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SUMMARY

Accurately translating genotype to phenotype re-
quires accounting for the functional impact of ge-
netic variation at many biological scales. Here,
we present a strategy for genotype-phenotype
reasoning based on existing knowledge of cellular
subsystems. These subsystems and their hierarchi-
cal organization are defined by the Gene Ontology
or a complementary ontology inferred directly from
previously published datasets. Guided by the ontol-
ogy’s hierarchical structure, we organize genotype
data into an ‘‘ontotype,’’ that is, a hierarchy of pertur-
bations representing the effects of genetic variation
at multiple cellular scales. The ontotype is then inter-
preted using logical rules generated by machine
learning to predict phenotype. This approach sub-
stantially outperforms previous non-hierarchical
methods for translating yeast genotype to cell
growth phenotype, and it accurately predicts the
growth outcomes of two new screens of 2,503 dou-
ble gene knockouts affecting DNA repair or nuclear
lumen. Ontotypes also generalize to larger knockout
combinations, setting the stage for interpreting the
complex genetics of disease.

INTRODUCTION

A central problem in genetics is to understand how different var-

iations in DNA sequence, dispersed across amultitude of genes,

can nonetheless elicit similar phenotypes (Waddington, 1942).

In recent years, it has been repeatedly observed that different

genetic drivers of a trait can be recognized by their aggrega-

tion in networks of pairwise protein or gene interactions (Califano

et al., 2012; Greene et al., 2015; Hanahan and Weinberg, 2011;

Kim and Przytycka, 2012; Ramanan et al., 2012; Wang

et al., 2010). Rather than associating genotype with phenotype
directly, variations in genotype are first mapped onto knowledge

of gene networks; affected subnetworks are then statistically

associated with phenotype. This approach can greatly increase

our power to identify relevant associations between geno-

type and phenotype. This principle of ‘‘network-based’’ or

‘‘pathway-based’’ association (Califano et al., 2012) is now being

applied to effectively map the genetics underlying complex phe-

notypes, including cancer and other common diseases (Hofree

et al., 2013; Lee et al., 2011; Leiserson et al., 2014; Ng et al.,

2012; Pe’er and Hacohen, 2011; Skafidas et al., 2014; Sullivan,

2012; Willsey et al., 2013).

In these studies, network knowledge is represented as a set of

genes and pairwise gene interactions. In reality, however, geno-

type is transmitted to phenotype not only through gene-gene in-

teractions but through a rich hierarchy of biological subsystems

at multiple scales: genotypic variations in nucleotides (1 nm

scale) give rise to functional changes in proteins (1–10 nm),

which in turn affect protein complexes (10–100 nm), cellular pro-

cesses (100 nm), organelles (1 mm), and, ultimately, phenotypic

behaviors of cells (1–10 mm), tissues (100 mm to 100 mm), and

complex organisms (>1 m). What has been less well studied in

genotype-phenotype association is how to leverage our exten-

sive pre-existing knowledge across these scales or how to

identify the scales most relevant to a set of genetic variants

(Deisboeck et al., 2011; Eissing et al., 2011; Walpole et al., 2013).

In many fields, knowledge across scales is modeled by ontol-

ogies: a factorization of prior knowledge about the world into a

hierarchy of increasingly specific concepts (Brachman and Lev-

esque, 2004). For instance, intelligent systems like Apple’s Siri

and IBM’s Watson carry out logical reasoning using a large

collection of world knowledge represented by ontologies (Carvu-

nis and Ideker, 2014). Inmolecular and cellular biology, extensive

knowledge of the hierarchy of subsystems in a cell has been rep-

resented by the Gene Ontology (GO), a community standard

reference database that documents interrelationships among

thousands of intracellular components, processes, and func-

tions in a large hierarchy of terms (Gene Ontology Consortium,

2015). Thus far, genotype-phenotype association methods

have sometimes used prior knowledge in the GO by flattening

the term hierarchy to a network, in which pairwise interactions
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connect genes annotated with the same GO term (Pesquita

et al., 2009). This flattening, however, may discard important in-

formation about the rich hierarchy of biological systems con-

necting genotype to phenotype. Moreover, a hierarchical model

is highly complementary, and in some ways orthogonal, to flat

networks: the GO is primarily concerned with ‘‘deep’’ connectiv-

ity up and down a hierarchy of cellular processes spanning

dozens of scales, whereas network models typically focus on

horizontal flow of signaling, transcriptional, or metabolic infor-

mation among genes or reactions at the same scale (Lee et al.,

2010, 2011). Another advantage of the GO is that it is continu-

ously improved by a very large community of dozens of curators

and editors, who update GO from new knowledge published in

thousands of peer-reviewed papers each year (Balakrishnan

et al., 2013; Huntley et al., 2014). To complement this process

of manual curation, recently we and others have shown that a

large hierarchy of cellular systems can be systematically assem-

bled directly from analysis of genome-wide datasets, including

molecular interactions and gene expression profiles; we call

this assembly NeXO (Dutkowski et al., 2013; Gligorijevi�c et al.,

2014; Kramer et al., 2014). This ‘‘data-driven’’ ontology closely

resembles, and in some cases greatly revises and expands,

the literature-curated GO.

Here we report a general approach for using deep hierarchical

knowledge of the cell, represented by an ontology, to translate

genotype to phenotype. This approach recursively aggregates

the effects of genetic variation upward through the hierarchy;

in this way, genetic variants comprising genotype are converted

to effects on the cell subsystems affected by those variants. We

call the set of all such effects an ‘‘ontotype,’’ representing varia-

tion at intermediate scales between nanoscopic changes in

genes and macroscopic changes in phenotype.

Here, we focus on yeast genetic interactions, in which the

deletion of two or more genes results in an unexpectedly slow

or fast cellular growth phenotype. Genetic interactions have pre-

viously been screened systematically using synthetic genetic ar-

rays in yeast (Costanzo et al., 2010); these experiments comprise

�3 million different genetic backgrounds and are among the

largest genotype-phenotype compendia in existence. We inte-

grate these data with the GO to produce a multi-scale computa-

tional model, the functionalized ontology. The model accurately

predicts growth phenotypes of 2,503 previously untested dou-

ble-deletion genotypes, and it is also capable of predicting the

phenotypes that result from larger combinations of gene disrup-

tions. Similar predictive power is achieved by substituting the

GO with NeXO, our data-driven ontology of cellular systems. In

aggregate, this work suggests a strategy for building hierarchical

models of the cell whose structure and function are learned

completely from data.

RESULTS

Association between Genetic Interactions and
Hierarchical Relations among Cellular Systems
As preparation for modeling, we identified patterns by which ge-

netic interactions are associated with, and thus biologically ex-

plained by, the structure of gene ontologies. We observed that

sets of genes assigned to the same GO term tended to be highly

enriched for genetic interactions (p < 10�5), for both positive
78 Cell Systems 2, 77–88, February 24, 2016 ª2016 Elsevier Inc.
genetic interactions (double gene disruptions with better than

expected growth, e.g., epistasis) and negative genetic interac-

tions (double gene disruptions with worse than expected growth,

e.g., synthetic lethality) (Figure 1A). Such interaction enrichment

within GO terms occurred over a wide range of term sizes—the

number of genes annotated to a term—suggesting that genetic

interactions emerge from both broad and specific cellular mech-

anisms at multiple scales.

Becauseof thehierarchical structureof thecell, genetic interac-

tions amonggenesannotated toa termcanpotentially be re-inter-

preted as interactions between the genes of different terms at a

lower scale in the GO. For example, the ‘‘parent’’ term ‘‘microtu-

bule-associatedcomplex’’ displaysstrongwithin-term interaction

enrichment, which factors into strong between-term interaction

enrichment across two of its ‘‘children’’ terms, kinesin and dynac-

tin (Figure 1B).We found that such hierarchical relationshipswere

widespread in the GO: approximately half of within-term enrich-

ments could be factored into between-term enrichments among

their descendants (Figure 1C). Occurrences of interactions within

or between biological pathways have been previously investi-

gated as separate biological interpretations (Bandyopadhyay

et al., 2008; Bellay et al., 2011; Collins et al., 2010; Kelley and

Ideker, 2005; Leiserson et al., 2011; Ma et al., 2008; Qi et al.,

2008; Ulitsky et al., 2008). Here, both types of explanations

can be applied to the same interaction, as they are related

hierarchically within the unified structure of the cell. Overall,

approximately 40,000 interactions were involved in 1,661 within-

or between-term enrichments, representing a 24:1 compression

of information (Figure 1D). Thus, the GO integrates genetic inter-

actions in an overarching hierarchy capturing multiple scales of

cell biology. As onemoves upward in this hierarchy, separate dis-

ruptions tomultiple systems converge tomultiple disruptions to a

single system, with the scale of this transition indicated naturally

by the hierarchical structure.

The Ontotype: An Intermediate between Genotype and
Phenotype
Guided by this concordance between the GO hierarchy and ge-

netic interactions, we developed a general system for ontology-

based translation of genotype to phenotype that involves three

general steps. First, the genotype is described according to

convention by the set of genes that have been disrupted relative

to wild-type (e.g., bDdD; Figure 2A). These disruptions are prop-

agated recursively up the ontology, such that every term is as-

signed the disrupted genes annotated to that term plus all of

those assigned to its children. For example, because the gene

KIP1 encodes a subunit of the kinesin complex (Figure 1B), its

deletion in a kip1D strain propagates upward in the ontology to

affect the parent term ‘‘kinesin complex’’ and continues to prop-

agate upward to affect ancestor terms at higher scales such as

‘‘microtubule associated complex’’ and ‘‘cytoskeleton.’’

Second, every term is assigned a functional state, represent-

ing the aggregate impact of gene disruptions on the activity of

the component or process that term represents. Although it is

possible to envisage many ways one might compute this func-

tional impact, as proof of principle, we explored a simple and

parameter-free computation, the number of disrupted genes

associated with the term. This general approach is iterated

across all terms; we call the profile of states across all terms
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Figure 1. Patterns of Genetic Interaction Reflect the Hierarchical

Structure of the GO

(A) Enrichment for negative (circle) or positive (triangle) genetic interactions

among genes annotated to the same GO term as a function of term size,

measured by the number of genes annotated to that term or its descendants.
the ‘‘ontotype.’’ In this way, the ontotype provides a complete

picture of cell function and spans scales between genotype

and phenotype. Whereas genotype describes the states of

genes, and phenotype describes the states of observable traits,

ontotype describes the states of all known biological objects.

Many of these objects exist at scales bigger than genes but

too small to be classically observable by eye, such as protein

complexes and other subcellular structures, or too diffuse,

such as signaling pathways (Figure 2A). In its most general defi-

nition, ontotype encompasses both genotype and phenotype,

with genes and observable traits positioned at lower and higher

levels of the hierarchy of objects encoding life.

A Functionalized Gene Ontology Integrating Cell
Structure and Functional Prediction
Third, once genotypes are transformed to ontotypes, a super-

vised learning approach based on the technique of random for-

ests regression (Breiman, 2001) is used to learn rules by which

term states predict phenotypes. Rules are organized as a collec-

tion, or ‘‘forest,’’ of decision trees (Experimental Procedures),

with a typical decision tree describing a series of logical true-

or-false tests to evaluate the states of several terms (e.g., T4,

T5, and T7 in Figure 2A). Making decisions on the states of terms

rather than nucleotide variants or genes enables machine

learning across a range of scales, so that different genotypes

converging on similar ontotypes (e.g., aDdD and bDdD in Fig-

ure 2B) can yield the same phenotype. Decision tree logic was

trained to predict quantitative genetic interaction scores from

�3 million tests for pairwise genetic interactions (Costanzo

et al., 2010) (Experimental Procedures). This hierarchical struc-

ture of the ontology, when coupled to the decision logic

described above, forms a ‘‘functionalized’’ ontology, that is, a

computational cell model that defines both the sub-structures

of the cell and how these sub-structures hierarchically translate

genotype to phenotype.

Separate functionalized ontologies were trained using either

the GO curated from the Saccharomyces literature (Cherry

et al., 2012) (FGO) or a data-driven ontology assembled from

Saccharomycesdatasets using themethodof network-extracted

ontologies (Dutkowski et al., 2013; Kramer et al., 2014) (FNeXO).

Whereas theGO represents knowledge of published cell biology,

application of NeXO yielded an ontology whose hierarchy of

cell systems was learned directly from publicly available data,
Enrichment is normalized as the fold change over expected for randomized

GO annotations.

(B) Genetic interactions are propagated up the GO hierarchy to support

‘‘between-term enrichment’’ between the dynactin and kinesin complexes

and ‘‘within-term enrichment’’ within the parent ‘‘microtubule associated

complex.’’

(C) Number of within-term and between-term enrichments highlighted by

current genetic interaction data. Approximately half of within-term enrich-

ments can be factored into one or more between-term enrichments that occur

lower in the GO hierarchy. Percentages are calculated with respect to the total

possible tests for within-term (2,719) and between-term (36,210) enrichments.

(D) Number of genetic interactions involved in a within-term, between-term,

or either type of enrichment. Percentages are calculated with respect to

the total number of genetic interactions (107,133). The expected numbers of

enrichments (C) and supporting interactions (D) were also calculated over

randomized GO annotations (dark gray bars).

Cell Systems 2, 77–88, February 24, 2016 ª2016 Elsevier Inc. 79
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Figure 2. The Ontotype Method of Trans-

lating Genotype to Phenotype

(A) The relationship between genotypic and

phenotypic variation is modeled through an inter-

mediate ‘‘ontotype,’’ defined as the profile of

states corresponding to the effect of genotype on

each cellular component, biological process, and

molecular function represented as a term in

GO. To generate an ontotype, perturbations to

genes are propagated hierarchically through the

ontology, altering term states. A random forest

regresses to predict a phenotype using the onto-

type as features. An example decision tree from

the forest is shown.

(B) Example genotype, ontotype, and phenotype

associations from the ontology in (A). Different

genotypes (e.g., bDdD and aDdD) give rise to

similar or identical phenotypes by influencing

similar or identical combinations of terms.
including protein-protein interactions, gene expression profiles,

and protein sequence properties, but excluding any prior infor-

mation about genetic interactions (datasets taken from the

YeastNet v3 study; Kim et al., 2014). NeXO (4,805 terms) was

tuned so that the resulting ontology was approximately similar

in size to theGO (5,125 terms). Alignment of these two ontologies

revealed 1,614 significantly overlapping terms. Thus, NeXO rep-

resents a distinct hierarchy of cellular systems that provides an

alternative to the hierarchy maintained by GO curators.

Quantitative Assessment of Performance for Genotype-
Phenotype Translation
FGO accurately predicted growth phenotypes across a range of

genetic interaction scores (Figures 3A and 3B). The correlation

between predicted and measured scores was highly significant

(Figure 3C; Pearson’s r = 0.35, p < 2.23 10�16) and reduced sub-

stantially when a randomized version of the ontology was used

(r = 0.04); the maximum achievable correlation, as previously

determined by experimental genetic interaction replicates (Bar-

yshnikova et al., 2010), was r = 0.67. Progressively removing

either small or large terms from the model degraded the correla-

tion (Figures 3D and 3E), indicating that all scales in the hierarchy

aid in prediction. FNeXO achieved nearly the same correlation

(Figure 3C; r = 0.32) and was also sensitive to randomization

(r = 0.03).

Both functionalized ontologies compared favorably with non-

hierarchical approaches for predicting genetic interactions

(Boucher and Jenna, 2013; Lehner, 2013). We evaluated three

state-of-the-art methods: flux balance analysis (FBA), which

uses a mechanistic model of yeast metabolic pathways to simu-

late the impact of gene deletions on cell growth (Szappanos

et al., 2011); guilt by association (GBA), which predicts the

phenotype of pairwise gene deletions on the basis of the pheno-

types of their network neighbors (Lee et al., 2010); and the multi-

network multi-classifier (MNMC), a ‘‘black box’’ supervised

learning system that uses many different lines of experimental

evidence as features to predict genetic interactions (Pandey

et al., 2010) (Experimental Procedures). In comparison with all
80 Cell Systems 2, 77–88, February 24, 2016 ª2016 Elsevier Inc.
of these approaches, the functionalized ontologies achieved

substantially greater correlation between predicted and

measured interaction scores (Figure 3C) as well as better

trade-offs in precision versus recall (Figure 3F) in 4-fold cross-

validation. We also assessed prediction performance in a chal-

lenging validation scenario in which the training set of genotypes

does not disrupt any genes in the test set (Park and Marcotte,

2012) (Supplemental Experimental Procedures). In this scenario,

any genotype-phenotype logic that applies to individual genes is

no longer generalizable; for example, promiscuous genes with a

high degree of genetic interactions (Gillis and Pavlidis, 2012;

Mackay, 2014) could be used to explain training data but not

test data. Despite this challenge, FGO still outperformed predic-

tions made with a randomized GO or with the non-hierarchical

methods (Figure S1).

We found that the accuracy of growth phenotype prediction

depends significantly on the degree to which cellular systems

have been characterized in the GO. FGO was especially accurate

at modeling genotypes for which the disrupted genes are well

characterized by GO annotations; conversely, it was far less

able to model genotypes for which the genes are poorly charac-

terized (Figure S2). Moreover, many genes that are poorly char-

acterized in the GO are better characterized in NeXO, such that

genotypes involving these genes lead to better phenotypic

predictions by FNeXO than by FGO (Figures S2A–S2C). These dif-

ferences demonstrate the utility of data-driven ontologies for

translating genotype to phenotype, especially in species that

are lacking in GO curation but have ‘‘omics’’ datasets fromwhich

a gene ontology can nonetheless be built.

Finally, we investigated whether hierarchical features (i.e., the

ontotype) were essential or if equally good predictions could be

made from ‘‘flat’’ features derived from the same ontologies. The

GO was flattened by computing the semantic similarity (Resnik,

1995), which scores every pair of genes by their functional relat-

edness in GO. As a non-hierarchical representation of NeXO, we

directly considered the data on which it had been based: pair-

wise gene-gene similarities derived fromdifferent types of exper-

imental evidence in YeastNet. Use of these flat datasets derived
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Figure 3. Genome-wide Prediction of Pairwise Genetic Interactions in Yeast

(A) Measured genetic interaction scores versus those predicted from ontotypes constructed from GO using 4-fold cross-validation. For each bin of predicted

scores, box plots summarize the distribution of measured scores by itsmedian (central horizontal line), interquartile range (box), and an additional 1.5s (whiskers).

(B) Number of gene pairs in each bin of predicted scores.

(C) Method performance, as represented by the correlation of measured versus predicted interaction scores across gene pairs that meet an interaction sig-

nificance criterion of p < 0.05 in Costanzo et al. (2010). Comparison is made with ontotypes constructed from a randomized gene ontology or NeXO and to

previous non-hierarchical methods for predicting genetic interactions. FBA correlation is reported for the set of 104,826 gene pairs considered by this model and

for which gene annotations are available in the GO. The ontotype correlations do not fluctuate greatly (<4%) whether computed over all gene pairs (shown) or the

FBA gene pairs. See also Figures S1 and S2.

(D) Method performance when the ontotype is constructed from only GO terms that are no larger than (triangles) or no smaller than (circles) a size threshold.

(E) The number of GO terms that meet each size threshold criterion.

(F) Precision-recall curves for classification of negative genetic interactions.
from the two ontologies resulted in a substantial degradation in

prediction performance (FLATGO and FLATNeXO; Figure 3C),

even though the same random-forests regression procedure

was used as for the functionalized ontologies.

Simulating Growth Phenotypes for ‘‘New’’ Genotypes
Not Yet Observed or Examined
We next used FGO to simulate growth for all 12,512,503 pair-

wise deletions of non-essential yeast genes, 73% of which
had not yet been tested in the laboratory (Figure 4A; Data

S1). A total of 41,605 genetic interactions were predicted.

These predictions were concentrated within and between

particular terms and term pairs (Figures 4A and 4B), covering

a total of 1,367 unique terms and indicating where in the

ontology the logic of FGO takes place. For example, FGO pre-

dicted many genetic interactions within ‘‘oxidative phosphory-

lation’’ (Figure 4C), with negative interactions linking the

sub-systems of electron and proton transport and positive
Cell Systems 2, 77–88, February 24, 2016 ª2016 Elsevier Inc. 81



A

C

Within-Term Between-Term

Measured Predicted

B

29618 1,214181 851270

Positive

Negative

Fraction of
Interactions

Oxidative
Phosphorylation

ATP Synthesis
Coupled
Proton Transport

Mitochondrial ATP
Synthesis Coupled
Electron Transport

Positive
Interaction

Enrichment: Negative Small

Medium

Large

Term Size

Within-Term:

Between-Term:

Parent-
Child

Relation

Biological Process

Cellular ComponentMolecular Function

DNA
metabolic
process

organic acid
metabolic
process

RNA
metabolic
process

gene
expression

cellular
biosynthetic
process

cellular protein
modification
process

primary
metabolic
process

organelle
organization

mitochondrial
part

intracellular
organelle

part

nuclear
part

membrane
part

cytoskeletal
part

protein complex

endoplasmic
reticulum

cytosol

cytoplasmic
part

response to
stimulus

developmental
process

localization

regulation of
cellular
process

nitrogen
utilization

reproduction

cell cycle
process

ribonucleoprotein
complex

biogenesis

transferase
activity

transporter
activity

catalytic
activity

hydrolase
activity

protein binding
TF activity

nucleic acid binding
TF activity

transport

Figure 4. The Functionalized GO

(A) Visualization of FGO structure and function.

Terms and hierarchical parent-child relations are

represented by nodes and black edges. Colored

nodes and edges denote within- and between-

term interaction enrichments, illustrating how

terms and term combinations are used for

prediction.

(B) Venn diagrams showing number of term en-

richments identified for measured interactions,

predicted interactions, or both.

(C) Example term ‘‘oxidative phosphorylation,’’

which factors into the transport of electrons (left

child) versus protons (right child). Although both

positive and negative genetic interactions are

predicted within the oxidative phosphorylation

genes (represented by a pie with both blue and

red slices), positive interactions segregate within

electron transport (blue pie) while negative in-

teractions segregate between electron and proton

transport (dotted red edge).

See also Figure S3.
interactions segregating entirely within electron transport.

These distinct patterns of positive and negative segregation

were observed broadly across FGO (Figure S3). Of particular in-

terest were predicted interactions between 71 term pairs, as

these terms were only distantly related in the GO (Table 1;

Table S1; Supplemental Experimental Procedures). For

example, all ten genes in ‘‘intron homing’’ had negative interac-

tions with all four genes in the ‘‘Phosphatidylinositol-3-kinase

complex,’’ although neither these terms nor their parents

shared any genes, and these terms were in entirely separate

branches of the GO (biological process versus cellular compo-

nent). Thus, FGO makes predictions guided by, but not rigidly

confined to, known hierarchical relations among cellular sub-

systems. The unexpected connections point to potential new

cellular functions and functional relationships important for

regulating cell growth.
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Validation and Expansion of the
Functionalized Ontology of DNA
Repair and Nuclear Lumen
Key terms in FGO were ‘‘DNA repair‘‘ and

‘‘nuclear lumen,’’ which featured promi-

nently in the decision tree logic, leading

to a high concentration of predicted in-

teractions (9.0 and 7.6 times the ex-

pected interaction density, respectively)

according to particular patterns of

disruption (Figures 5A and S4). Genetic

perturbations within each term led to

particularly accurate growth phenotypes

in cross-validation, as the correlation

between predicted interactions and

those measured by Costanzo et al.

(2010) was noticeably better for gene

pairs in DNA repair or nuclear lumen

(both r = 0.61) than for gene pairs in

other terms (average r = 0.35; Fig-

ure S2G; Table S2). To test whether this
performance generalized to new data, we experimentally

measured growth phenotypes for 1,218 pairwise deletions of

DNA repair genes and 1,600 pairwise deletions of nuclear lumen

genes and scored these mutants for genetic interactions (Table

S3; Supplemental Experimental Procedures). Of these, 1,345

mutants had also been scored previously by Costanzo et al.

(2010). Surprisingly, we observed that the new measurements

were better predicted by FGO than by the previous measure-

ments of those same genotypes (i.e., experimental replicates;

Figure 5B). Such improvement suggests that functionalized on-

tologies may be able to reduce experimental noise by learning

the overarching patterns of cellular subsystems that translate

genotype to phenotype.

We next tested FGO’s ability to generalize to unseen mutant

genotypes. For this purpose we constructed a ‘‘limited’’ FGO,

trained only on those genotypes that had been tested earlier



Table 1. Top New Functional Relationships in FGO

Term A (Number of Genes) Term B (Number of Genes)

Interactions/Total (%)

p ValueaPredicted Measured

Negative

Interactions

intron homing (10) phosphatidylinositol 3-kinase

complex II (4)

40/40 (100.0%) 2/2 (100.0%) 6.74E-96

negative regulation of chromatin silencing

at silent mating-type cassette (8)

protein import into mitochondrial inner

membrane (3)

24/24 (100.0%) 14/14 (100.0%) 3.56E-55

pre-mRNA binding (5) RNA pol II transcription coactivator activity

in preinitiation complex assembly (3)

15/15 (100.0%) 2/2 (100.0%) 2.86E-32

protein lipoylation (4) carbon-oxygen lyase activity, acting on

phosphates (3)

12/12 (100.0%) 9/9 (100.0%) 1.23E-24

Swr1 complex (8) U6 snRNP (3) 22/24 (91.7%) 6/6 (100.0%) 1.20E-47

alpha-1,6-mannosyltransferase

complex (6)

negative regulation of chromatin silencing

involved in replicative cell aging (4)

21/24 (87.5%) 1/4 (25.0%) 3.08E-44

tubulin complex assembly (5) maintenance of DNA trinucleotide

repeats (3)

13/15 (86.7%) 12/12 (100.0%) 3.67E-25

inositol phosphate biosynthetic

process (5)

minus-end-directed microtubule motor

activity (3)

12/15 (80.0%) 5/6 (83.3%) 5.56E-22

regulation of ARF GTPase activity (6) phosphatidylinositol-3,5-bisphosphate

5-phosphatase activity (4)

19/24 (79.2%) 2/4 (50.0%) 7.92E-38

positive regulation of RNA elongation

from Pol I promoter (5)

HIR complex (4) 14/20 (70.0%) 8/10 (80.0%) 3.82E-25

Positive

Interactions

negative regulation of chromatin silencing

at silent mating-type cassette (8)

U6 snRNP (3) 19/24 (79.2%) 10/11 (90.9%) 7.92E-38

tubulin complex assembly (5) DNA-directed RNA polymerase I

complex (4)

15/20 (75.0%) 8/8 (100.0%) 4.37E-28

RSC complex (8) inactivation of MAPK activity (4) 19/32 (59.4%) 3/4 (75.0%) 6.33E-34

vacuolar proton-transporting V-type

ATPase, V1 domain (8)

free ubiquitin chain polymerization (3) 14/24 (58.3%) 7/14 (50.0%) 1.91E-23

alpha-1,6-mannosyltransferase

complex (6)

dynactin complex (5) 16/30 (53.3%) 8/12 (66.7%) 1.14E-26

vacuolar proton-transporting V-type

ATPase, V0 domain (7)

AP-3 adaptor complex (4) 13/28 (46.4%) 7/16 (43.8%) 1.26E-19

SLIK (SAGA-like) complex (14) positive regulation of stress-activated

MAPK cascade (3)

14/42 (33.3%) 12/21 (57.1%) 4.92E-19

histone exchange (9) minus-end-directed microtubule motor

activity (3)

9/27 (33.3%) 7/22 (31.8%) 2.38E-10

histone methyltransferase activity

(H3-K4 specific) (7)

snoRNA transcription from an RNA

polymerase II promoter (3)

7/21 (33.3%) 4/6 (66.7%) 7.33E-07

glycerol transport (4) transcription-coupled nucleotide-excision

repair (4)

5/16 (31.3%) 1/4 (25.0%) 3.42E-03

See also Table S1.
aCalculated with respect to predicted interactions. Bonferroni corrected for family wise error rate.
(Costanzo et al., 2010) but not by our new screens. This limited

FGO achieved high sensitivity versus specificity (Figure 5C) and

precision versus recall (Figure 5D) in predicting the new interac-

tions measured for DNA repair and nuclear lumen genes. Given

this validation, we combined the genetic interaction scores

from both new screens with previous data (Costanzo et al.,

2010) and re-trained the ontotype decision logic on this more

complete dataset. The structure of this improved FGO, with the

accompanying ontotype-phenotype logic, is available online on

the Network Data Exchange (http://goo.gl/cYIXWJ; UUID:

01b46d52-c3a5-11e5-8fbc-06603eb7f303; Pratt et al., 2015)

and as a Cytoscape file in Data S2.
Toward More Complex Genotypes
Although the ontotype had been trained using double-deletion

genotypes, we hypothesized that once trained, it might be

capable of predictions for genotypes involving mutations to

larger numbers of genes. Although few studies have examined

three-way or higher order genetic interactions, a recent study

(Haber et al., 2013) showed proof of principle for a three-way

gene deletion methodology, representing one of the few sys-

tematic screens for triple mutants to date. This work reported

that deletion of CAC1 in combination with any gene in the HIR

complex (HIR1, HIR2, HIR3, and HPC2) results in a synthetic

growth defect (negative genetic interaction); however, the
Cell Systems 2, 77–88, February 24, 2016 ª2016 Elsevier Inc. 83
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Figure 5. Elucidating the Genetic Logic of DNA Repair and the

Nuclear Lumen

(A) DNA repair has a rich structure of predicted genetic interactions among

specific repair processes. Coloring and visual style of panels follow the

convention of Figure 4. See also Figure S4.

(B–D) Yeast growth was experimentally measured for double gene deletion

strains in which both genes are involved in either DNA repair (green) or nuclear

lumen (orange). See also Tables S2 and S3. (B) The new measurements are

correlated with previous data by Costanzo et al. (2010) aswell as predictions of

a FGO trained with all previous data or predictions of a ‘‘limited’’ FGO trained

with all previous data excluding genotypes tested in the new screen. In all

cases, correlation is computed among the genotypes tested by both the new

screen and Costanzo et al. (2010). Among all genotypes in the new screen, we

calculated receiver-operating (C) and precision-recall curves (D) for predicting

negative genetic interactions in DNA repair and the nuclear lumen using the

limited FGO. The corresponding curves across all gene pairs in the previous

screen are reproduced for comparison (gray; see Figure 3F).
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additional deletion of a third gene, ASF1, suppresses this

phenotype. Consistent with these findings, FGO predicted both

the synthetic sickness of the double mutants and phenotypic

suppression by the triple mutant (Figure 6A). Visual inspection

of the model (Figure 6B) implicated decision logic on the basis

of the functional activities of two related processes, DNA repli-

cation-independent nucleosome assembly and nucleosome or-

ganization. Deleting a single gene in DNA replication-indepen-

dent nucleosome assembly leads to a state in which the

deletion of another gene functioning elsewhere in nucleosome

organization causes synthetic sickness. In contrast, the triple

mutants include deletion of two genes in DNA replication-

independent nucleosome assembly (asf1DHIRD), leading to a

neutral phenotype. This effect probably occurs because the

double mutant impairs growth to such an extent that additional

perturbations have no detectable effect. Indeed, whereas CAC1

is primarily involved in regulating DNA replication, ASF1 and the

HIR complex have been linked to other chromatin-related pro-

cesses, including transcriptional elongation (Formosa et al.,

2002; Schwabish and Struhl, 2006) and mRNA export (Pam-

blanco et al., 2014). This triple-mutant case study illustrates

the complexity of logic in interpreting genetic interactions,

underscoring the utility of a knowledge representation and

reasoning system for unraveling such combinatorial genetic

effects.

DISCUSSION

Many years of work by the Gene Ontology Consortium have es-

tablished an extensive description of cell structure spanning

a hierarchy of biological scales. Here, we have shown that the

ontology structure can also be used functionally for interpreta-

tion of genetic variants tomake phenotypic predictions. The abil-

ity to systematically map and then integrate these two aspects,

structure and function, outlines a general strategy for develop-

ment of computational cell models. First, a knowledge base of

the cell’s hierarchical structure is acquired, either through litera-

ture curation (GO) or data-driven methods (NeXO). In a second

step, mathematical relations are learned by algorithms that

translate how the functional states of these subsystems—the

ontotype—give rise to a phenotype of interest. Thus, cell struc-

ture is determined from physical information derived from litera-

ture or systematic data, and cell function is learned from genetic

data such as synthetic lethal interactions and genome-wide as-

sociation studies.

Functionalized ontologies substantially outperformed previ-

ous phenotypic predictors (Figures 3C and 3F), a notable finding

given the simplicity of the ontotype and its use as the sole

feature set for learning. We believe this success follows

from several key aspects of implementation. First and most

important, the utility of hierarchical organization in genotype-

phenotype translation cannot be overstated. Indeed, the func-

tionalized ontologies also outperformed predictors based on

non-hierarchical versions of the same information (Figure 3C)

or truncated versions of the ontology (Figures 3D and 3E).

From the perspective of the ontology, all mutations or variants

in a genotype coalesce to the same cellular module, provided

one looks at a high enough level (Figure 1B). A genotype may

include some mutations that map to the same gene, others to



A B Figure 6. Prediction of Triple Mutants

(A) Measured versus predicted interaction scores

for genotypes involving pairwise and three-way

deletions involving ASF1, CAC1, and genes in the

HIR complex (HIR1,HIR2,HIR3, andHPC2) (Haber

et al., 2013).

(B) Relevant GO structure (left) and corresponding

functional decision tree (right) for predicting the

two- and three-way interactions in (A). At left, ar-

rows represent parent-child relations and gene

annotations in GO. At right, arrows represent de-

cisions based on ontotype: numbers on arrows are

term states; arrows point to predicted interaction

scores (ε).
the same protein complex, still others to the same broad pro-

cess or organelle, with all mutations falling within the highest

scale represented by the cell itself. Propagating mutations up-

ward through terms of increasing scale enables subsequent se-

lection of the ‘‘right’’ scale for accurate prediction. In this regard,

FGO sheds light on previous, partially discrepant, studies of ge-

netic interaction networks. Some analyses have found that

negative genetic interactions tend to connect between comple-

mentary modules, whereas positive interactions tend to occur

within a single module (Bandyopadhyay et al., 2008; Collins

et al., 2010; Kelley and Ideker, 2005; Leiserson et al., 2011;

Ma et al., 2008; Qi et al., 2008; Ulitsky et al., 2008); a more

recent report identified dense patterns of both positive and

negative interactions between modules (Bellay et al., 2011).

Analysis of FGO suggests that both interpretations can be cor-

rect, depending on the scale of the module(s) within the cellular

hierarchy.

The second factor in the success of functionalized ontologies

is the sustained efforts of biologists at large. The GO is a rich

resource of cellular knowledge that is both broad, in its extensive

coverage of cell biology, and deep, in its resolution of cell sub-

systems across many different scales. Although not perfect,

this knowledge is continuously refined, updated, and expanded

by the sustained efforts of a global community. Given the stag-

gering complexity of the cell, such a collaborative approach

incorporating diverse expertise and tools may be instrumental

in establishing robust and complete prior knowledge for compu-

tational cell modeling. Previously, cellular modeling efforts have

typically involved independent curation within a single laboratory

or institute.

A last factor that may have worked in our favor is the fact that

functionalized ontologies balance rigid modeling constraints

imposed by prior knowledge with flexible statistical learning

guided by experiments. Computing the ontotype requires no pa-

rameters and instead leverages the topology of the ontology.

Logical rules for predicting phenotype are based on the onto-

type, but their functional form (i.e., which terms are used and

how their states are combined) is learned from data. In contrast,

many previous efforts in mechanistic modeling (e.g., see Cahan

et al., 2014; Carrera et al., 2014; Deutscher et al., 2006; Karr

et al., 2012; Lerman et al., 2012; Machado et al., 2011; O’Brien

et al., 2013; Orth et al., 2010; Segrè et al., 2005; Szappanos

et al., 2011; Szczurek et al., 2009; Takahashi et al., 2003; Tomita

et al., 1999) have been driven by low-level prior knowledge in the

form of biophysical equations. Although naturally conferring a
mechanistic explanation when correct, these equations have a

known challenge that they are often of preset form and have sen-

sitive parameters (Apgar et al., 2010; Ashyraliyev et al., 2009; Gu-

tenkunst et al., 2007), such that achieving accurate predictions

within one dataset risks overfitting.

Extending Functional Ontologies beyond Current Limits
FGO based its predictions principally on 1,367 terms, spread

across various biological processes, cellular components,

and molecular functions (Figure 4A). Although this coverage

of cell biology is substantial (27% of the yeast GO), one might

wonder whether it should be more complete. First, some term

logic is likely missed because those terms are not frequently

disrupted in the current set of genotypes. For example, genes

annotated to 783 GO terms were never disrupted in any geno-

type tested (Costanzo et al., 2010). Second, some biological

processes are likely not required for the phenotype tested—

growth of cells in rich media—but instead may drive a wide va-

riety of other phenotypes (Dowell et al., 2010; Hillenmeyer

et al., 2008; Ideker and Krogan, 2012; Lee et al., 2014). Third,

important processes or components may not yet have been

curated in the GO, and some existing terms might have errors

in gene annotations or relations to other terms. Such false-

positive and false-negative information could obscure a term’s

utility in prediction. We expect that testing additional geno-

types, phenotypes, and environmental conditions will increase

the functional coverage of terms and enhance FGO with new

and more robust logic.

Complex traits arise from a landscape of genetic variants and

mutations, in which it is often challenging to interpret the effects

of individual genes because of many multi-gene interactions

(Kim and Przytycka, 2012; Zuk et al., 2012). Toward meeting

this challenge, we have shown that gene ontologies can be

transformed into multi-scale models capable of general geno-

type-phenotype reasoning. Although based on simple rules of

propagation, the model substantially outperforms previous

methods for predicting cellular growth phenotypes, whether

based onmechanistic modeling of pathways or ‘‘black-box’’ ma-

chine learning methods. It also generalizes in ways that previous

predictors are incapable of doing, including the ability to analyze

genotypes of arbitrary complexity. Theseadvances are important

steps toward building intelligent systems that can one day inter-

pret the complex genetics underlying human health and disease.

In moving forward, special consideration should be given to

the mathematical functions that govern each term state. Here,
Cell Systems 2, 77–88, February 24, 2016 ª2016 Elsevier Inc. 85



we found successwith a surprisingly straightforward and param-

eter-free function that counts the disrupted genes assigned to a

term and its sub-terms. More generally, this function might be

tailored to each term according to specific knowledge about

the inner workings of that cellular component or process.

Defining the mathematical relationships between genes within

a cellular process has been the focus of ‘‘bottom-up’’ systems

biology (Bruggeman and Westerhoff, 2007; Chen et al., 2010).

In contrast, defining the broad organization of genes into cellular

processes has been the domain of ‘‘top-down’’ systems biology.

With its hierarchy of terms and functions spanningmany different

biological scales, a functionalized ontology may offer a means to

bridge this long-standing divide.

EXPERIMENTAL PROCEDURES

Genetic Interaction Data

Experimental genetic interaction scores for >6million double mutants in yeast,

measured using synthetic genetic arrays (SGAs) (Costanzo et al., 2010) (1,711

queries 3 3,885 arrays), were downloaded from http://drygin.ccbr.utoronto.

ca/�costanzo2009/. Double gene deletion mutants affecting DNA repair and

the nuclear lumen were generated on solid agar media using SGA technology

as previously described (Collins et al., 2010; Tong and Boone, 2006). See also

Supplemental Experimental Procedures.

Preparation of Ontologies

We used all three branches of the GO (biological process, cellular component,

and molecular function) by joining them under an artificial root. We removed

annotations with the evidence code ‘‘inferred by genetic interaction’’ (IGI) to

avoid potential circularity in predicting genetic interactions. We also removed

terms that were not annotated with any yeast genes or were redundant with

respect to their children terms to construct a gene ontology relevant to yeast

(Table S4), following a previously described procedure (Dutkowski et al.,

2013; http://mhk7.github.io/alignOntology/).

To construct NeXO (Table S5), we integrated the YeastNet v3 networks (Kim

et al., 2014), spanning 68 experimental studies across eight data types

excluding genetic interactions, into a single network, and then applied the

method of Clique Extracted Ontology (Kramer et al., 2014; http://mhk7.github.

io/clixo_0.3/). Code for constructing ontotypes is available at https://github.

com/michaelkyu/ontotype. See also Supplemental Experimental Procedures.

Random Forests Regression

Random forests (Breiman, 2001) were used to regress genetic interaction

scores εab, as described in Results. Because of the very large size of the onto-

type feature matrix, we optimized the random forests library from the Python

scikit-learn package (Pedregosa et al., 2011); the modified code is available

at https://github.com/michaelkyu/scikit-learn-fasterRF. Although trees grown

at approximately 29% (GO) or 37% (NeXO) of the maximal depth did improve

performance slightly (<0.02 gain in correlation; Figure S5), we chose to grow

trees to maximal depth because it is unclear how significant this gain is and

whether it would reproducible in different random partitions of the data for

cross-validation or in different genotype-phenotype datasets. See also Sup-

plemental Experimental Procedures.

Comparison of Methods for Predicting Genetic Interactions

We updated the MNMCmethod because the original implementation (Pandey

et al., 2010) was trained on a set of literature-curated synthetic lethal interac-

tions that was much smaller in size than the set of genetic interactions consid-

ered in our study, and because the set of features used by themethod to score

each gene pair had been updated since the 2010 publication. To train MNMC,

we calculated five base features that were identified in the original MNMC as

among the most informative for predicting synthetic lethality of a gene pair.

This updated MNMC outperformed the original MNMC (Figure S6); this perfor-

mance difference may have been due to calculating more recent versions of

the base features. See also Supplemental Experimental Procedures.
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