway originating from prevalent cancer-
ous mutations in the colon and leading to functional splicing ab-
errations that induce tumor formation.

Discussion

Our construction of the colon cancer splicing interactome uncov-
ered a previously unidentified carcinogenesis-favoring regulatory
pathway originating in the transcription factor ELK1 (schemati-
cally depicted in Fig. 5). This is plausibly due to increased activity
of the RAS-MAPK pathway, resulting from oncogenic KRAS muta-
tions found in 40%-55% of colon cancer patients (Wood et al.
2007; Fearon 2011; The Cancer Genome Research Atlas Network
2012b). ELK1 has not been previously implicated in colon tumor-
igenesis but was identified in breast and lung cancer-associated
regulatory pathways (Wood et al. 2007; Goodarzi et al. 2009; Lee
et al. 2010). The MYC-independent PTBP1 transcriptional induc-
tion could specifically be of therapeutic importance as it presum-
ably contributes to cancer formation without direct MYC
involvement, while some potential colon cancer therapy strategies
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Figure 5. Regulatory pathway leading to colon cancer-promoting splicing aberrations. ELKT overexpression results from increased activity of the RAS-
MAPK pathway due to hyperactivating KRAS mutations. This leads to increased transcription of MYCand PTBP1. Increased MYC levels also lead to increased
PTBP1 levels. PTBP1 overexpression is one of the elements responsible for an alternative splicing profile associated with colon cancer. Among some of the
alternative splicing pattern shifts induced by PTBP1 are the inclusion of RACT exon 3b, the increased inclusion of NUMB exon 9, and the favoring of PKM
exon 10 inclusion over exon 9 inclusion. These contribute to colon adenocarcinoma development by increasing cell proliferation and leading to genomic

instability and epithelial-mesenchymal transition.
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have focused on inhibiting MYC overactivation (Doudican et al.
2014; Zhang et al. 2014).

Colon adenocarcinoma MYC expression is mainly up-regulat-
ed via the beta-catenin-dependent Wnt signaling pathway due to
APC mutations in ~70%-80% of patients (Fearon 2011). Our re-
sults indicate toward the transcriptional induction of MYC by
ELK1 in an APC-independent fashion. This is in accordance with
evidence of MYC up-regulation via the RAS-MAPK pathway in oth-
er cancer types (Dang 2012). Further supporting our results, the
cancerous RAC1 isoform, which we found to be promoted by
PTBP1, was shown to drive tumor initiation together with the on-
cogenic mutant KRAS (Zhou et al. 2013). Subsequently, other MYC
target genes besides PTBP1 that are known to undergo transcrip-
tional changes in cancer could also be affected by ELK1 elevation.
For example, the expression of HNRNPA1 and HNRNPA2B]1, alter-
native splicing factors that are positively regulated by MYC
(Clower et al. 2010; David et al. 2010), could also be influenced
by ELK1 up-regulation in colon tumors.

The cancerous splicing changes, which we have revealed to be
induced by the regulatory pathway emanating from ELK1, have
been shown to significantly contribute to colon cancer develop-
ment (Fig. 5). For example, the protein resulting from the cancer-
ous inclusion of RACI exon 3b is constitutively active and
promotes tumor transformation (Singh et al. 2004). It was shown
to increase reactive oxygen species (ROSs), which stimulate epithe-
lial-mesenchymal transition, and cause oxidative damage to DNA
and genomic instability (Radisky et al. 2005). Active RAC1 was also
identified as a critical protein required for intestinal hyperprolifer-
ation (Myant et al. 2013). Additionally, increased inclusion of
NUMB exon 9 leads to a reduction in NUMB protein levels
(Misquitta-Ali et al. 2010). Since NUMB suppresses the Notch sig-
naling pathway (Westhoff et al. 2009), its reduction increases
Notch pathway activity and promotes cell proliferation and tumor
formation (Misquitta-Ali et al. 2010; Bechara et al. 2013). Finally,
PKM2, the oncogenic PKM isoform that includes exon 10 while
lacking exon 9, encodes a protein that shifts cellular metabolism
to aerobic glycolysis in the presence of oxygen (the Warburg effect)
and promotes tumorigenesis (Christofk et al. 2008). PKM2 also dis-
plays other essential nonmetabolic functions in cancer formation
such as the regulation of beta-catenin transactivation (Yang et al.
2011), chromosome segregation, and mitosis progression (Jiang
et al. 2014).

PTBP1 and PTBP2 negatively regulate each other’s levels by af-
fecting the splicing pattern of their pre-mRNAs, and their genes are
mainly expressed in different tissues (Boutz et al. 2007; Spellman
et al. 2007). While PTBP1 expression is generally low in the ner-
vous system and its transcriptional down-regulation plays an im-
portant part in neuronal differentiation (Xue et al. 2013), PTBP2
is mainly expressed in the nervous system (Boutz et al. 2007;
Li et al. 2014). In agreement with our results in Figure 2 demon-
strating the effect PTBP1 has in promoting colon tumorigenesis-
triggering splicing isoforms, PTBP1 knockdown significantly
reduces the invasive capacity of a colon cancer cell line, T84, and
a prostate cancer cell line, PC-3M (Wang et al. 2008a). In this
study, PTBP1 knockdown in HeLa cells resulted in the opposite ef-
fect. Since PTBP2 expression level elevates in HeLa cells upon
PTBP1 knockdown (Spellman et al. 2007; Llorian et al. 2010), we
speculate the observed phenomenon in these cells may be due to
PTBP2 compensation upon PTBP1 reduction.

Examination of data obtained from the Cancer Genome Atlas
for ELK1, MYC, and PTBP1 expression in cancer samples suggests
the identified interactions between them could be active in acute

myeloid leukemia and clear cell renal cell carcinoma as well
(Supplemental Fig. S7). Our results also suggest ELK1 may strongly
affect PTBP1 induction in breast cancer, and are in agreement with
previous evidence of positive regulation of PTBP1 by MYC in glio-
blastoma and lung cancer (Chen et al. 2010; Clower et al. 2010;
David et al. 2010). Additionally, the enrichment of our discovered
lung cancer subnetworks for KEGG cancerous pathways and
COSMIC genes testifies to the general applicability of our network
construction method (Supplemental Fig. S2; Supplemental Table
S1). It could therefore be applied to transcriptomic data derived
from other cancers. It will be of future interest to determine the
splicing interactomes of different tumor types and compare be-
tween them in order to identify shared pathways and those that
are specific to certain cancers. As additional large-scale physical in-
teraction data become publicly available, incorporating these data
into our network to provide a more comprehensive overview of
significant subnetworks of interest is of importance for future
work. Finally, the construction of the cancerous splicing interac-
tome for individual patients based on tissue sample high-through-
put RNA sequencing (RNA-seq) data would allow patient
comparison and could lead to new insights pertaining to tumor
classification and patient prognosis as well as the identification
of potential therapeutic targets.

Methods

Network-based inference of cancerous alternative
splicing regulation

We integrated heterogeneous data into a single network of physi-
cal interactions. Specifically, 16,320 protein-DNA interactions
connecting 32 transcription factors with the genes they bind
and data pertaining to 45,055 protein-protein interactions were
derived from publicly available data (Yosef et al. 2011; Hegele
et al. 2012). To connect alternative splicing factors with the alter-
native splicing events they bind, we first annotated all nonoverlap-
ping internal human exons included in multiexonic genes.
Annotations were derived from hgl8 RefSeq genes, downloaded
from the UCSC Genome Browser (Rhead et al. 2010). Then,
high-throughput CLIP tag peaks (HITS-CLIP/CLIP-seq, PAR-CLIP,
and iCLIP) (Sanford et al. 2009; Xiao et al. 2009; Xue et al. 2009;
Yeo et al. 2009; Hafner et al. 2010; Konig et al. 2010; Wang et al.
2010; Kishore et al. 2011; Lebedeva et al. 2011; Mukherjee et al.
2011; Tollervey et al. 2011; Huelga et al. 2012) were detected as pre-
viously specified (Hafner et al. 2010; Kishore et al. 2011; Huelga
et al. 2012). Finally, the top 5% scoring peaks overlapping with a
window located 300 bp upstream of the annotated exons to 300
bp downstream from them, accounting for 15,501 protein—-RNA
interactions and 23,527 alternative splicing events, were integrat-
ed into the network. The combined network is available at http://
www.cs.tau.ac.il/~bnet/ANAT.

Previously, we described an approach to infer a subnetwork
connecting a set of causal proteins with a set of affected proteins
(Yosefetal. 2009, 2011). Here, we build upon this approach to con-
nect transcription factors with differentially spliced exons in tu-
mors. Specifically, we retrieved transcriptome-wide microarray
data in 48 human tissues, tumors, and cancer cell lines from
Castle et al. (2008) and analyzed them to determine the alternative
splicing and gene expression tissue profiles of 24,426 alternative
splicing events and 18,093 genes (as specified there). Exon annota-
tions in our physical interaction network were merged with those
of the alternative splicing events covered by the data of Castle et al.
(2008). Alternative splicing events were considered differentially
spliced in tumors compared with the normal tissue if they
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displayed a significant splicing change in the tumor compared
with a mixed tissue pool while not in the normal tissue compared
with a mixed tissue pool, or if both tissue types did and their splic-
ing isoform change difference was >20%. Each subnetwork, con-
necting a transcription factor to the events that are alternatively
spliced in tumors, was then scored according to the gene expres-
sion changes it spans (sum of subnetwork absolute gene expres-
sion level differences between the tumor and the normal tissue,
excluding subnetwork genes included in it only due to protein—
RNA interactions), normalized by its size (number of nodes).
These scores were compared with the scores of 100 subnetworks
connecting the same transcription factor with random alternative
splicing events (random alternative splicing event sets were of
the same size as the test set). We only considered significant results
with empirical P-values lower than 0.1 (for the ELK1 subnetwork,
P=0.09). Finally, we computed the FDR-corrected P-values of
hypergeometric intersections between the significant subnet-
works and either the union of cancer-associated KEGG pathways
(Kanehisa et al. 2012) or mutated genes in cancer derived from
COSMIC (Supplemental Table S1; Forbes et al. 2011). ANAT source
code is available at https://bitbucket.org/rinatias/anat/branch/
OpenSource, and subnetwork analysis and scoring scripts are in-
cluded as supplemental files.

ChIP-seq analysis

ELK1, MYC, and input ChIP-seq data were downloaded from the
GEO (GSM935326, GSM935320, GSM935339, and GSM817342).
Data were aligned to the hgl8 human genome assembly using
Bowtie (Langmead et al. 2009) while allowing for one mismatch
per read, and only uniquely mapped reads were used for further
processing. In order to allow compatibility between the various
data sets used in our study, NGS reads were not mapped to the
most recent human genome assembly (GCRh38). However, it
should be noted that only very minor differences, if any, exist be-
tween the sequences of the coding regions of the genome in differ-
ent genome assemblies. Since all the analyses we performed
focused solely on genes and mainly at an exon-centric resolution,
it is very unlikely that remapping the data to a more recent assem-
bly of the human genome would have any effect on our results, as
the vast majority of reads, if not all of them, would align to exactly
the same areas in the genome. ChIP-seq peak calling and annota-
tion analyses were carried out using HOMER (Heinz et al. 2010)
against input ChIP-seq data as controls. HOMER default definition
of promoters as regions spanning —1 kb to +100 bp of transcription
start sites was used.

In silico identification of colon cancer alternative
splicing regulators

The Pearson correlations between the splicing profiles of 54 can-
cer-associated alternative splicing events (Jordan et al. 1999;
Hardt et al. 2003; Ghigna et al. 2005; Gardina et al. 2006; Klinck
et al. 2008; Thorsen et al. 2008; Venables et al. 2009; Langer
et al. 2010; Misquitta-Ali et al. 2010; Pio et al. 2010; Choi et al.
2011; Ishimoto et al. 2011; Liu et al. 2012; Miura et al. 2012; Seo
etal. 2012) across all tissues and the gene expression profiles of al-
ternative splicing factors (gene list derived from Chen and Manley
2009 and Hegele et al. 2012) in the same tissues were computed (al-
ternative splicing and gene expression data were derived from
Castle et al. 2008). Alternative splicing factor genes not displaying
a significant expression level change in colon tumors compared
with a mixed tissue pool were discarded as were splicing events
with significant isoform changes compared with a mixed tissue
pool in only four tissues or less, and statistically insignificant cor-

relations (P> 0.05). Genes were ranked according to the number of
their statistically significant correlations and the mean absolute
correlation coefficient values.

TCGA data analysis

Human colon and rectal cancer gene expression data and tumor
characteristics (The Cancer Genome Research Atlas Network
2012b) as well as acute myeloid leukemia (The Cancer Genome
Research Atlas Network 2013b), clear cell renal cell carcinoma
(The Cancer Genome Research Atlas Network 2013a), breast
cancer (The Cancer Genome Research Atlas Network 2012c),
squamous cell lung cancer (The Cancer Genome Research
Atlas Network 2012a), glioblastoma (The Cancer Genome
Research Atlas Network 2008), and ovarian cancer (The Cancer
Genome Research Atlas Network 2011) gene expression data were
downloaded from the Cancer Genome Atlas portal (http:/
cancergenome.nih.gov/). Colorectal tumors were divided to three
equally sized bins according to ELK1 or MYC expression. Per each
gene expression profile, tumors included in the top bin were de-
fined as displaying high expression, while those included in the
bottom bin were defined as exhibiting low expression.

Cell culture, cloning, and transfection

HCT116, DLD-1, LoVo, COLO320, and Caco-2 cells were cultured
in RPMI1640. RKO cells were cultured in DMEM. Media were sup-
plemented with 0.29 mg/mL L-glutamine, 100 U/mL penicillin,
and 0.1 mg/mL streptomycin (Biological Industries) and 10% fetal
calf serum (Sigma) in 37°C humidified atmosphere with 5% CO,.
Upon testing, cells were found to be free of mycoplasma contam-
ination. Human PTBP1 and ELK1 coding sequences were amplified
by KAPA HiFi HotStart (Kapa Biosystems) and cloned into
pX3FLAG-CMV-10 expression vector. HCT116 cells were plated
in six-well plates for 24 h prior to transfection of 500 ng of each
vector using TransIT-LT1 reagent (Mirus) and were harvested after
48 h. SiRNA transfection of HCT116 cells was carried out using
Lipofectamine RNAIMAX (Invitrogen) according to the manufac-
turer’s protocol with 100 pmol of each of the siPTBP1 and
siPTBP2 and with 200 pmol of the control siGENOME nontarget-
ing human siRNA pool 2 (all purchased from Dharmacon). Cells
were harvested 48 h after transfection. siRNA sequences are as fol-
lows: siPTBP1, 5-CUUCCAUCAUUCCAGAGAAUU-3’; si-PTBP2,
5'-GAGAGGAUCUGACGAACUAUU-3" (derived from Llorian
et al. 2010). HCT116, DLD-1, LoVo, COLO320, and Caco-2 cells
were treated with U0126 (Calbiochem) for RAS-MAPK pathway in-
hibition and were harvested after 24 h; untreated cells were used as
a control. Cell pellets from all experiments were divided to RNA
and protein purification.

Colon adenocarcinoma and normal colon samples

Fresh-frozen (FF) tissue samples, both tumor and tumor-free (nor-
mal), from 19 colon adenocarcinoma patients (Supplemental
Table S2) were obtained from the Institutional Tissue Banks at
Sheba Medical Center following IRB approval and consent of
patients.

RNA purification, RT-PCR, quantitative RT-PCR,
and KRAS sequencing

RNA was extracted from cell lines with TRI reagent (Sigma). Total
RNA was also isolated from human colon tumor samples and their
matched normal tissue samples. Tissue samples were mechanically
homogenized, and RNA was obtained using TRI reagent (Sigma),
according to the manufacturer’s protocol. After DNase I digestion
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(Ambion), 2 pg total RNA was reverse transcribed by SuperScript 111
(Invitrogen).

Splicing products were amplified with red load Taq master
mix (Larova) or bio-ready mix (Biolab) and separated on 1.5% aga-
rose gel. In the cases of TPM1 and PKM alternative splicing events,
PCR products were digested by Pstl enzyme (New England
BioLabs) prior to separation in 2% agarose gel. A qPCR analysis
of mRNA expression in human tissue samples and cell lines
was conducted using KAPA SYBR fast qPCR master mix (Kapa
Biosystems) in a StepOne plus thermocycler PCR machine
(Applied Biosystems) according to the manufacturer’s instruc-
tions. Expression levels of HPRT1 and GAPDH genes were used as
endogenous controls, and all of the samples were assayed in tripli-
cate. Genes demonstrating an expression level increase of >10%
in each tumor sample in comparison with the matched normal
sample were considered overexpressed for further statistical
analyses. The log base 2 of all values were computed to meet the
assumptions of the statistical tests. Variance similarity between ex-
amined groups was tested using an F-test, and in all cases, the var-
iances were found to be different and treated as such in further
statistical tests.

Known (Wood et al. 2007; The Cancer Genome Research
Atlas Network 2012b) and novel colon cancer KRAS mutations
were examined in tumor samples in comparison with their
matched normal samples by Sanger sequencing following cDNA
amplification.

Data access

Sanger sequencing data from this study have been submitted to
the NCBI Trace Archive (http://www.ncbi.nlm.nih.gov/Traces/
home/) under TI numbers 2343078499-2343078575.
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