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Abstract. Clustering is a fundamental problem in data science with
diverse applications in biology. The problem has many combinatorial and
statistical variants, yet few allow clusters to overlap which is common in
the biological domain. Recently, Bonchi et al. defined a new variant of the
clustering problem, termed overlapping correlation clustering, which calls
for multi-label cluster assignments that correlate with an input similarity
between elements as much as possible. This variant is NP-hard and was
solved by Bonchi et al. using a local search heuristic. We revisit this
heuristic and develop exact integer-programming based variants for it.
We show that these variants perform well across several datasets and
evaluation measures.

1 Introduction

Clustering is a fundamental problem in data science. While most clustering meth-
ods look for disjoint clusters [2,11], in many real-world application, and specifi-
cally in biology, an element might belong to more than one cluster. For example,
a gene may have multiple functions, and a protein may belong to multiple pro-
tein complexes. One framework for dealing with such multi-label scenarios is
Overlapping Correlation Clustering (OCC), which was introduced by Bonchi et
al. [3] and generalized a non-overlapping variant called Correlation Clustering
(CC) [2] or Cluster Editing [14]. In OCC, one seeks an assignment of clusters to
elements that maximizes the correlation with a given pairwise similarity.

Bonchi et al. [3] tackled this problem by iteratively finding the optimal label-
ing for one element given the labels of all other elements, using efficient, yet
heuristic techniques (see Sect. 3.2). Another iterative algorithm for the problem
was developed by Andrade et al. [1] which uses Biased Random-Key Genetic
Algorithm (BRKGA). A third method used a weighted Lovász theta function for
node embedding and subsequently clustering [10]. Finally, Gartzman et al. [8]
developed an exact solution by defining an integer-linear-programming formula-
tion for the Jaccard variant of the problem called ECLIP (see Sect. 3.1).

Here we revisit previous local methods and develop exact integer-
programming based algorithms for them that borrow ideas from both [3,8]. We
show a simple algorithm solving each iterative step of Bonchi’s algorithm by
checking all possible labelings, assuming the number of labels is bounded. Our
main contribution is a new iterative method for OCC that optimally assigns a
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specific label given the assignments to all other labels using an integer linear
program (ILP) formulation.

2 Preliminaries and Problem Definition

Consider a set of n elements V over which we define pairwise similarity function
s(u, v) ∈ [0, 1]. Moreover let K be a set of k clusters K = {1, . . . k}. In CC the
goal is to construct a mapping L : V → K that minimizes the cost:

CCC(V,L) =
∑

(u,v)∈V ×V
L(u)=L(v)

(1 − s(u, v)) +
∑

(u,v)∈V ×V
L(u) �=L(v)

s(u, v) (1)

In OCC, a multi-labeling mapping L : V → 2K is sought. Let H(L(u),L(v))
denote a similarity between two cluster assignments of elements u and v accord-
ing to the mapping L. Following Bonchi et al., we consider two different variants
of H: the Jaccard coefficient J and the set-intersection indicator I, defined as
follows:

J(L(u),L(v)) =
|L(u) ∩ L(v)|
|L(u) ∪ L(v)| (2)

I(L(u),L(v)) =

{
1 if |L(u) ∩ L(v)| �= ∅
0 o.w

(3)

Using these definitions the OCC objective is the entry-wise cost function:

COCC(V,L) =
1
2

∑

u∈V

∑

v∈V \{u}
|H(L(u),L(v)) − s(u, v)| (4)

The original problem also addresses an additional constraint p on the mapping
L which limits the number of clusters a single element can be assigned to, and in
some cases we also require p ≥ 1. One should notice that the OCC generalizes
CC, which corresponds to the case of p = 1, and hence its hardness follows from
the fact that CC is NP-hard [6].

3 Methods

3.1 ILP-Based Algorithms

As mentioned above, Gartzman et al. [8] gave a formulation of OCC as an
integer-linear program (ILP) for the Jaccard case. The main drawback of this
method is that it is not scalable for large datasets and limited due to significant
long running time on very small subsets of up to 40 elements (see Fig. 1 below).
For consistency with the methods before, we also formulate an ILP for the set-
intersection case. The formulation described by Algorithm 1 is simple - we want
to find a binary matrix L ∈ {0, 1}n×k which represents assignments of each of
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the n elements to the k labels, denoting L(i, l) as whether element i is assigned
to label l. We further define wl

i,j as L(i, l) · L(j, l) representing whether both i
and j share the label l. Using these variables we can compute the total number of
shared labels between i and j as yi,j by summing wl

i,j over all possible labels and
use bi,j as an indicator telling whether i and j share at least one label by setting
bi,j to 1 if yi,j > 0 and to 0 otherwise. From these definitions we can create the
following minimization problem, claiming that bi,j + s(vi, vj) − 2bi,j · s(vi, vj) is
exactly the expression |H(L(u),L(v))−s(u, v)|, therefore achieving the objective
of the original OCC problem.

Algorithm 1. ILP for OCC with set-intersection (ISEC-ILP)
minL

∑n
i=1

∑n
j=i+1 bi,j + s(vi, vj) − 2bi,j · s(vi, vj) � Equivalent to Eq. 4 (isec)

s.t. ∀1 ≤ i < j ≤ n, 1 ≤ l ≤ k
wl

i,j , bi,j ∈ {0, 1}, yi,j ∈ Z
+

wl
i,j ≤ L(i, l) � Setting wl

i,j = L(i, l) · L(j, l)
wl

i,j ≤ L(j, l)
L(i, l) + L(j, l) − 1 ≤ wl

i,j

yi,j =
∑k

l′=1 wl′
i,j � Setting yi,j as total number of shared labels

yi,j − (k + 1)bi,j ≥ −k � Setting bi,j = 1 if yi,j > 0 and to 0 o.w
yi,j − (k + 1)bi,j ≤ 0

1 ≤ ∑k
l′=1 L(i, l′) ≤ p � Setting total assignments of an element up to p labels

return L

3.2 Row-Based Clustering

The method of Bonchi et al. [3] for solving the OCC objective iteratively finds
the optimal labeling vector for an element v given fixed labeling vectors of all
other elements. In each step we aim to find labeling Lt+1(v) which minimizes
the cost produced by v with all other elements:

min
Lt+1(v)

Cv,p(Lt+1(v)|Lt) = min
Lt+1(v)

∑

u∈V \{v}
|H(Lt(u),Lt(v)) − s(u, v)| (5)

This iterative step requires solving non-trivial optimization subproblems:

– For H = J , the problem is related to the Jaccard-Triangulation problem [3]
which generalizes the NP-hard Jaccard-Median problem [5].

– For H = I, the problem is related to the Hit-N-Miss problem [3] which is
isomorphic to the NP-hard positive-negative partial set-cover problem [12].
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Therefore, Bonchi et al. employ heuristic approaches to tackle the resulting prob-
lems. Here we show that one can derive exact yet practical solutions for these
problems using fixed parameter and integer programming techniques.

If we denote the number of clusters by a parameter k, then we can use a
naive fixed parameter algorithm for precisely solving the local step optimization
for every element in O(2k) time by enumerating all possible labeling vectors for
v. Moreover when we know a bound p ≤ k on how many clusters a single element
can be assigned to, then the number of possible options reduces to

(
k
p

)
= O(kp).

3.3 Column-Based Clustering

Our main contribution is a new optimization approach which looks in every
iteration on each column (label) separately, aiming to assign the label’s elements
in a way that will minimize the overall clustering objective. Let Lt be a binary
matrix of size n × k which represents the labeling assignment by Lt. We denote
Lt(·, l) as the l column representing the assignment for label l at iteration t.
Algorithm 2 shows the main flow of our new local search method which iteratively
updates the elements assignments Lt+1 to every label according to previous
assignments L̄t (which for simplicity of notations would be referred just as Lt)
to all other labels.

Algorithm 2. Label-by-Label Local Search (COL-ILP)
1: Initialize L0 to a valid labeling
2: t ← 1
3: while COCC(V, Lt) decreases do
4: Set L̄t ← Lt

5: for l ∈ [k] do
6: Find the changes x in label l which maximizes the cost difference (ILP)
7: Set L̄t(·, l) ← L̄t(·, l) · (1 − x) + (1 − L̄t(·, l)) · x
8: Set Lt+1 ← L̄t

9: end for
10: t ← t + 1
11: end while
12: return Lt

In order to improve the assignment of a label l we need to calculate the
difference in cost of every pair of elements vi, vj with respect to the proposed
changes in the assignment. There are four cases to consider regarding a specific
element vi:

1. Element vi is added to label l, i.e., Lt(i, l) = 0 and Lt+1(i, l) = 1.
2. Element vi remains unlabeled with l, i.e., Lt+1(i, l) = Lt(i, l) = 0.
3. Element vi is removed from label l, i.e., Lt(i, l) = 1 and Lt+1(i, l) = 0.
4. Element vi remains labeled with l, i.e., Lt+1(i, l) = Lt(i, l) = 1.
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These four cases induce 10 types of element pair combinations. To enumerate
them, we define ei = Lt(i, l), and let the variable xi be 1 if there was a change
in vi with respect to label l and 0 otherwise. By calculating cost differences for
each of the 10 pair types we can define an optimization criterion for maximizing
the total difference in cost over all pairs:

max
x

∑

i

∑

j>i

[
xi·xj ·[(1−ei)·(1−ej)·Ĉ1,1

i,j +ei·ej ·Ĉ3,3
i,j +(1−ei)·ej ·Ĉ1,3

i,j +ei·(1−ej)·Ĉ3,1
i,j ]

+xi·(1−xj)·[(1−ei)·(1−ej)·Ĉ1,2
i,j +ei·(1−ej)·Ĉ3,2

i,j +(1−ei)·ej ·Ĉ1,4
i,j +ei·ej ·Ĉ3,4

i,j ]
+(1−xi)·xj ·[(1−ei)·(1−ej)·Ĉ2,1

i,j +(1−ei)·ej ·Ĉ2,3
i,j +ei·(1−ej)·Ĉ4,1

i,j +ei·ej ·Ĉ4,3
i,j ]

]

(6)
where Ĉr,q

i,j is the cost difference, for element pairs involving one element i with
a change of type r and the other element j with a change of type q, for r, q ∈
{1, 2, 3, 4}. By definition, Ĉr,q

i,j = Ĉq,r
j,i , hence from now on we assume that r ≤ q.

Note that this objective defines a quadratically constrained quadratic pro-
gram (QCQP) which we can transform into an integer linear program by defining
the variables wi,j for every i < j ∈ [n] to reflect xi ·xj and adding the constrains:
xi + xj − 1 ≤ wi,j ≤ xi, xj .

Jaccard Label Fix. Let J t
i,j be the Jaccard coefficient of elements vi and vj

at iteration t, with |Lt(vi) ∩ Lt(vj)| = ni,j and |Lt(vi) ∪ Lt(vj)| = di,j (i.e.,
J t
i,j = ni,j

di,j
).

We define Jr,q
i,j as the value of J t+1

i,j between two elements i and j, the first with
a change of type r and the second with a change of type q, for r, q ∈ {1, 2, 3, 4},
and Ĵr,q

i,j would be the difference between previous Jaccard value and the new
one according to these changes. Moreover we let zr,q be an indicator for whether
the Jaccard value was decreased or increased.

zr,q =

{
1 if J t

i,j > J t+1
i,j

0 o.w
(7)

The change in coefficient Ĵr,q
i,j as a function of all possible changes r, q appears

in Table 1, omitting cases where there is no change. These values are applied to
the cost difference formula in (9).

In order to compute the cost change Ĉr,q
i,j according to Ĵr,q

i,j , we need to take
into consideration whether J t

i,j ≥ s(i, j) and whether Ct
i,j ≥ |Ĵr,q

i,j |, thus we define
the following indicators for every i, j ∈ [n] and r, q ∈ {1, 2, 3, 4}:

gi,j =

{
1 if J t

i,j ≥ s(i, j)
0 o.w

kr,q
i,j =

{
1 if Ct

i,j ≥ |Ĵr,q
i,j |

0 o.w
(8)

Claim. The cost difference Ĉr,q
i,j for changes of type r and q in elements vi and

vj , respectively under the use of Jaccard similarity is:

Ĉr,q
i,j =(gi,j ·zr,q+(1−gi,j)·(1−zr,q))·(|Ĵr,q

i,j |·kr,q
i,j +(2Ct

i,j−|Ĵr,q
i,j |)·(1−kr,q

i,j ))
+((1−gi,j)·zr,q+gi,j ·(1−zr,q))·(−|Ĵr,q

i,j |) (9)
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Table 1. Jaccard difference Ĵr,q
i,j according to type of changes. On time t the Jaccard

coefficient is J t
i,j =

ni,j

di,j
, and on time t + 1 it has the value Jr,q

i,j .

r q Jr,q
i,j Ĵr,q

i,j zr,q

1 1
ni,j+1

di,j+1

{
ni,j−di,j

di,j ·(di,j+1)
if di,j > 0

−1 if di,j = 0
0

1 2
ni,j

di,j+1

{
ni,j

di,j ·(di,j+1)
if di,j > 0

1 if di,j = 0
1

1 4
ni,j+1

di,j

−1
di,j

(di,j > 0) 0

2 3
ni,j

di,j−1

{ −ni,j

di,j ·(di,j−1)
if di,j > 1

−1 if di,j = 1
0

3 3
ni,j−1

di,j−1

{
di,j−ni,j

di,j ·(di,j−1)
if di,j > 1

1 if di,j = 1
1

3 4
ni,j−1

di,j

1
di,j

(di,j > 0) 1

Proof. – If gi,j = 1 it means that at iteration t the Jaccard between the two
elements exceeded their similarity, therefore: Ct

i,j = J t
i,j − s(i, j) and Ct+1

i,j =
|J t

i,j − Ĵr,q
i,j − s(i, j)| = |Ct

i,j − Ĵr,q
i,j |.

• If zr,q = 1 then Ĵr,q
i,j = |Ĵr,q

i,j |,
∗ If kr,q

i,j = 1 then Ct
i,j ≥ |Ĵr,q

i,j | = Ĵr,q
i,j , so: Ĉr,q

i,j = Ct
i,j − (Ct

i,j − Ĵr,q
i,j ) =

Ĵr,q
i,j = |Ĵr,q

i,j |.
∗ If kr,q

i,j = 0 then Ct
i,j < |Ĵr,q

i,j | = Ĵr,q
i,j , so: Ĉr,q

i,j = Ct
i,j − (Ĵr,q

i,j − Ct
i,j) =

2Ct
i,j − Ĵr,q

i,j = 2Ct
i,j − |Ĵr,q

i,j |.
• If zr,q = 0 then Ĵr,q

i,j = −|Ĵr,q
i,j |, and we get that the cost at time t + 1 is

Ct+1
i,j = |Ct

i,j + |Ĵr,q
i,j || = Ct

i,j + |Ĵr,q
i,j |, which means that Ĉr,q

i,j = −|Ĵr,q
i,j |.

– Conversely, if gi,j = 0 then Ct
i,j = s(i, j) − J t

i,j and Ct+1
i,j = |J t

i,j − Ĵr,q
i,j −

s(i, j)| = | − Ct
i,j − Ĵr,q

i,j |.
• If zr,q = 1 then Ĵr,q

i,j = |Ĵr,q
i,j |, and we get that the cost at time t + 1 is

Ct+1
i,j = | − Ct

i,j − |Ĵr,q
i,j || = Ct

i,j + |Ĵr,q
i,j |, which means that Ĉr,q

i,j = −|Ĵr,q
i,j |.

• If zr,q = 0 then Ĵr,q
i,j = −|Ĵr,q

i,j |, and we get that the cost at time t + 1 is
Ct+1

i,j = ||Ĵr,q
i,j | − Ct

i,j |,
∗ If kr,q

i,j = 1 then Ct
i,j ≥ |Ĵr,q

i,j |, so: Ĉr,q
i,j = Ct

i,j − (Ct
i,j − |Ĵr,q

i,j |) = |Ĵr,q
i,j |

∗ If kr,q
i,j = 0 then Ct

i,j < |Ĵr,q
i,j |, so: Ĉr,q

i,j = Ct
i,j − (|Ĵr,q

i,j | − Ct
i,j) =

2Ct
i,j − |Ĵr,q

i,j |
Combining together all these claims we can get the mentioned formula for
Ĉr,q

i,j . ��

Set-Intersection Label Fix. Similarly to the Jaccard case, we develop a for-
mulation for the set-intersection case. If two elements vi and vj share at least
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one common label then their cost is 1 − s(vi, vj), and s(vi, vj) otherwise. Thus
the cost change for every pair of elements should be ±(1 − 2s(vi, vj)) or zero,
while the only interesting cases are when elements which share a single label do
not share it anymore or when elements which do not have any common label
now share the label l, which means when |Lt(vi) ∩ Lt(vj)| changes from one to
zero or the other way around. To capture the first case we define the indicators
bi,j for every i, j ∈ [n] as follows:

bi,j =

{
1 if |Lt(vi) ∩ Lt(vj)| = 1
0 o.w

(10)

Claim. The cost difference Ĉr,q
i,j for changes of type r and q in elements vi and

vj respectively under the use of set-intersection similarity is:

Ĉr,q
i,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − Iti,j) · (2 s(vi, vj) − 1) if r = 1, q ∈ {1, 4}
bi,j · (1 − 2 s(vi, vj)) if r = 3, q ∈ {3, 4}
0 o.w

(11)

Proof. As mentioned above we have only two major cases in which the cost by
a single pair of elements may change:

– Two elements do not share any label at time t (means Iti,j = 0), but at time
t + 1 start to share the label l only, either by both being newly assigned to it
(r = q = 1) or when one of them joined it at time t + 1 (r = 1) and the other
one was already assigned to it (q = 4). In this case their mutual cost changes
from s(vi, vj) to 1 − s(vi, vj) and so the difference is 2s(vi, vj) − 1.

– Two elements are both assigned to label l at time t (q ∈ {3, 4}) and do not
share any other label (means bi,j = 1), but one of them is omitted from label
l at time t+1 (r = 3). In this case their mutual cost changes from 1−s(vi, vj)
to s(vi, vj) and so the difference is 1 − 2s(vi, vj).

��
In order to support the bound p on the number of clusters an element can

be assigned to, we should let xi = 0 if ei = 0 and |Lt(vi)| = p, which means that
no change should be performed regarding label l if this element is not currently
part of this label and is already assigned to other p labels. Moreover we may
validate if needed that every element is assigned to at least one label by letting
xi = 0 if ei = 1 and |Lt(vi)| = 1.

We initialize the labeling using a randomized assignment which satisfies the
condition of maximum p labels for each node (and p ≥ 1 if required). We also
test a variant of our algorithm which uses Bonchi’s solution for initialization.

3.4 Performance Evaluation

The algorithms are foremost evaluated based on the total cost achieved, normal-
ized by the size of the similarity matrix (number of elements pairs). In addition
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we use measures from [9] that account for overlaps between the computed clus-
ters. The first measures are Sensitivity (Sen) and Positive predictive value (PPV)
whose geometric average is the accuracy (Acc) measure. In order to define Sen
and PPV we let Ti,j be the number of elements which are present both in a true
cluster Ni (out of the n clusters induced by the true labeling mapping L∗) and
in a suggested cluster Mj (out of m clusters induced by the computed labeling
mapping L). Then Sen and PPV are defined as follows:

Sen =

∑n
i=1 maxm

j=1 Ti,j∑n
i=1 Ni

PPV =

∑m
j=1 maxn

i=1 Ti,j∑m
j=1

∑n
i=1 Ti,j

(12)

Sen reflects the weighted average coverage of the predicted labels by their best-
matching true labels, and PPV reflects the weighted average reliability for the
true labels to predict that an element belongs to their best-matching predicted
labels [4]. The accuracy is balancing these two measures [17] and therefore explic-
itly penalizes predicted labels that do not match any of the true ones [13]. It is
important to note that the value of PPV is relatively low in overlapping labels
settings, and so would not be a good enough measure alone for checking the
resulting clustering quality. Therefore we use also the maximum matching ratio
(MMR) and Fraction measures which together may overcome this difficulty.

MMR =

∑n
i=1 maxm

j=1 O(Ni,Mj)
n

(13)

Fraction =
|{i|i ∈ [n],∃j ∈ [m], O(Ni,Mj) ≥ ω}|

n
(14)

We may think of the MMR as finding the maximum weighted matching in a
bipartite graph between the labels of L and the labels of L∗ according the the
overlap-score defined between two labels as O(Ni,Mj) = |Ni∩Mj |2

|Ni|·|Mj | . As for the
Fraction, it allows us to count the number of true labels which are highly overlaps
with the predicted labels, given an overlap threshold ω which we set to 0.25 [17].
The overall performance is measured by summing the three measures of MMR,
Acc and Fraction, which will be referred as the composite score.

4 Results

We examine the following algorithms:

– ROW-BON - vertex-by-vertex method with Bonchi’s local steps.
– ROW-FPT - vertex-by-vertex method with naive FPT local steps.
– FULL-ILP - ILP for the entire OCC problem (either ECLIP or ISEC-ILP)
– COL-ILP - our proposed algorithm using a label-by-label method with Bonchi

or random initialization.

For the assessment of our methods we use two different multi-label datasets
from MULAN [16] which are most commonly used for training multi-labeling
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classifiers: EMOTIONS (n = 593, k = 6, p = 3) [15], and YEAST (n = 2417, k =
14, p = 11) [7]. In order to create the similarity matrices for a dataset we used
Jaccard coefficient and set-intersection indicator between the given true labels.

All four algorithms where implemented in Python3.9 and run on a 3.2 GHz
CPU with their relevant parameters k and p over 100 iterations. We apply all
algorithms to subsets of different sizes from 10 to 100. The subsets were randomly
chosen so as to preserve the relative sizes of the different clusters - we first
select a cluster l with probability pl which is the fraction of nodes assigned to
the cluster from the total number of node assignments to clusters, and then
choose uniformly an element l, repeating those steps until the desired number
of elements is obtained. We calculated the mean value of every measure across
all 100 iterations, omitting some of the results which ran for more than 1000 s.

Figure 1 shows that our new methods balance between the fast heuristic of
ROW-BON to the slow fully exact method of ECLIP or ISEC-ILP. Interestingly,
using Bonchi’s labeling as an initialization for COL-ILP leads to a decrease in
runtime. On the larger YEAST dataset, ROW-FPT and ECLIP are infeasible
already for small subsets.

Fig. 1. The mean running time on EMOTIONS (top) and YEAST (bottom) subsets
of different sizes. left: the Jaccard variant, right: the set-intersection variant.
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Next, we assess the quality of the different solutions by computing the average
edge loss which is defined as the total cost divided by n2. As evident from
Fig. 2, the exact methods of ECLIP and ISEC-ILP achieve zero cost, yet are
too expensive to compute in part of the range. In contrast, COL-ILP is feasible
across the range and outperforms the other heuristic searches in the vast majority
of the cases, with the Bonchi initialization yielding smaller loss compared to the
random one.

Fig. 2. The mean average edge loss on EMOTIONS (top) and YEAST (bottom) subsets
of different sizes. left: the Jaccard variant, right: the set-intersection variant.

Last, we compare the composite score of the different solutions (Fig. 3). Again
we observe that COL-ILP outperforms the other heuristic methods in most
applications.

To get more insights into the composite score comparison, we present in Fig. 4
how the detailed parts combine together to yield the composite score for subsets
of 20 elements. For EMOTIONS, the advantage of the COL-ILP methods is
derived from larger MMR values, while for YEAST, the Fraction is a dominant
factor.
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Fig. 3. The mean composite score on EMOTIONS (top) and YEAST (bottom) subsets
of different sizes. left: the Jaccard variant, right: the set-intersection variant.

Fig. 4. The mean composite scores on EMOTIONS (top) and YEAST (bottom) with
20 elements. left: the Jaccard variant, right: the set-intersection variant.
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5 Conclusions and Future Work

We have presented novel approaches for OCC that combine greedy iterations
with exact ILP-based solutions for each iteration. Our COL-ILP method was
shown to be both practical and effective, outperforming other algorithms on two
datasets in an array of measures. Future work will be to generalize our methods
to larger datasets and evaluate them on real data where the no true solution is
available.
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