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ABSTRACT

The graph orientation problem calls for orienting the edges of a graph so

as to maximize the number of pre-specified source–target vertex pairs

that admit a directed path from the source to the target. Most algorith-

mic approaches to this problem share a common preprocessing step, in

which the input graph is reduced to a tree by repeatedly contracting its

cycles. Although this reduction is valid from an algorithmic perspective,

the assignment of directions to the edges of the contracted cycles be-

comes arbitrary, and the connecting source–target paths may be arbi-

trarily long. In the context of biological networks, the connection of

vertex pairs via shortest paths is highly motivated, leading to the follow-

ing problem variant: given a graph and a collection of source–target

vertex pairs, assign directions to the edges so as to maximize the

number of pairs that are connected by a shortest (in the original

graph) directed path. This problem is NP-complete and hard to approxi-

mate to within sub-polynomial factors. Here we provide a first polyno-

mial-size integer linear program formulation for this problem, which

allows its exact solution in seconds on current networks. We apply

our algorithm to orient protein–protein interaction networks in yeast

and compare it with two state-of-the-art algorithms. We find that our

algorithm outperforms previous approaches and can orient consider-

able parts of the network, thus revealing its structure and function.

Availability and implementation: The source code is available at

www.cs.tau.ac.il/*roded/shortest.zip.

Contact: roded@post.tau.ac.il
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1 INTRODUCTION

Protein–protein interactions (PPIs) form the skeleton of signal

transduction in the cell. Although many of these interactions

carry directed signaling information, current PPI measurement

technologies, such as yeast two hybrid (Fields, 2005) and co-
immunoprecipitation (Gavin et al., 2002), reveal the presence

of a signal flow but not of its directionality. Identifying this dir-

ectionality is fundamental to our understanding of how signaling

networks function. Although some interactions are naturally dir-

ected, such as kinase–substrate and phosphatase–substrate inter-
actions (KPIs), the directions of the vast majority of PPIs remain

unknown.
From a theoretical point of view, graph orientation problems

have been studied by several authors. In the following, we em-

phasize algorithmic results pertaining to mixed graphs (i.e.

graphs with both directed and undirected edges), which are the
focus of this work. Arkin and Hassin (2002) showed that the

problem of orienting a mixed graph so that it admits directed

paths for a given set of source–target vertex pairs is NP-com-

plete. Elberfeld et al. (2013) showed that the corresponding maxi-
mization problem is NP-hard to approximate to within a factor

of 7/8, and provided a sublinear approximation for it. Recently,
Blokh et al. (2013) studied the problem of orienting the edges of

an undirected graph so as to maximize the number of pre-speci-
fied source–target pairs that admit a directed shortest path be-

tween them (i.e. a directed path whose length is equal to the

distance between them in the unoriented graph). They showed
that for an undirected graph with a vertex set of size n, edge set of

size m and p source-target pairs the problem is NP-hard to
approximate within factors of Oðp1��Þ and Oðm1=3��Þ for any

fixed �40, and provided an approximation algorithm with a

factor of Oðmaxfn; pgÞ1=
ffiffi
2
p

. For the k-length-bounded orienta-
tions in a weighted undirected graph, which aims to maximize

the weight of all satisfied paths between sources and targets with
length at most k, Gitter et al. (2011) showed that while the

resulting problem is NP-hard, it can still be approximated to
within a factor Oð2k=kÞ.
In the biological domain, previous work to infer interaction

directionality has mostly used unsupervised methods, with the

exception of Vinayagam et al. (2011), which represents each dir-
ected interaction using topological features and trains a classifier

to predict the directions of unseen interactions. Specifically, pre-

vious unsupervised methods relied on information from perturb-
ation experiments, in which a gene is perturbed (cause) and as a

result other genes change their expression levels (effects), to guide
the inference (Yeang et al., 2004). They assumed that for an

effect to take place, there must be a directed path in the network

from the causal gene to the affected gene. As there are many
paths that can link two proteins in the interaction network, pre-

vious solution methods relied on either length-bounded paths
(Gitter et al., 2011; Ourfali et al., 2007; Yeang et al., 2004) or

parameterized and integer programming techniques (Dorn et al.,
2011; Medvedovsky et al., 2008; Silverbush et al., 2011). The

former are limited by the length of the considered paths (at

most five). The latter, while producing highly precise predictions,
are limited in their coverage, as they start by contracting cycles of

the input network, eliminating the vast majority of the inter-
actions (492% on the network) from further consideration.

It is likely that biological responses are controlled by relatively
short signaling cascades (Gitter et al., 2011; Navlakha et al.,

2012; Vinayagam et al., 2011); however, in a large-scale network,
enumerating all possible paths between two vertices can still be

computationally intractable, even when considering only paths

of limited length. In this article, we propose an orientation
method that overcomes the limitations of previous approaches

by focusing attention on shortest paths, which allows the efficient*To whom correspondence should be addressed.
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representation of all such paths and avoids the contraction prob-
lem. The method aims to orient the edges of an input graph G so

that a maximum number of input source–target pairs admit a

directed source-to-target path whose length is the shortest pos-

sible (i.e. equal to distance between the two vertices in G). Our

algorithm builds on a first efficient (for realistic instances) integer

linear program (ILP) formulation of the problem, allowing the

computation of optimal solutions in seconds on current net-

works. We applied our method to large-scale datasets of yeast

physical interactions and evaluated it using cross-validation
experiments. Our method outperformed two previous state-

of-the-art orientation methods (Gitter et al., 2011; Silverbush

et al., 2011) by a significant margin.

2 MATERIALS AND METHODS

2.1 Problem definition and the shortest-paths graph

We focus on simple graphs with no loops or parallel edges. A mixed

graph is a triple G ¼ ðV,EU,EDÞ that consists of a set of vertices V, a

set of undirected edges EU � fe � V : jej ¼ 2g and a set of directed edges

ED � V� V. A path of length ‘ in G is a sequence of distinct vertices

hv1, . . . , v‘þ1i such that ðvi, viþ1Þ 2 EU [ ED for every 1 � i � ‘. We

denote the distance between vertices s and t in G by dGðs, tÞ. An orienta-

tion of G is a directed graph ~G on the same vertex set V whose edge set

contains all the directed edges of G and a single directed instance of every

undirected edge, but nothing more. We say that a pair of vertices (s,t) is

satisfied by an orientation ~G when the latter graph contains at least one

directed path from s to t whose length is dGðs, tÞ, i.e. equal to the length of

a shortest s to t path in G. The Maximum Shortest-path Orientation

(MSPO) problem is defined as follows:

Input: A mixed graph G ¼ ðV,EU,EDÞ with non-negative edge weights

w(e) for every e 2 EU [ ED, and a collection of source–target vertex pairs

P ¼ fðs1, t1Þ, . . . , ðsk, tkÞg.

Objective: An orientation of G that satisfies (via shortest paths) a max-

imum number of pairs from P.

MSPO was shown to be NP-hard in Blokh et al. (2013). Here we

provide a polynomial size ILP for it that allows solving it to optimality

in seconds on current networks. For ease of presentation, we focus on

unweighted graphs but the algorithm can be easily generalized to the

weighted case.

A key component of the algorithm is an efficient representation of

shortest paths. For an ordered pair (s,t) of vertices, we define their short-

est paths graph Gðs, tÞ ¼ ðV,Eðs, tÞÞ to be a directed graph on V, which

consists of all edges that reside on a shortest path from s to t in G.

Gðs, tÞ can be efficiently constructed by using breadth-first searches from

s and t (the latter, after reversing all the directed edges). Now for every

edge (u,v) such that u is reachable from s and such that t is reachable from

v, we include it in Gðs, tÞ if and only if dGðs, tÞ ¼ dGðs, uÞ þ dGðv, tÞ þ 1. It is

easy to see that each shortest path in G is a shortest path in Gðs, tÞ.

Furthermore, each path in Gðs, tÞ is a shortest path in G by definition of

its edges.

2.2 The integer program

The ILP formulation is based on checking pair connectivities via flow-

based computations. The basic observation is that a pair ðs, tÞ 2 P is

satisfied by a given orientation if and only if t is reachable from s in

Gðs, tÞ. The latter condition can be rephrased as allowing us to send one

unit of flow from s to t. Our ILP consists of a set of binary orientation

variables describing the edge orientations, flow variables describing the

flow on edges of Gðs, tÞ for every ðs, tÞ 2 P and binary closure variables

describing reachability of every pair in P.

Formally, the variables are as follows:

oðu, vÞ, oðv, uÞ 2 f0, 1gjðu, vÞ 2 EU [ ED

� �
ð1Þ

f
ðs, tÞ
ðu, vÞ 2 ½0, 1�jðs, tÞ 2 P ^ ðu, vÞ 2 Eðs, tÞ

n o
ð2Þ

cðs, tÞ 2 f0, 1gjðs, tÞ 2 P
� �

ð3Þ

The orientation variables in (1) are used to encode orientations of the

edges: an assignment of 1 to oðu, vÞ means that the undirected edge fu, vg is

oriented from u to v. We set oðu, vÞ ¼ 1 and oðv, uÞ ¼ 0 for every directed

edge in ED. The flow variables in (2) are used to measure the existence of

flow on every edge of Gðs, tÞ for every pair ðs, tÞ 2 P. Unlike traditional

flow problems, the amount of flow does not concern us, but rather its

existence. The closure variables in (3) are used to represent which vertex

pairs of the graph are satisfied: an assignment of 1 to cðs, tÞ will imply that

the orientation satisfies (s, t).

The objective is as follows:

maximize
X
ðs, tÞ2P

cðs, tÞ ð4Þ

The constraints are as follows:

oðu, vÞ þ oðv, uÞ ¼ 1 for all ðu, vÞ 2 EU ð5Þ

oðu, vÞ ¼ 1, oðv, uÞ ¼ 0 for all ðu, vÞ 2 ED ð6Þ

f
ðs, tÞ
ðu, vÞ � oðu, vÞ for all ðs, tÞ 2 P, ðu, vÞ 2 Eðs, tÞ ð7Þ

f
ðs, tÞ
ðu, vÞ �

X
w:ðw, uÞ2Eðs, tÞ

f
ðs, tÞ
ðw, uÞ ð8Þ

for all ðs, tÞ 2 P, ðu, vÞ 2 Eðs, tÞ, u 6¼ s

cðs, tÞ �
X

ðw, tÞ2Eðs, tÞ

f
ðs, tÞ
ðw, tÞ for all ðs, tÞ 2 P ð9Þ

Constraints in (5) ensure that each undirected edge is oriented in

exactly one direction. In case an interaction is unlikely to be directed

(e.g. a co-complex interaction), the constraints in (5) can be modified

to allow both directions. As we show in the sequel, the assignment of

confidence scores to edge orientations allows us to automatically refrain

from assigning directions to the vast majority of such interactions.

Constraints in (6) ensure that the chosen orientations are consistent

with the directed edges of G. Constraints in (7–9) ensure that for every

pair ðs, tÞ 2 P the closure variable cðs, tÞ can be set to 1 only if there is a

flow from s to t in Gðs, tÞ. In detail, the constraints in (7) ensure that the

flow respect the edge directions; the constraints in (8) ensure that no edge

carries a flow from a vertex u if there is no incoming flow to u and the

constraints in (9) ensure that the pair ðs, tÞ 2 P is not satisfied if there is

no flow from s to t in Gðs, tÞ. The overall size of the ILP is

Oð Pj j ED [ EUj jÞ.

2.3 A more efficient formulation

The above ILP formulation can be made more efficient by observing that

in a biological knockout experiment one measures simultaneously all the

effects of a certain knockout (cause), and thus, many pairs in P share the

same source. We show below how to unify all the flow computations of a

given source, thus significantly reducing the number of variables and

subsequently the time of solving the ILP.

Let S(P) be the set of source vertices in P and denote by

Ms ¼ fðs, t1Þ, . . . , ðs, tlÞg the set of pairs with source s. Let

Gs ¼
Sl

i¼1 Gðs, tiÞ be the union of all shortest path graphs with s as a
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source. Denote its set of edges by Es. We introduce the following updates

to the flow variables and constraints of the program:

fsðu, vÞ 2 R
þjs 2 SðPÞ and ðu, vÞ 2 Es

n o
ð10Þ

fsðu, vÞ � oðu, vÞ for all s 2 SðPÞ, ðu, vÞ 2 Es ð11Þ

fsðu, vÞ �
X
ðw, uÞ2Es

fsðw, uÞ ð12Þ

for all s 2 SðPÞ, ðu, vÞ 2 Es, u 6¼ s

cðs, tÞ �
X
ðw, tÞ2Es

fsðw, tÞ for all ðs, tÞ 2 P ð13Þ

Clearly, any ðs, tÞ path identified by the previous ILP can be used in

this formulation as well. Thus, correctness of this formulation depends on

showing that any ðs, tÞ path it identifies must be a shortest path. Suppose

to the contrary that there exists an ðs, tÞ path L 2 Gs such that L=2Gðs, tÞ.

Let p be the maximal prefix of L that is a prefix of some shortest path in

Gðs, tÞ and let (u,v) be the first edge on L that is not included in p (i.e. p

diverges at u). As (u,v) belongs to some Gðs, t0 Þ (by definition of Gs), p is

also a prefix of a shortest ðs, t0Þ path that traverses (u,v). By our assump-

tion, (u,v) is not on a shortest path to t and, hence, the same property

holds for all the remaining edges on L including the last one — (w,t). This

results in a contradiction, as the presence of (w,t) in Gs implies it must be

on a shortest ðs, tÞ path.

2.4 Computing orientation confidence

In principle, there could be many optimal solutions to the orientation

problem. Hence, some of the edges may be arbitrarily oriented in the

sense that both of their directions can be used in some optimal solutions.

Let sopt be the value of an optimal solution. To compute a measure of

confidence in a given orientation of an edge e ¼ ðv,wÞ, we rerun the ILP

while forcing e to carry the opposite orientation (w,v). We set its confi-

dence value to ce ¼ sopt � se, where se is the maximum number of satisfied

pairs for the modified instance. If ce40, then the direction of e is the same

in all optimal solutions; thus, we keep ce as the edge’s confidence. If

ce ¼ 0 and e ¼ ðv,wÞ is on a shortest s to t path, then there are two

cases to consider: (i) the opposite edge is on a shortest s0 to t0 path; in

this case an orientation of emay be arbitrary and both (v,w) and (w,v) will

be assigned with a confidence of 0. (ii) The opposite edge (w,v) does not

participate in any shortest path; thus, there must be some parallel path

from s to t that does not visit e, allowing it to be oppositely oriented

without altering the objective. In this case, e is assigned a positive confi-

dence according to its contribution to satisfying pairs. Precisely, each pair

p that e ¼ ðv,wÞ is used to satisfy contributes 1=np to its confidence, where

np is the number of vertices u 2 Gp such that dðs, uÞ ¼ dðs,wÞ (reflecting

the number of alternatives to using e). Now a cutoff may be defined, and

an edge e is said to be oriented with confidence if and only if its confidence

exceeds the cutoff.

2.5 Iterative expansion

In an application of our orientation algorithm, edges that are assigned

zero confidence remain undirected. To expand our orientation to include

some of those edges, we run several iterations of the algorithm. In each

iteration, the directions of edges that were confidently oriented in the

previous iteration are held fixed, while the criteria for satisfying the

source-target pairs are modified to allow additional orientations.

Specifically, let Gi ¼ ðVi,EUi
,EDi
Þ be the input graph at iteration i. For

a given source-target pair ðs; tÞ, let Eiðs; tÞ � EDi
be the set of all directed

edges occurring on directed paths from s to t in Gi. Then we define ðs; tÞ

to be satisfied by a given orientation of Gi if and only if it admits a

directed path under this orientation such that: (i) the path does not

intersect Eiðs; tÞ; and (ii) its length is equal to the length of a shortest s-

to-t path in ðVi;EUi
;EDi
nEiðs; tÞ. The algorithm terminates when no new

edges are oriented with confidence.

3 RESULTS

3.1 Data acquisition and integration

We gathered physical interactions and cause–effect pair informa-
tion for Yeast Saccharomyces cerevisiae from different sources.

We used the PPI dataset ‘Y2H-union’ from Yu et al. (2008),

which contains 2930 highly reliable undirected interactions be-

tween 2018 proteins. Protein–DNA interactions (PDI), which are

directed by nature, were taken from MacIsaac et al. (2006), an
update of which can be found at (http://fraenkel.mit.edu/

improved_map/). We used the collection of PDIs with

P50:001 conserved over at least two other yeast species,

which consists of 4113 unique PDIs spanning 2079 proteins.

KPIs were collected from Breitkreutz et al. (2010) by taking
the directed kinase–substrate interactions out of their dataset.

This results in 1361 KPIs among 802 proteins. We used a set

of 14427 knockout pairs between 2870 genes and proteins from

(Hu et al., 2007) by taking their set of unrefined and unfiltered
knockout pairs and filtering all pairs with P50:001.
We integrated the data to obtain a physical network of undir-

ected and directed interactions. We removed self loops and par-
allel interactions; for the latter, whenever both a directed and an

undirected edge were present between the same pair of vertices,

we maintained the former only. Pairs of edges that are directed in

opposite directions were integrated as an undirected edge. The
resulting physical network spans 3686 proteins, 2655 PPIS, 4091

PDIs and 1359 KPIs.

3.2 Application and performance evaluation

We implemented our algorithm, which we call SHORTEST, in Cþþ

using BOOST Cþþ libraries (version number 1.43.0) and the
commercial IBM ILOG CPLEX optimizer (version number 12.5) to

solve ILPs.

To evaluate the orientations suggested by our algorithm, we
ran the algorithm in a cross-validation setting, hiding the direc-

tions of the larger subset of known directed interactions, the

PDIs. This subset was considered as undirected test edges.

Guided by the set of knockout pairs, our program computes
orientations for all undirected edges, including the test edges.

We tested our algorithm using the efficient version of Section

2.3, taking advantage of the fact that the knockout pairs were
derived from a small set of shared sources. When using 10 ex-

pansion rounds, the algorithm oriented with confidence 3379

(82.6%) of the test edges, orienting correctly 2283 (67.6%) of

them (hypergeometric P52:7�159). When restricting the confi-
dence cutoff to 2 (ce � 2) and preforming a single iteration (i.e.

no expansion rounds), the algorithm oriented with confidence

902 (22%) of the test edges with confidence, orienting correctly

714 (79.2%) of them (hypergeometric P¼ 0). To further evaluate

our algorithm, we define precision and recall as defined in
Vinayagam et al. (2011): we considered each interaction as two

different instances, where the interaction from A to B is defined

twice, as A! B representing its positive instance, and B! A

representing its negative instance. If an orientation A! B
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exceeds the confidence cutoff then it is classified as positive.

As expected, a higher confidence cutoff yields a higher precision

[TP/(TPþFP)] and lower recall [TP/(TPþFN)]. More rounds

of expansion increase recall and lower the precision. The

performance of the algorithm for different choices of a confi-

dence cutoff and number of expansion rounds is summarized

in Figures 1 and 2.
As discussed earlier, co-complex interactions are not likely to

have a preferred orientation. To test how frequently our algo-

rithm assigns directions to such interactions, we evaluated our

results against a list of 393 known complexes as annotated by the

Gene Ontology (GO) (Ashburner et al., 2000) and downloaded

from Saccharomyces Genome Database (SGD) (Cherry et al.,

2012) (June 2011). We found that 9% (720) of the interactions

in the network lie within known complexes. Using a confidence

cutoff of 0, 50% of all interactions in the network are assigned a

direction, but only 3.4% of those (139 interactions) lie within

known complexes. This number is significantly small compared

with the random expectation (hypergeometric P51:17�70) test-
ifying the quality of our predictions.
To study the effect of the amount of cause–effect pairs on the

orientation, we applied the algorithm with increasing portions

(chosen at random) of pairs. As evident from Figure 3, the

more pairs the higher are the measured recall and precision, sup-

porting our use of the cause–effect pairs to guide the orientation.

A high percentage (�93%) of the knockout pairs are satisfied

throughout the experiments. Our results seem more robust to

variations in the percentage of directed interactions in the

input network. Even when eliminating the KPIs, an F-measure

of 0.26 was attained (cutoff¼ 0, no expansion rounds).
To evaluate the scalability of the method, we downloaded the

full set of PPIs from BioGrid (Stark et al., 2006) (October 2013),

containing 89 512 unique interactions. Although the preprocess-

ing time increased to 5min, the ILP solution was still obtained in

under a second. The orientation obtained had high quality: 2061

(50%) of the 4091 PDIS were oriented with confidence, and 1691

(82%) of the orientations were accurate (cutoff¼ 0, no expansion

rounds). Expectedly, using a higher confidence cutoff yielded

higher precision values (e.g. 90% for a cutoff of 1).

3.3 Comparison to previous work

We compared our approach with two previous state-of-the-art

methods: the MIXED algorithm (Silverbush et al., 2011) and the

random orientation followed by local search algorithm of (Gitter

et al., 2011). Below we provide precision, recall and F-measure

values for each approach, where the latter combines both
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Fig. 3. Performance as a function of the percentage of cause-effect pairs

guiding the orientation. The confidence cutoff in these experiments is set

to 0 and there are no expansion rounds
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precision and recall into a single value of their harmonic mean:

F-measure¼ 2 	 precision	 recall
precisionþ recall

� �
.

The results of the comparison to MIXED are shown in Figure 4,

where SHORTEST was applied in its maximum coverage setting.

The 8-fold recall increase by SHORTEST is dramatic, albeit at the

price of lower precision. To investigate the precision differences

further, we compared both algorithms performances over the

subset oriented by both. In this subset, both approaches inferred

identical orientation, achieving 94.8% precision over this evi-

dently easier subset.

We used an analogous procedure to infer the directions of the

smaller subset of KPIS, hiding its directions while keeping the PDIS

as a directed subset and guided by the same set of knockout pairs

as in the previous experiment. We were able to orient with con-

fidence 1077 (79.2%) of them, orienting correctly 600 (56%) with

an F-measure of 0.49. In comparison, the MIXED approach ori-

ented 52 (3.8%) of the edges, orienting correctly 46 (88.4%) with

an F-measure of 0.065. As before, within the easier subset of

edges oriented by both methods, a much higher precision of

85.4% was obtained.

To compare with the method of (Gitter et al., 2011), we used

the same data and network used in their article (A.Gitter, private

communication). The unweighted PPI network was extracted

from (Stark et al., 2006) spanning 3446 proteins and 10945 un-

directed interactions. To guide our orientation, we used the same

source–target pair set manually chosen by Gitter et al. (2011). A

test set was extracted from KEGG (Kanehisa and Goto, 2000)

and the Science Signaling Database of Cell Signaling. It contains

91 directed interactions among 69 proteins. Gitter et al. (2011)

oriented 2447 interactions of the initial network. Their orienta-

tion oriented 55 of the 91 tested directed interactions (60.4%), of

which 37 orientations were accurate (67.3%). Applying our al-

gorithm in its maximum recall setting, resulted in orienting 5458

interactions among 2221 proteins, 42-fold increase compared

with Gitter et al. (2011). On the test set, our method oriented

with confidence 79 interactions (86.8%), of which 61 orientations

were accurate (77.2%), providing both higher recall (67.0% ver-

sus 40.7%), higher precision (77.2% versus 67.3%) and achieving

a higher F-measure of 0.71 compared with 0.51. The comparison

is summarized in Tables 1 and 2 and depicted in Figures 5 and 6.
As pointed out by Gitter et al. (2011), scalability is an import-

ant issue for methods analyzing high-throughput datasets, espe-

cially because current data are incomplete and networks for

other organisms may be larger than those for yeast. Thus

Gitter et al. (2011) had examined their running time using the

different algorithms suggested in their paper. We compared our

running time when using the same dataset. Running our

algorithm one iteration only (which includes running the ILP

for each test edge to determine confidence), reaching next to

identical recall as Gitter et al. (2011) and much higher

precision, took 8 s on average, faster than all algorithms used

in Gitter et al. (2011).
Running our approach when allowing the maximum number

of expansion rounds up to exhaustion (reaching five iterations in

total), reaching higher recall and higher precision, took 75 s,

Table 1. A comparison of GITTER and SHORTEST for different numbers of expansion rounds. The best score for each measure is

highlighted

Performance measure SHORTEST#0 SHORTEST#1 SHORTEST#2 SHORTEST#3 SHORTEST#1 GITTER

Precision (%) 81.6 79.0 79.5 76.9 77.2 67.3

Recall (%) 44.0 53.8 63.7 65.9 67.0 40.7

F-measure 0.57 0.64 0.71 0.71 0.72 0.51

Table 2. A comparison of GITTER and SHORTEST for different confidence cutoffs. The best score for each measure is highlighted

Performance measure SHORTESTconf40 SHORTESTconf� 1 SHORTESTconf� 2 SHORTESTconf� 3 GITTER

Precision (%) 77.2 74.6 82.0 90.9 67.3

Recall (%) 67.0 58.2 45.1 33.0 40.7

F-measure 0.72 0.65 0.58 0.48 0.51
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Fig. 4. Performance comparison of MIXED and SHORTEST
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challenged only by the random approach. Running time is pre-

sented in Table 3.

4 DISCUSSION

The orientation of a network is key to understanding its func-

tion. Here we have presented the SHORTEST approach, which

allows us for the first time to confidently orient the majority of

the edges in a network. The most natural use of such an orien-

tation is in enhancing methods for pathway inference.

Specifically, current pathway inference algorithms, like Scott

et al. (2006), receive as input an undirected PPI network and

search for likely paths that start and end at specific proteins.

The search space of such methods can be greatly reduced by

the orientation information.
To test the potential utility of our orientation method in a

pathway inference context, we checked its power in filtering can-

didate pathways by their agreement with the predicted orienta-

tions. To this end, we inspected the source–target pairs connected

by more than one possible pathway within the networks in

Section 3.3: (i) In the orientation instance because of Gitter

et al. (2011), there are 740 possible shortest paths from source

to target (6.2 paths per source–target pair). However, when fil-

tering these paths against the confident orientation predictions,

only 589 (4.9 on average per pair) remain. (ii) In the orientation

instance because of Silverbush et al. (2011) there are 46 782 short-

est paths from source to target (11.9 on average per pair), of

which only 28 273 (7.2 on average per pair) agree with the con-

fident orientations. Thus, the use of our method can potentially

reduce the search space by up to 40%.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Anthony Gitter for his help

in the comparison to Gitter et al. (2011).

Funding: R.S. was supported by a research grant from the Israel

Science Foundation (grant no. 241/11). This study was supported

in part by a fellowship from the Edmond J. Safra Center for

Bioinformatics at Tel-Aviv University.

Conflict of Interest: none declared.

REFERENCES

Arkin,E.M. and Hassin,R. (2002) A note on orientations of mixed graphs. Discrete

Appl. Math., 116, 271–278.

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology. The

Gene Ontology Consortium. Nat. Genet., 25, 25–29.

Blokh,D. et al. (2013) The approximability of shortest pathbased graph orientations

of protein–protein interaction networks. J. Comput. Biol., 20, 945–957.

Breitkreutz,A. et al. (2010) A global protein kinase and phosphatase interaction

network in yeast. Science, 328, 1043–1046.

Cherry,J.M. et al. (2012) Saccharomyces genome database: the genomics resource of

budding yeast. Nucleic Acids Res., 40, D700–D705.

Dorn,B. et al. (2011) Exploiting bounded signal flow for graph orientation based on

cause–effect pairs. Algorithms Mol. Biol., 6, 21.

Elberfeld,M. et al. (2013) Approximation algorithms for orienting mixed graphs.

Theor. Comput. Sci., 483, 96–103.

Fields,S. (2005) High-throughput two-hybrid analysis. FEBS J., 272, 5391–5399.

Gavin,A. et al. (2002) Functional organization of the yeast proteome by systematic

analysis of protein complexes. Nature, 415, 141–147.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gi�er

Recall

Shortest

1 2
3∞

Pr
ec
isi
on

0

Fig. 5. Performance comparison of GITTER and SHORTEST using different

number of expansion rounds. Labels denote the number of expansion

rounds used by SHORTEST

0

0.2

0.4

0.6

0.8

1

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Gi�er

Pr
ec
isi
on

Recall

Shortest

0.5≥
1≥

1.5≥
2≥

0>

2.5≥

3≥

Fig. 6. Performance comparison of GITTER and SHORTEST using different

confidence cutoff. Labels denote the confidence cutoff used by SHORTEST

Table 3. Running time comparison

SHORTEST Gitter et al.

No Unlimited RANDOM MIN-SAT MAX-CSP

Expansion Expansion
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Note: Algorithm run times in seconds. The full dataset was used, with 256 source–
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